首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 192 毫秒
1.
Cargill  Peter J. 《Solar physics》2004,221(1):135-149
It is well known that the interaction of an interplanetary coronal mass ejection (ICME) with the solar wind leads to an equalisation of the ICME and solar wind velocities at 1 AU. This can be understood in terms of an aerodynamic drag force per unit mass of the form F D/M=−(ρe AC D/M)(V iV e)∣V iV e∣, where A and M are the ICME cross-section and sum of the mass and virtual mass, V i and V e the speed of the ICME and solar wind, ρe the solar wind density, C D a dimensionless drag coefficient, and the inverse deceleration length γ=ρe A/M. The optimal radial parameterisation of γ and C D beyond approximately 15 solar radii is calculated. Magnetohydrodynamic simulations show that for dense ICMEs, C D varies slowly between the Sun and 1 AU, and is of order unity. When the ICME and solar wind densities are similar, C D is larger (between 3 and 10), but remains approximately constant with radial distance. For tenuous ICMEs, the ICME and solar wind velocities equalise rapidly due to the very effective drag force. For ICMEs denser that the ambient solar wind, both approaches show that γ is approximately independent of radius, while for tenuous ICMEs, γ falls off linearly with distance. When the ICME density is similar to or less than that in the solar wind, inclusion of virtual mass effects is essential.  相似文献   

2.
Low frequency electromagnetic lower hybrid waves (so-called hybrid whistlers) propagating nearly transverse to the magnetic field can be driven unstable by a resonant interaction with halo electron distributions carrying solar wind heat flux. The electromagnetic lower hybrid instability is excited when the halo electron drift exceeds the parallel phase velocity of the wave. The growth rate attains a maxima at a certain value of the wavenumber. The maximum growth rate decrease by an increase in e (the ratio of electron pressure to magnetic field pressure) and halo electron temperature anisotropy. At 0.3 AU the growth time of the electromagnetic lower hybrid instability is of the order of 25 ms or shorter, whereas the most unstable wavelengths associated with the instability fall typically in a range of 27 to 90 km. The instability would give rise to a local heating of solar wind ions and electrons in the perpendicular and parallel directions relative to the magnetic field, B0. The observations of low frequency whistlers having high values ofB/E ratios (B andE being the magnitude of the wave magnetic and electric field, respectively) and propagating at large oblique angles to B0 behind interplanetary shocks, can be satisfactorily explained in terms of electromagnetic lower hybrid instability. The instability is also relevant to the generation mechanism of correlated whistler and electron plasma oscillation bursts detected on ISEE-3.  相似文献   

3.
We study the velocity-space quasi-linear diffusion of the solar wind protons driven by oblique Alfvén turbulence at proton kinetic scales. Turbulent fluctuations at these scales possess the properties of kinetic Alfvén waves (KAWs) that are efficient in Cherenkov-resonant interactions. The proton diffusion proceeds via Cherenkov kicks and forms a quasi-linear plateau – the nonthermal proton tail in the velocity distribution function (VDF). The tails extend in velocity space along the mean magnetic field from 1 to (1.5?–?3) V A, depending on the spectral break position, on the turbulence amplitude at the spectral break, and on the spectral slope after the break. The most favorable conditions for the tail generation occur in the regions where the proton thermal and Alfvén velocities are about equal, V Tp/V A≈1. The estimated formation times are within 1?–?2 h for typical tails at 1 AU, which is much shorter than the solar wind expansion time. Our results suggest that the nonthermal proton tails, observed in situ at all heliocentric distances >?0.3 AU, are formed locally in the solar wind by the KAW turbulence. We also suggest that the bump-on-tail features – proton beams, often seen in the proton VDFs, can be formed at a later evolutional stage of the nonthermal tails by the time-of-flight effects.  相似文献   

4.
The effect of an interplanetary atomic hydrogen gas on solar wind proton, electron and α-particle temperatures beyond 1 AU is considered. It is shown that the proton temperature (and probably also the α-particle temperature) reaches a minimum between 2 AU and 4 AU, depending on values chosen for solar wind and interstellar gas parameters. Heating of the electron gas depends primarily on the thermal coupling of the protons and electrons. For strong coupling (whenT p ≳T e ), the electron temperature reaches a minimum between 4 AU and 8 AU, but for weak coupling (Coulomb collisions only), the electron temperature continues to decrease throughout the inner solar system. A spacecraft travelling to Jupiter should be able to observe the heating effect of the solar wind-interplanetary hydrogen interaction, and from such observations it may be possible of infer some properties of the interstellar neutral gas. Currently a National Research Council Resident Research Associate.  相似文献   

5.
The correlations between the plasma characteristics of the solar wind flow in the vicinity (± 12 hr) of stream-free sector boundaries near Earth are examined using the composite data base of interplanetary plasma for the period 1965–1980. We confirm the result of Lopez et al. (1986) of an inverse relationship of the proton temperature (T p) with the momentum flux density (NV 2) in the low speed wind at 1 AU. The coefficients of lines of best fit to the T pvs NV 2(as well as T pvs V) distribution in our sample are, however, significantly different from those of the undifferentiated sample of low speed wind considered by Lopez et al. such that T pis, in general, lower than expected. We find further that the proton number density (N) varies as the inverse cube of the flow speed (V) indicating an invariance of the kinetic energy flux density (NV 3) relative to velocity structure in the plasma flow around stream-free boundaries. These average relationships, which are unaffected by interplanetary dynamical processes, are suggested to be due to sub-sonic addition of momentum and energy to the solar wind flow from the source structures, namely coronal streamers.  相似文献   

6.
I. Sabbah 《Solar physics》2007,245(1):207-217
Neutron monitor data observed at Climax (CL) and Huancayo/Haleakala (HU/HAL) have been used to calculate the amplitude A of the 27-day variation of galactic cosmic rays (CRs). The median primary rigidity of response, R m, for these detectors encompasses the range 18 ≤R m≤46 GV and the threshold rigidity R 0 covers the range 2.97≤R 0≤12.9 GV. The daily average values of CR counts have been harmonically analyzed for each Bartels solar rotation (SR) during the period 1953 – 2001. The amplitude of the 27-day CR variation is cross-correlated to solar activity as measured by the sunspot number R, the interplanetary magnetic field (IMF) strength B, the z-component B z of the IMF vector, and the tilt angle ψ of the heliospheric current sheet (HCS). It is anticorrelated to the solar coronal hole area (CHA) index as well as to the solar wind speed V. The wind speed V leads the amplitude by 24 SRs. The amplitude of the 27-day CR variation is better correlated to each of the these parameters during positive solar polarity (A>0) than during negative solar polarity (A<0) periods. The CR modulation differs during A>0 from that during A<0 owing to the contribution of the z-component of the IMF. It differs during A 1>0 (1971 – 1980) from that during A 2>0 (1992 – 2001) owing to solar wind speed.  相似文献   

7.
Starting with a large number (N=100) of Wind magnetic clouds (MCs) and applying necessary restrictions, we find a proper set of N=29 to investigate the average ecliptic plane projection of the upstream magnetosheath thickness as a function of the longitude of the solar source of the MCs, for those cases of MCs having upstream shock waves. A few of the obvious restrictions on the full set of MCs are the need for there to exist a driven upstream shock wave, knowledge of the MC’s solar source, and restriction to only MCs of low axial latitudes. The analysis required splitting this set into two subsets according to average magnetosheath speed: slow/average (300 – 500 km s−1) and fast (500 – 1100 km s−1) speeds. Only the fast set gives plausible results, where the estimated magnetosheath thickness (ΔS) goes from 0.042 to 0.079 AU (at 1 AU) over the longitude sector of 0° (adjusted source-center longitude of the average magnetic cloud) to 40° off center (East or West), based on N=11 appropriate cases. These estimates are well determined with a sigma (σ) for the fit of 0.0055 AU, where σ is effectively the same as (chi-squared) for the appropriate quadratic fit. The associated linear correlation coefficient for ΔS versus |Longitude| was very good (c.c.=0.93) for the fast range, and ΔS at 60° longitude is extrapolated to be 2.7 times the value at 0°. For the slower speeds we obtain the surprising result that ΔS is typically more-or-less constant at 0.040±0.013 AU at all longitudes, indicating that the MC as a driver, when moving close to the normal solar wind speed, has little influence on magnetosheath thickness. In some cases, the correct choice between two candidate solar-source longitudes for a fast MC might be made by noting the value of the observed ΔS just upstream of the MC. Also, we point out that, for the 29 events, the average sheath speed was well correlated with the quantity ΔV[=(〈V MC〉−〈V UPSTREAM〉)], and also with both 〈V MC〉 and 〈V MC,T〉, where 〈V MC〉 is the first one-hour average of the MC speed, 〈V MC,T〉 is the average MC speed across the full MC, and 〈V UPSTREAM〉 is a five-hour average of the solar wind speed just upstream of the shock.  相似文献   

8.
P. K. Manoharan 《Solar physics》2006,235(1-2):345-368
Knowledge of the radial evolution of the coronal mass ejection (CME) is important for the understanding of its arrival at the near-Earth space and of its interaction with the disturbed/ambient solar wind in the course of its travel to 1 AU and further. In this paper, the radial evolution of 30 large CMEs (angular width > 150, i.e., halo and partial halo CMEs) has been investigated between the Sun and the Earth using (i) the white-light images of the near-Sun region from the Large Angle Spectroscopic Coronagraph (LASCO) onboard SOHO mission and (ii) the interplanetary scintillation (IPS) images of the inner heliosphere obtained from the Ooty Radio Telescope (ORT). In the LASCO field of view at heliocentric distances R≤30 solar radii (R), these CMEs cover an order of magnitude range of initial speeds, VCME≈260–2600 km s−1. Following results have been obtained from the speed evolution of these CMEs in the Sun–Earth distance range: (1) the speed profile of the CME shows dependence on its initial speed; (2) the propagation of the CME goes through continuous changes, which depend on the interaction of the CME with the surrounding solar wind encountered on the way; (3) the radial-speed profiles obtained by combining the LASCO and IPS images yield the factual view of the propagation of CMEs in the inner heliosphere and transit times and speeds at 1 AU computed from these profiles are in good agreement with the actual measurements; (4) the mean travel time curve for different initial speeds and the shape of the radial-speed profiles suggest that up to a distance of ∼80 R, the internal energy of the CME (or the expansion of the CME) dominates and however, at larger distances, the CME's interaction with the solar wind controls the propagation; (5) most of the CMEs tend to attain the speed of the ambient flow at 1 AU or further out of the Earth's orbit. The results of this study are useful to quantify the drag force imposed on a CME by the interaction with the ambient solar wind and it is essential in modeling the CME propagation. This study also has a great importance in understanding the prediction of CME-associated space weather at the near-Earth environment.  相似文献   

9.
W. B. Song 《Solar physics》2010,261(2):311-320
Referring to the aerodynamic drag force, we present an analytical model to predict the arrival time of coronal mass ejections (CMEs). All related calculations are based on the expression for the deceleration of fast CMEs in the interplanetary medium (ICMEs), [(v)\dot]=-\frac115 700(v-VSW)2\dot{v}=-\frac{1}{15\,700}(v-V_{\mathrm{SW}})^{2} , where V SW is the solar wind speed. The results can reproduce well the observations of three typical parameters: the initial speed of the CME, the speed of the ICME at 1 AU and the transit time. Our simple model reveals that the drag acceleration should be really the essential feature of the interplanetary motion of CMEs, as suggested by Vršnak and Gopalswamy (J. Geophys. Res. 107, 1019, 2002).  相似文献   

10.
Hourly interplanetary proton plasma data, measured by Helios-1 and Helios-2 heliocentric satellites over the period extending between the sunspot minimum and maximum of the 21rst solar cycle are analysed. This analysis gives an emphasis in the presence of a third type solar wind (intermediate) at 450 km s–1, appearing at solar minimum, during which large coronal holes are dominating in the Sun. This type of solar wind is hardly to be observed during the solar maximum period.Both Helios-1 and Helios-2 data give an average speed of the slow solar wind of 350 km s–1 for the period between these two extremes of solar activities.After correlation of the plasma temperature with its speed in different heliocentric distances, it comes out the stronger heating which takes place in distances shorter than 0.6 AU than in distances between 0.6 and 1.0 AU.A different behaviour of the radial proton temperature gradient in different solar activities appears after the calculation of the gradients as a function of solar wind speed and radial distance.  相似文献   

11.
The spatial structure of the transverse oscillations in the interplanetary magnetic field at 1 AU is studied by comparing the simultaneous observations by Explorer 33 and 35 satellites at the maximum separation of about 200R E. The anisotropy characteristics of these oscillations suggest that the oscillations sampled are Alfvén waves. It is found that the size of the region of the wave coherence is related to the solar wind velocity; the size is 80R E when the wind velocity is lower than 500 km s–1 but becomes less than this when the wind velocity is higher. An inference is made that the solar atmospheric turbulence contributing to the faster solar wind is finer in scale than that associated with the slower wind.A postgraduate student at the Tokai University  相似文献   

12.
Lepping  R.P.  Berdichevsky  D.B.  Burlaga  L.F.  Lazarus  A.J.  Kasper  J.  Desch  M.D.  Wu  C.-C.  Reames  D.V.  Singer  H.J.  Smith  C.W.  Ackerson  K.L. 《Solar physics》2001,204(1-2):285-303
The energetic charged particle, interplanetary magnetic field, and plasma characteristics of the `Bastille Day' shock and ejecta/magnetic cloud events at 1 AU occurring over the days 14–16 July 2000 are described. Profiles of MeV (WIND/LEMT) energetic ions help to organize the overall sequence of events from the solar source to 1 AU. Stressed are analyses of an outstanding magnetic cloud (MC2) starting late on 15 July and its upstream shock about 4 hours earlier in WIND magnetic field and plasma data. Also analyzed is a less certain, but likely, magnetic cloud (MC1) occurring early on 15 July; this was separated from MC2 by its upstream shock and many heliospheric current sheet (HCS) crossings. Other HCS crossings occurred throughout the 3-day period. Overall this dramatic series of interplanetary events caused a large multi-phase magnetic storm with min Dst lower than −300 nT. The very fast solar wind speed (≥ 1100 km s−1) in and around the front of MC2 (for near average densities) was responsible for a very high solar wind ram pressure driving in the front of the magnetosphere to geocentric distances estimated to be as low as ≈ 5 R E, much lower than the geosynchronous orbit radius. This was consistent with magnetic field observations from two GOES satellites which indicated they were in the magnetosheath for extended times. A static force-free field model is used to fit the two magnetic cloud profiles providing estimates of the clouds' physical and geometrical properties. MC2 was much larger than MC1, but their axes were nearly antiparallel, and their magnetic fields had the same left-handed helicity. MC2's axis and its upstream shock normal were very close to being perpendicular to each other, as might be expected if the cloud were driving the shock at the time of observation. The estimated axial magnetic flux carried by MC2 was 52×1020 Mx, which is about 5 times the typical magnetic flux estimated for other magnetic clouds in the WIND data over its first 4 years and is 17 times the flux of MC1. This large flux is due to both the strong axially-directed field of MC2 (46.8 nT on the axis) and the large radius (R 0=0.189 AU) of the flux tube. MC2's average speed is consistent with the expected transit time from a halo-CME to which it is apparently related.  相似文献   

13.
H. J. Fahr 《Solar physics》1973,30(1):193-206
The effect of a new energy source due to energies transferred from supra-thermal secondary ions on the temperature profile of the solar wind has been considered. For this purpose a solution of a tri-fluid model of the solar wind including solar electrons, protons, and -particles, and starting with the boundary conditions of Hartle and Barnes at 0.5 AU is given. On the base of the assumption that suprathermal He+-ions which have four times the temperature of suprathermal protons are predominantly coupled to solar -particles by Alfvén waves, it is shown that the temperature T of solar -particles should be appreciably higher than those T p of solar protons beyond the orbit of the Earth. For 1 AU a temperature excess T over T p according to that which has been found in some solar wind ion spectrograms can only be explained for a small part of the orbit of the earth which is inside the cone of enhanced helium densities. Around 1 AU the temperatures T and T p are found to decrease much slighter with solar distance than given in the two-fluid model of Hartle and Barnes. Beyond 1.7 and 2.2 AU the temperatures T and T p even start increasing with solar distance and come up to about 105 at about 10 AU. These predictions should lend some support to future temperature measurements with deep-space probes reaching Solar distances of some AU.Forschungsberichte des Astronomischen Institutes, Bonn, 72-10.  相似文献   

14.
The phenomenon of MHD wave refraction is useful in interpreting the properties of the magnetic fluctuations in certain parcels of solar wind. In the physics of MHD wave refraction, variations in the Alfvén speed VAlf play a dominant role. Here, we compile statistics of the 1-min averages of VAlf at the location of the ACE spacecraft during its first 5 years of operation. We find that monthly distributions of VAlf are close to log-normal, with standard deviations σV as small as 0.11 in the logarithm. Variations in the monthly mean VAlf are correlated significantly with sunspot number. We also compile monthly distributions of the plasma β parameter. The distributions of both VAlf and β are significantly narrower than they would be if the various solar wind parameters were statistically independent. In the TpVAlf plane, we find a zone of avoidance at low VAlf: for VAlf ≤10 – 15 km/s, there are no samples in the 1-min data that are cooler than Tp = 10 000 – 15 000 K. This feature can be understood in the context of MHD wave refraction, although other explanations are also possible.  相似文献   

15.
A global 3-D simulation of interplanetary dynamics in June 1991   总被引:3,自引:0,他引:3  
The global dynamics of the solar wind and interplanetary magnetic field in June 1991 is simulated based on a fully three-dimensional, time-dependent numerical MHD model. The numerical simulation includes eight transient disturbances associated with the major solar flares of June 1991. The unique features of the present simulation are: (i) the disturbances are originated at the coronal base (1R s) and their propagation through inhomogeneous ambient solar wind is simulated out to 1.5 AU; (ii) as a background for the transients, the global steady-state solar wind structure inferred from the 3-D steady-state model (Usmanov, 1993c) is used. The parameters of the initial pulses are prescribed in terms of the near-Sun shock velocities (as inferred from the metric Type II radio burst observations) relative to the preshock steady-state flow parameters at the flare sites. The computed parameters at the Earth's location for the period 1–18 June, 1991 are compared with the available observations of the interplanetary magnetic field, solar wind velocity, density, and with variation of the geomagnetic activityK pindex.  相似文献   

16.
Helium abundance variations in the solar wind have been studied using data obtained with Los Alamos plasma instrumentation on IMP 6, 7, and 8 from 1971 through 1978. For the first time, average flow characteristics have been determined as a function of helium abundance, A(He). Low and average values of A(He) are each preferentially identified with a different characteristic plasma ‘state’ these correspond to what have previously been recognized as the signatures of interplanetary magnetic field polarity reversals and high speed streams, respectively. Helium enhancements at 1 AU also can be identified with a characteristic plasma state, which includes high magnetic field intensity and low proton temperature. This is further evidence that such enhancements are a signal of coronal transient mass ejections. Long-term averages of A(He) at least partially reflect the relative frequency with which coronal streamers, holes, and transients extend their influence into the ecliptic plane at 1 AU. As a result, there is a real and pronounced solar cycle variation of solar wind H(He).  相似文献   

17.
During the latitudinal alignment in 2004, ACE and Ulysses encountered two stream interaction regions (SIRs) each Carrington rotation from 2016 to 2018, at 1 and 5.4 AU, respectively. More SIR-driven shocks were observed at 5.4 AU than at 1 AU. Three small SIRs at 1 AU merged to form a strong SIR at 5.4 AU. We compare the Enlil model results with spacecraft observations from four aspects: i) the accuracy of the latest versions of models (WSA v2.2 and Enlil v2.7) vs. old versions (WSA v1.6 and Enlil v2.6), ii) the sensitivity to different solar magnetograms (MWO vs. NSO), iii) the sensitivity to different coronal models (WSA vs. MAS), iv) the predictive capability at 1 AU vs. 5.4 AU. We find the models can capture field sector boundaries with some time offset. Although the new versions have improved the SIR timing prediction, the time offset can be up to two days at 1 AU and four days at 5.4 AU. The models cannot capture some small-scale structures, including shocks and small SIRs at 1 AU. For SIRs, the temperature and total pressure are often underestimated, while the density compression is overestimated. For slow wind, the density is usually overestimated, while the temperature, magnetic field, and total pressure are often underestimated. The new versions have improved the prediction of the speed and density, but they need more robust scaling factors for magnetic field. The Enlil model results are very sensitive to different solar magnetograms and coronal models. It is hard to determine which magnetogram-coronal model combination is superior to others. Higher-resolution solar and coronal observations, a mission closer to the Sun, together with simulations of greater resolution and added physics, are ways to make progress for the solar wind modeling.  相似文献   

18.
T. Iju  M. Tokumaru  K. Fujiki 《Solar physics》2014,289(6):2157-2175
We report kinematic properties of slow interplanetary coronal mass ejections (ICMEs) identified by SOHO/LASCO, interplanetary scintillation, and in situ observations and propose a modified equation for the ICME motion. We identified seven ICMEs between 2010 and 2011 and compared them with 39 events reported in our previous work. We examined 15 fast (V SOHO?V bg>500 km?s?1), 25 moderate (0 km?s?1V SOHO?V bg≤500 km?s?1), and 6 slow (V SOHO?V bg<0 km?s?1) ICMEs, where V SOHO and V bg are the initial speed of ICMEs and the speed of the background solar wind. For slow ICMEs, we found the following results: i) They accelerate toward the speed of the background solar wind during their propagation and reach their final speed by 0.34±0.03 AU. ii) The acceleration ends when they reach 479±126 km?s?1; this is close to the typical speed of the solar wind during the period of this study. iii) When γ 1 and γ 2 are assumed to be constants, a quadratic equation for the acceleration a=?γ 2(V?V bg)|V?V bg| is more appropriate than a linear one a=?γ 1(V?V bg), where V is the propagation speed of ICMEs, while the latter gives a smaller χ 2 value than the former. For the motion of the fast and moderate ICMEs, we found a modified drag equation a=?2.07×10?12(V?V bg)|V?V bg|?4.84×10?6(V?V bg). From the viewpoint of fluid dynamics, we interpret this equation as indicating that ICMEs with 0 km?s?1V?V bg≤2300 km?s?1 are controlled mainly by the hydrodynamic Stokes drag force, while the aerodynamic drag force is a predominant factor for the propagation of ICME with V?V bg>2300 km?s?1.  相似文献   

19.
Solar wind interaction with neutral interstellar helium focused by the Sun's gravity in the downwind solar cavity is discussed in a hydrodynamical approach. Upon ionization the helium atoms “picked up” by the (single fluid) solar wind plasma cause a slight decrease in the wind speed and a corresponding marked temperature increase. For neutral helium density outside the cavity nHe = 0.01 atoms cm?3 and for interstellar kinetic temperature THe= 10,000 K, the reduction is speed of the solar wind on the downwind axis at 10 AU from the Sun amounts to about 2kms?1; the solar wind temperature excess attains 7000 K. The resulting pressure excess leads to a non-radial flow of the order of 0.25 km s?1. The possibility of experimental confirmation is discussed.  相似文献   

20.
Whang  Y.C.  Burlaga  L.F.  Ness  N.F.  Smith  C.W. 《Solar physics》2001,204(1-2):253-263
Near 1 AU the solar wind structure associated with the solar flare of 14 July 2000 (Bastille Day) consisted of a large high-speed stream of 15 July and five nearby small streams during a 10-day period. At the leading edge of the large high-speed stream, in less than 6 hours, the flow speed increased from 600 km s−1 to 1100 km s−1, the magnetic field intensity increased from 10 nT to 60 nT, and an interaction region was identified. The interaction region was bounded between the pair of a forward shock F and a reverse shock R. Additional forward shocks were also identified at the leading edge of each of the five smaller streams. This paper presents a magnetohydrodynamics (MHD) simulation using ACE plasma and magnetic field data near 1 AU as input to study the radial evolution of the Bastille Day solar wind event. The two shocks, F and R, propagated in opposite directions away from each other in the solar wind frame and interacted with neighboring shocks and streams; the spatial and temporal extent of the interaction region continued to increase with the heliocentric distance. The solar wind was restructured from a series of streams at 1 AU to a huge merged interaction region (MIR) extending over a period of 12 days at 5.5 AU. Throughout the interior of the MIR bounded by the shock pair F and R the magnetic field intensity was a few times stronger than that outside the MIR. The simulation shows how merging of shocks, collision of shocks, and formation of new shocks contributed to the evolution process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号