首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Partition coefficients between olivine and melt at upper mantle conditions, 3 to 14 GPa, have been determined for 27 trace elements (Li, Be, B, Na, Mg, Al, Si, P, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Rb, Sr, Y, Zr, Cs, Ba, La and Ce) using secondary-ion mass-spectrometry (SIMS) and electron-probe microanalysis (EPMA). The general pattern of olivine/melt partitioning on Onuma diagrams resembles those reported previously for natural systems. This agreement strongly supports the argument that partitioning is under structural control of olivine even at high pressure. The partition coefficients for mono- and tri-valent cations show significant pressure dependence, both becoming larger with pressure, and are strongly correlated with coupled substitution into cation sites in the olivine structure. The dominant type of trace element substitution for mono- and tri-valent cations into olivine changes gradually from (Si, Mg)↔(Al, Cr) at low pressure to (Si, Mg)↔(Al, Al) and (Mg, Mg)↔(Na, Al) at high pressure. The change in substitution type results in an increase in partition coefficients of Al and Na with pressure. An inverse correlation between the partition coefficients for divalent cations and pressure has been observed, especially for Ni, Co and Fe. The order of decreasing rate of partition coefficient with pressure correlates to strength of crystal field effect of the cation. The pressure dependence of olivine/melt partitioning can be attributed to the compression of cation polyhedra induced by pressure and the compensation of electrostatic valence by cation substitution. Received: March 6, 1997 / Revised, accepted: March 12, 1998  相似文献   

2.
Partition coefficients for a range of Rare Earth Elements (REEs), Y, Sc, Al and Zr were determined between forsteritic olivine (nearly end-member Mg2SiO4) and ten melt compositions in the system CaO-MgO-Al2O3-SiO2 (CMAS) at 1 bar and 1400 °C, with concentrations of the trace elements in the olivine and the melt measured by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The REEs and Sc were added at levels sufficient to ensure that concentrations in the olivine were well above the detection limits. The REE partition coefficients decrease with increasing silica in the melt, indicating strong bonding between REEO1.5 and SiO2 in the melt. The variation of as a function of ionic radius is well described by the Brice equation for each composition, although a small proportion of this variation is due to the increase in the strength of the REEO1.5-SiO2 interactions in the melt with ionic radius. Scandium behaves very similarly to the REEs, but a global fit of the data from all ten melt compositions suggests that deviates somewhat from the parabolas established by the REE and Y, implying that Sc may substitute into olivine differently to that of the REEs. In contrast to the behaviour of the large trivalent cations, the concentration of Al in olivine is proportional to the square root of its concentration in the melt, indicating a coupled substitution in olivine with a high degree of short-range order. The lack of any correlation of REE partition coefficients with Al in olivine or melt suggests that the REE substitution in olivine is charge-balanced by cation vacancies. The partition coefficient of the tetravalent trace element Zr, which is highly incompatible in olivine, depends on the CaO content of the melt.  相似文献   

3.
Olivine/melt and orthopyroxene/melt rare-earth element (REE) partition coefficients consistent with clinopyroxene/melt partition coefficients were determined indirectly from subsolidus partitioning between olivine, orthopyroxene, and clinopyroxene after suitable correction for temperature. Heavy- and middle-REE ratios for olivine/clinopyroxene and orthopyroxene/clinopyroxene pairs correlate negatively with effective cationic radius, whereas those for the light REEs correlate positively with cationic radius, generating a U-shaped pattern in apparent mineral/clinopyroxene partition coefficients versus cationic radius. Lattice strain models of partitioning modified for subsolidus conditions yield negative correlations of olivine/clinopyroxene and orthopyroxene/clinopyroxene with respect to cationic radii, predicting well the measured partitioning behaviors of the heavy and middle REEs but not that of the light REEs. The light-REE systematics cannot be explained with lattice strain theory and, instead, can be explained by disequilibrium enrichment of the light REEs in melt inclusions or on the rims of olivine and orthopyroxene. Realistic light-REE partition coefficients were thus extrapolated from the measured heavy- and middle-REE partition coefficients using the lattice strain model. Light REE olivine/melt and orthopyroxene/melt partition coefficients calculated in this manner are lower than most published values, but agree reasonably well with partitioning experiments using the most recent in situ analytical techniques (secondary-ionization mass spectrometry and laser ablation inductively coupled plasma mass spectrometry). These new olivine/melt and orthopyroxene/melt partition coefficients are useful for accurate modeling of the REE contents of clinopyroxene-poor to -free lithologies, such as harzburgitic residues of melting. Finally, the application of the lattice strain theory to subsolidus conditions represents a framework for assessing the degree of REE disequilibrium in a rock.  相似文献   

4.
Trace element partitioning between apatite and silicate melts   总被引:7,自引:0,他引:7  
We present new experimental apatite/melt trace element partition coefficients for a large number of trace elements (Cs, Rb, Ba, La, Ce, Pr, Sm, Gd, Lu, Y, Sr, Zr, Hf, Nb, Ta, U, Pb, and Th). The experiments were conducted at pressures of 1.0 GPa and temperatures of 1250 °C. The rare earth elements (La, Ce, Pr, Sm, Gd, and Lu), Y, and Sr are compatible in apatite, whereas the larger lithophile elements (Cs, Rb, and Ba) are strongly incompatible. Other trace elements such as U, Th, and Pb have partition coefficients close to unity. In all experiments we found DHf > DZr, DTa ≈ DNb, and DBa > DRb > DCs. The experiments reveal a strong influence of melt composition on REE partition coefficients. With increasing polymerisation of the melt, apatite/melt partition coefficients for the rare earth elements increase for about an order of magnitude. We also present some results in fluorine-rich and water-rich systems, respectively, but no significant influence of either H2O or F on the partitioning was found. Furthermore, we also present experimentally determined partition coefficients in close-to natural compositions which should be directly applicable to magmatic processes.  相似文献   

5.
In this paper we report the results of the analysis of rare earth (REE), large-ion lithophile (LILE), and high field strength (HFSE) elements in minerals from the alkaline lamprophyre dikes of the Kola region and the Kaiserstuhl province by the local method of laser ablation inductively coupled plasma mass spectrometry. The contents of Y, Li, Rb, Ba, Th, U, Ta, Nb, Sr, Hf, Zr, Pb, Be, Sc, V, Cr, Ni, Co, Cu, Zn, Ga, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu were measured in olivine, melilite, clinopyroxene, amphibole, phlogopite, nepheline, apatite, perovskite, and the host fine-grained groundmass. The obtained data on trace element partitioning among the mineral phases of the alkaline ultrabasic rocks of the dike series indicate that the main mineral hosts for the HFSEs and REEs in alkaline picrites, olivine melanephelinites, and melilitites are perovskite and apatite comprising more than 90% of these elements. Among major rock-forming minerals, melilite, clinopyroxene, and highly magnesian amphibole make a significant contribution to the balance of REEs during the evolution of melanephelinite melts. The partition coefficients of Ni, Co, Cu, Zn, Sc, V, Cr, Ga, Y, Li, Rb, Ba, Th, U, Ta, Nb, Sr, Hf, Zr, Pb, Be, and all of the REEs were calculated for olivine, clinopyroxene, amphibole, phlogopite, nepheline, perovskite, and apatite on the basis of mineral/groundmass ratios. Variations in the composition of complex zoned clinopyroxene phenocrysts reflect the conditions of polybaric crystallization of melanephelinite melt, which began when the magmas arrived at the base of the lower crust and continued during the whole period of their ascent to the surface. The formation of green cores in clinopyroxene is an indicator of mixing between primary melanephelinite melts and phonolite magmas under upper mantle conditions. The estimation of the composition of primary melts for the rocks of the alkaline ultrabasic series of the Kola province indicated a single primary magma for the whole series. This magma produced pyroxene cumulates and complementary melilitolites, foidolites, and nepheline syenites.  相似文献   

6.
Although orthopyroxene (Opx) is present during a wide range of magmatic differentiation processes in the terrestrial and lunar mantle, its effect on melt trace element contents is not well quantified. We present results of a combined experimental and computational study of trace element partitioning between Opx and anhydrous silicate melts. Experiments were performed in air at atmospheric pressure and temperatures ranging from 1,326 to 1,420°C in the system CaO–MgO–Al2O3–SiO2 and subsystem CaO–MgO–SiO2. We provide experimental partition coefficients for a wide range of trace elements (large ion lithophile: Li, Be, B, K, Rb, Sr, Cs, Ba, Th, U; rare earth elements, REE: La, Ce, Nd, Sm, Y, Yb, Lu; high field strength: Zr, Nb, Hf, Ta, Ti; transition metals: Sc, V, Cr, Co) for use in petrogenetic modelling. REE partition coefficients increase from $ D_{\text{La}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.0005 Although orthopyroxene (Opx) is present during a wide range of magmatic differentiation processes in the terrestrial and lunar mantle, its effect on melt trace element contents is not well quantified. We present results of a combined experimental and computational study of trace element partitioning between Opx and anhydrous silicate melts. Experiments were performed in air at atmospheric pressure and temperatures ranging from 1,326 to 1,420°C in the system CaO–MgO–Al2O3–SiO2 and subsystem CaO–MgO–SiO2. We provide experimental partition coefficients for a wide range of trace elements (large ion lithophile: Li, Be, B, K, Rb, Sr, Cs, Ba, Th, U; rare earth elements, REE: La, Ce, Nd, Sm, Y, Yb, Lu; high field strength: Zr, Nb, Hf, Ta, Ti; transition metals: Sc, V, Cr, Co) for use in petrogenetic modelling. REE partition coefficients increase from $ D_{\text{La}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.0005 $ D_{\text{La}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.0005 to $ D_{\text{Lu}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.109 $ D_{\text{Lu}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.109 , D values for highly charged elements vary from $ D_{\text{Th}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0026 $ D_{\text{Th}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0026 through $ D_{\text{Nb}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0033 $ D_{\text{Nb}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0033 and $ D_{\text{U}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0066 $ D_{\text{U}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0066 to $ D_{\text{Ti}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.058 $ D_{\text{Ti}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.058 , and are all virtually independent of temperature. Cr and Co are the only compatible trace elements at the studied conditions. To elucidate charge-balancing mechanisms for incorporation of REE into Opx and to assess the possible influence of Fe on Opx-melt partitioning, we compare our experimental results with computer simulations. In these simulations, we examine major and minor trace element incorporation into the end-members enstatite (Mg2Si2O6) and ferrosilite (Fe2Si2O6). Calculated solution energies show that R2+ cations are more soluble in Opx than R3+ cations of similar size, consistent with experimental partitioning data. In addition, simulations show charge balancing of R3+ cations by coupled substitution with Li+ on the M1 site that is energetically favoured over coupled substitution involving Al–Si exchange on the tetrahedrally coordinated site. We derived best-fit values for ideal ionic radii r 0, maximum partition coefficients D 0, and apparent Young’s moduli E for substitutions onto the Opx M1 and M2 sites. Experimental r 0 values for R3+ substitutions are 0.66–0.67 ? for M1 and 0.82–0.87 ? for M2. Simulations for enstatite result in r 0 = 0.71–0.73 ? for M1 and ~0.79–0.87 ? for M2. Ferrosilite r 0 values are systematically larger by ~0.05 ? for both M1 and M2. The latter is opposite to experimental literature data, which appear to show a slight decrease in $ r_{0}^{{{\text{M}}2}} $ r_{0}^{{{\text{M}}2}} in the presence of Fe. Additional systematic studies in Fe-bearing systems are required to resolve this inconsistency and to develop predictive Opx-melt partitioning models for use in terrestrial and lunar magmatic differentiation models.  相似文献   

7.
Experiments in the systems diopside-albite (Di-Ab) and diopside-albite-dolomite (Di-Ab-Dmt), doped with a wide range of trace elements, have been used to characterise the difference between clinopyroxene-silicate melt and clinopyroxene-carbonate melt partitioning. Experiments in Di-Ab-Dmt yielded clinopyroxene and olivine in equilibrium with CO2-saturated dolomitic carbonate melt at 3 GPa, 1375 °C. The experiments in Di-Ab were designed to bracket those conditions (3 GPa, 1640 °C and 0.8 GPa, 1375 °C), and so minimise the contribution of differential temperature and pressure to partitioning. Partition coefficients, determined by SIMS analysis of run products, differ markedly for some elements between Di-Ab and Di-Ab-Dmt systems. Notably, in the carbonate system clinopyroxene-melt partition coefficients for Si, Al, Ga, heavy REE, Ti and Zr are higher by factors of 5 to 200 than in the silicate system. Conversely, partition coefficients for Nb, light REE, alkali metals and alkaline earths show much less fractionation (<3). The observed differences compare quantitatively with experimental data on partitioning between immiscible carbonate and silicate melts, indicating that changes in melt chemistry provide the dominant control on variation in partition coefficients in this case. The importance of melt chemistry in controlling several aspects of element partitioning is discussed in light of the energetics of the partitioning process. The compositions of clinopyroxene and carbonate melt in our experiments closely match those of near-solidus melts and crystals in CMAS-CO2 at 3 GPa, suggesting that our partition coefficients have direct relevance to melting of carbonated mantle lherzolite. Melts so produced will be characterised by elevated incompatible trace element concentrations, due to the low degrees of melting involved, but marked depletions of Ti and Zr, and fractionated REE patterns. These are common features of natural carbonatites. The different behaviour of trace elements in carbonate and silicate systems will lead to contrasted styles of trace element metasomatism in the mantle. Received: 15 July 1999 / Accepted: 18 February 2000  相似文献   

8.
利用"RQV-快速内冷淬火"(或称之为"外加热冷封式")高温高压实验装置,实验研究了1kbar、800℃条件下12个REE+Y在富磷过铝质熔体/含水流体相间的分配,并利用EMP、LA-ICPMS和ICP-MS分析技术分别测定了实验初始物、实验产物玻璃中主要化学组成以及熔体相和流体相中REE含量。实验结果表明,REE元素(La,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb和Lu)在流体/熔体相间的分配系数(Dfluid/melt)在(0.1~19.9)×10-4范围,DfYluid/melt在(0.2~7.8)×10-4范围,指示REE和Y强烈趋向于在熔体中富集。REE在流体/熔体相间的分配系数(Dfluid/melt)与体系中P2O5含量变化呈近抛物线状分布,其最大值对应于残余熔体中w(P2O5)为1.44%处。REE在流体/熔体相间的分配系数(Dfluid/melt)随REE的原子序数增大而逐渐降低,构成右倾的平滑曲线,总体上显示出DLREE>DMREE>DHREE的趋势。Y与Ho在流体/熔体相间分配系数的比值(DY/DHo)约为1(0.91~1.28),不随体系中P2O5变化而变化的特征。上述特征表明熔体-流体作用不会导致Y-Ho及REE间的分异,因此,可推断熔体-流体作用过程不可能是过铝质岩浆体系中产生稀土"四重效应"机制。  相似文献   

9.
We present detailed experimental results on the partitioning of rare earth elements (REE) between titanite and a range of different silicate melts. Our results show that Henry’s law of trace element partitioning depends on bulk composition, the available partners for heterovalent substitution, crystal composition, and melt composition. We illustrate that the partition coefficients for Sm depend very strongly on the bulk concentration of Sm in the system. The substitution mechanism, by which rare earth elements are incorporated into the crystal structure, plays an important role for trace element partitioning and also for the onset of Henry’s law. Our data show that there are clear differences between substitution mechanisms of major elements compared to elements which are present only as traces. Our experiments also clearly show that the onset of Henry’s law depends on the concentrations of the sum of all trace elements which are incorporated into the crystal by the same substitution mechanism. For geochemical modelling of magmatic processes involving titanite, and indeed other accessory phases, it is of crucial importance to first evaluate whether the REE, and other trace elements, are present as traces or as major elements, only then appropriate D values may be chosen.  相似文献   

10.
Isobaric and isothermal experiments were performed to investigate the effect of melt composition on the partitioning of trace elements between titanite (CaTiSiO5) and a range of different silicate melts. Titanite-melt partition coefficients for 18 trace elements were determined by secondary ion mass spectrometry (SIMS) analyses of experimental run products. The partition coefficients for the rare earth elements and for Th, Nb, and Ta reveal a strong influence of melt composition on partition coefficients, whereas partition coefficients for other studied monovalent, divalent and most quadrivalent (i.e., Zr, Hf) cations are not significantly affected by melt composition. The present data show that the influence of melt composition may not be neglected when modelling trace element partitioning.It is argued that it is mainly the change of coordination number and the regularity of the coordination space of trace elements in the melt structure that controls partition coefficients in our experiments. Furthermore, our data also show that the substitution mechanism by which trace elements are incorporated into titanite crystals may be of additional importance in this context.  相似文献   

11.
矿物—熔体间元素分配系数资料及主要变化规律   总被引:15,自引:0,他引:15       下载免费PDF全文
本文提供了不同成分的8大类主岩(偏铝质(超)基性岩、过碱性(超)基性岩、偏铝质中性岩、过碱性中性岩、偏铝质酸性岩、过碱性酸性岩、过铝质酸性岩、超酸性岩)中28个矿物(橄榄石、单斜辉石、斜方辉石、角闪石、黑云母、金云母、斜长石、钾长石、石英、磁铁矿、钛铁矿、石榴石、锆石、磷灰石、绿帘石、黄玉、榍石、堇青石、蓝方石、石榴石、霞石、白磷钙矿、镁铁钛矿、板钛矿、黄长石、钙钛矿、尖晶石、金红石)的69个化学元素(Li、Rb、Cs、K、Na、Ca、Sr、Ba、Mn、Fe、Mg、Cu、Pb、Zn、Co、Ni、Be、La、Ce、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y、Sc、Cr、In、Ga、Al、B、Cd、Sb、Bi、U、Th、Zr、Hf、Si、Ti、Ge、Sn、Mo、Nb、Ta、W、V、P、F、Cl、S、N、O、C、As、Pu、Re、Os、He、Ne、Ar、Xe、Kr)和1个化学一价原子团OH的分配系数。综合分析对比表明,矿物、熔体的成分和结构是分配系数的最重要的控制因素。对前人未讨论过的矿物结构和熔体铝过饱和度这两个因素应引起重视。最后,本文分析了矿物-熔体间元素分配系数的研究现状、存在问题,指出了这一领域今后的研究方向。  相似文献   

12.
REE abundances in minerals from spinel peridotite xenoliths from West Germany, the south-western U.S. and Mongolia decrease in the order clinopyroxene > orthopyroxene > olivine > spinel. While clinopyroxenes are similar in absolute chondrite-normalized concentrations to those known from other studies, orthopyroxenes and olivines are significantly lower in LREE although comparable in HREE. Spinels are much lower in all REE than any previously reported values and are completely negligible for the REE budget of peridotites.Partition coefficients for most orthopyroxene/clinopyroxene pairs increase systematically from La to Lu. Olivine/clinopyroxene and spinel/clinopyroxene partition coefficients increase from the intermediate rare earth elements to Lu and normally are higher for La compared to Sm.The application of Nagasawa's (1966) elastic lattice model suggests that all heavy but only minor amounts of the light REE substitute into structural positions of orthopyroxene and olivine.Significant differences between orthopyroxene/clinopyroxene partition coefficients for various xenoliths may be assigned to dependences upon equilibration temperature and bulk chemistry.Apart from grain surface contaminations, fluid inclusions which are practically always present in mantle minerals, can highly concentrate light rare earth elements and thus may be responsible for unexpectedly high concentrations of incompatible elements frequently reported for mantle olivines or orthopyroxenes.  相似文献   

13.
Partition coefficients for La, Sm, Ho and Lu (REE) between synthetic zircon and felsic, peralkaline liquid were determined at 800°C and 2 kbar water pressure by adding small amounts of REE to experimental charges and analyzing zircons in the quenched runs with an electron microprobe. The preferred zircon/liquid partition coefficients obtained by this method are: La, 1.4–2.1; Sm, 26–40; Ho, 340+; Lu, 72–126. These results confirm the strong heavy rare earth enrichment discovered by Nagasawa (1970) in zircon separates from dacites and granites, but they also introduce a modification to the supposed zircon/liquid partition coefficient pattern. The heavy REE end of the pattern is concave downward, in qualitative resemblance to some garnet/liquid and hornblende/liquid REE partitioning patterns.  相似文献   

14.
We present the results of a LA–ICPMS study of titanites and associated glasses from the mixed-magma phonolitic Fasnia Member of the Diego Hernández Formation, Tenerife, Canary Islands. We employ a method of identifying equilibrium mineral–melt pairs from natural samples using REE contents and a linear form of the lattice strain model equation (Blundy and Wood, 1994), where the Young's modulus (EM) for the 7-fold coordinated site is an output variable. For felsic magmas that contain crystals potentially derived from a variety of environments within the system, this approach is more rigorous than the use of solely textural criteria such as mineral–glass proximity. We then estimate titanite/melt partition coefficients for Y, Zr, Nb, REE, Hf, Ta, U and Th. In common with prior studies, we find that middle REE partition more strongly into titanite than either light or heavy REE, and that REE partitioning behavior in titanite is reasonably predicted by the lattice strain model. Titanite also fractionates Y from Ho, Zr from Hf, and Nb from Ta. Comparison with experimental data indicates that melt structure effects on partitioning are significant, most particularly in very highly polymerized melts. We use the data to estimate 7-fold coordination radii for trivalent Pr, Nd, Ho, Tm and Lu, and to make approximate predictions of titanite/melt partitioning of Ra, Ac and Pa. Interpolation of data for heavy REE does not predict the behavior of Y, indicating that factors other than charge and radius are involved in partitioning. Variations in Y/Ho induced by magmatic processes appear to be negatively correlated with temperature, and are expected to be greatest in near-minimum melts.  相似文献   

15.
Experimental cpx/melt partitioning of 24 trace elements   总被引:46,自引:13,他引:46  
Cpx/melt partition coefficients have been determined by ion probe for 24 trace elements at natural levels in an alkali basalt experimentally equilibrated at 1,380°C and 3 GPa. One goal was to intercompare Ds for both high-field-strength elements and rare earth elements (REE) in a single experiment. Relative to the REE spidergram, Hf and Ti show virtually no anomaly, whereas Zr exhibits a major negative anomaly. Other incompatible elements (Ba, K, Nb) fall in the range of published values, as do elements such as Sr, Y, Sc, Cr and V. Pb shows a value intermediate between La and Ce. Values for Be, Li and Ga are reported for the first time, and show that Be is as incompatible as the light REEs whereas Li and Ga are somewhat more compatible than the heavy REE.  相似文献   

16.
Fifteen samples across a 4 m thick komatiite flow from the Val d'Or region in the southeast portion of the Abitibi greenstone belt have been analysed for major oxides and trace elements including the rare earth elements (REE). The flow has been subjected to low grade regional metamorphism: virtually all primary mineralogy (olivine and clinopyroxene) has been obliterated although primary textures are well preserved. Compositional differences between the upper, spinifex textured portion and the underlying massive portion of the flow are largely consistent with the primary fractionation of approximately 30% olivine with a composition close to Fo92. Variations in incompatible element ratios across the flow and in enrichments between the spinifex and massive units suggest that Si, Ce and possibly Lu have been lost to, and Ca, Sr and possibly Y have been gained from, the surroundings. Remobilization of other elements (e.g. Zr, Hf, and alkali metals and most of the REE) appears to have been confined within the flow. AI, Ti, V and Sc appear to have been immobile during alteration of the flow. For the flow as a whole values for many element ratios (e.g. Al/Zr, Al/Sc, Sc/Yb, Zr/Hf, K/Rb) are very similar to chondritic values. If the flow represents a 40% melt approximately, and if the residue was essentially dunitic then the source abundance for most elements was close to chondritic; exceptions are the REE (1.5 to 2×chondrite), Ti (enriched relative to chondrites), and V (depleted relative to chondrites).  相似文献   

17.
The distribution of rare earth elements (REE) between clinopyroxene (cpx) and basaltic melt is important in deciphering the processes of mantle melting. REE and Y partition coefficients from a given cpx-melt partitioning experiment can be quantitatively described by the lattice strain model. We analyzed published REE and Y partitioning data between cpx and basaltic melts using the nonlinear regression method and parameterized key partitioning parameters in the lattice strain model (D 0, r 0 and E) as functions of pressure, temperature, and compositions of cpx and melt. D 0 is found to positively correlate with Al in tetrahedral site (Al T ) and Mg in the M2 site (MgM2) of cpx and negatively correlate with temperature and water content in the melt. r 0 is negatively correlated with Al in M1 site (AlM1) and MgM2 in cpx. And E is positively correlated with r 0. During adiabatic melting of spinel lherzolite, temperature, Al T , and MgM2 in cpx all decrease systematically as a function of pressure or degree of melting. The competing effects between temperature and cpx composition result in very small variations in REE partition coefficients along a mantle adiabat. A higher potential temperature (1,400°C) gives rise to REE partition coefficients slightly lower than those at a lower potential temperature (1,300°C) because the temperature effect overwhelms the compositional effect. A set of constant REE partition coefficients therefore may be used to accurately model REE fractionation during partial melting of spinel lherzolite along a mantle adiabat. As cpx has low Al and Mg abundances at high temperature during melting in the garnet stability field, REE are more incompatible in cpx. Heavy REE depletion in the melt may imply deep melting of a hydrous garnet lherzolite. Water-dependent cpx partition coefficients need to be considered for modeling low-degree hydrous melting.  相似文献   

18.
The evolution of major mineral compositions and trace element abundances during fractional crystallization of a model lunar magma ocean have been calculated. A lunar bulk composition consistent with petrological constraints has been selected. Major mineral compositions have been calculated using published studies of olivine-melt, plagioclase-melt, and pyroxene-olivine equilibria. Trace element abundances have been calculated using experimentally-determined partition coefficients where possible. In the absence of experimental determinations, published partition coefficients obtained by analyzing phase separates from porphyritic volcanic rocks have been used. Trace elements studied are La, Sm, Eu, Lu, Rb, Sr( Eu2+), Ni, Co, and Cr.The first mineral to crystallize is olivine, which varies in composition from Fo98 at the liquidus to Fo95 at 50% solidification. Orthopyroxene crystallizes from 50 to 60% solidification with a restricted composition range of En95-En93. Plagioclase and Ca-rich clinopyroxene (XWo arbitrarily set equal to 0.5) co-crystallize during the final 40% solidification. Plagioclase changes in composition from An97 to approximately An93, while clinopyroxene evolves from En46 to approximately En40. The concomitant evolution of major element abundances in the melt is also discussed.The concentration of Ni in the melt decreases rapidly because solid-melt partition coefficients are significantly greater than unity at all stages of crystallization. The concentration of Cr in the melt increases slowly during olivine crystallization, then drops precipitously during the crystallization of orthopyroxene and clinopyroxene. The concentration of Co in the melt decreases slowly during olivine and orthopyroxene crystallization, after which it returns slowly to its initial concentration. Rubidium and Sr are not fractionated relative to one another until the onset of plagioclase crystallization. Ratios of Rb/Sr, normalized to their initial concentrations in the magma, do not rise above 10 until 95% of the magma has solidified. The ratios of Eu/Sm and La/Lu, normalized to their initial concentrations in the magma, remain essentially unfractionated until the onset of crystallization of clinopyroxene plus plagioclase, at which point the normalized La/Lu ratio increases to approximately 1.3 at 100% solidification and the normalized Eu/Sm ratio decreases to approximately 0.2 at 100% solidification.The model calculations are used to place approximate constraints on the bulk composition of the primitive Moon. Consideration of the effect on plagioclase composition of the activities of NaO0.5 and SiO2 in the melt suggests that the primitive Moon contained less than 0.4 wt % NaO0.5 and approximately 42–43 wt % SiO2. Concentrations of the REE in model lunar anorthosites are consistent with the returned samples. Concentrations of the REE in several model ‘highland basalts’ (considered to be representative of the average lunar terrae) are too low when compared with returned samples. Several possible explanations of this discrepancy are considered. The possible role of spinel in a twostage geochemical evolution of mare basalt liquids is discussed.  相似文献   

19.
Low-Ca pyroxenes play an important role in mantle melting, melt-rock reaction, and magma differentiation processes. In order to better understand REE fractionation during adiabatic mantle melting and pyroxenite-derived melt and peridotite interaction, we developed a parameterized model for REE partitioning between low-Ca pyroxene and basaltic melts. Our parameterization is based on the lattice strain model and a compilation of published experimental data, supplemented by a new set of trace element partitioning experiments for low-Ca pyroxenes produced by pyroxenite-derived melt and peridotite interaction. To test the validity of the assumptions and simplifications used in the model development, we compared model-derived partition coefficients with measured partition coefficients for REE between orthopyroxene and clinopyroxene in well-equilibrated peridotite xenoliths. REE partition coefficients in low-Ca pyroxene correlate negatively with temperature and positively with both calcium content on the M2 site and aluminum content on the tetrahedral site of pyroxene. The strong competing effect between temperature and major element compositions of low-Ca pyroxene results in very small variations in REE partition coefficients in orthopyroxene during adiabatic mantle melting when diopside is in the residue. REE partition coefficients in orthopyroxene can be treated as constants at a given mantle potential temperature during decompression melting of lherzolite and diopside-bearing harzburgite. In the absence of diopside, partition coefficients of light REE in orthopyroxene vary significantly, and such variations should be taken into consideration in geochemical modeling of REE fractionation in clinopyroxene-free harzburgite. Application of the parameterized model to low-Ca pyroxenes produced by reaction between pyroxenite-derived melt and peridotite revealed large variations in the calculated REE partition coefficients in the low-Ca pyroxenes. Temperature and composition of starting pyroxenite must be considered when selecting REE partition coefficients for pyroxenite-derived melt and peridotite interaction.  相似文献   

20.
Some F-rich granitic rocks show anomalous, nonchondritic ratios of Y/Ho, extreme negative Eu anomalies, and unusual, discontinuous, segmented chondrite-normalised plots of rare earth elements (REE). The effects of F-rich fluids have been proposed as one of the explanations for the geochemical anomalies in the evolved granitic systems, as the stability of nonsilicate complexes of individual rare earths may affect the fluid-melt element partitioning. The lanthanide tetrad effect, related to different configurations of 4f-electron subshells of the lanthanide elements, is one of the factors affecting such complexing behaviour. We present the first experimental demonstration of the decoupling of Y and Ho, and the tetrad effect in the partitioning of rare earths between immiscible silicate and fluoride melts. Two types of experiments were performed: dry runs at atmospheric pressure in a high-temperature centrifuge at 1100 to 1200°C, and experiments with the addition of H2O at 700 to 800°C and 100 MPa in rapid-quench cold-seal pressure vessels. Run products were analysed by electron microprobe (major components), solution-based inductively coupled plasma mass spectrometry (ICP-MS) (REE in the centrifuged runs), and laser ablation ICP-MS (REE and Li in the products of rapid-quench runs). All the dry centrifuge runs were performed at super-liquidus, two-phase conditions. In the experiments with water-bearing mixtures, minor amounts of aqueous vapour were present in addition to the melts. We found that lanthanides and Y concentrated strongly in the fluoride liquids, with two-melt partition coefficients reaching values as high as 100-220 in water-bearing compositions. In all the experimental samples, two-melt partition coefficients of lanthanides show subtle periodicity consistent with the tetrad effect, and the partition coefficient of Y is greater than that of Ho. One of the mixtures also produced abundant fluorite (CaF2) and cryolite (Na3AlF6) crystals, which enabled us to study fluorite-melt and cryolite-melt REE partitioning. REE concentrations in fluorite are high and comparable to those in the fluoride melt. However, fluorite-melt partition coefficients appear to depend mostly on ionic radii and show neither significant tetrad anomalies, nor differences in Y and Ho partitioning. In contrast, REE concentrations in cryolite are low (∼5-10 times lower than in the silicate melt), and cryolite-melt REE partitioning shows very strong tetrad and Y-Ho anomalies. Our results imply that Y-Ho and lanthanide tetrad anomalies are likely to be caused mainly by aluminofluoride complexes, and the tetrad REE patterns in natural igneous rocks can result from fractionation of F-rich magmatic fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号