首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we consider the spatial lunar three-body problem in which one body is far away from the other two. By applying a well-adapted version of KAM theorem to Lidov–Ziglin’s global study of the quadrupolar approximation of the spatial lunar three-body problem, we establish the existence of several families of quasi-periodic orbits in the spatial lunar three-body problem.  相似文献   

2.
In this paper, distant quasi-periodic orbits around Mercury are studied for future Mercury missions. All of these orbits have relatively large sizes, with their altitudes near or above the Mercury sphere of influence. The research is carried out in the framework of the elliptic restricted three-body problem (ER3BP) to account for the planet’s non-negligible orbital eccentricity. Retrograde and prograde quasi-periodic trajectories in the planar ER3BP are generalized from periodic orbits in the CR3BP by the homotopy algorithm, and the shape evolution of such quasi-periodic trajectories around Mercury is investigated. Numerical simulations are performed to evaluate the stability of these distant orbits in the long term. These two classes of orbits present different characteristics: retrograde orbits can maintain shape stability with a large size, although the trajectories in some regions may oscillate with larger amplitudes; for prograde orbits, the range of existence is much smaller, and their trajectories easily move away from the vicinity of Mercury when the orbits become larger. Distant orbits can be used to explore the space environment in the vicinity of Mercury, and some orbits can be taken as transfer orbits for low-cost Mercury return missions or other programs for their high maneuverability.  相似文献   

3.
Large ΔV amounts are often required to maintain the relative geometry which is needed to implement a formation flying concept. A wise use of the orbital environment makes the orbit keeping phase easier, reducing the overall propellant consumption. A first important step in this direction is the selection of formation configurations and orbits which, while still satisfying the mission requirements, are less subject to perturbations resulting naturally in closed relative motion. Within this frame, a number of studies have been recently carried out in order to identify possible sets of invariant relative orbits under the effects of the Earth oblateness, a conservative force commonly referred to as J2 which is also the most important perturbation for Low Earth Orbit. These efforts clearly marked the difficulties connected with achieving genuine periodic relative motion under J2 effect, but they also showed the existence of a set of conditions on the orbital parameters which allow for quasi-periodic J2 trajectories. This paper presents these particular trajectories, by means of deeper theoretical explanations, showing the dependency of the shape of the relative configurations on the orbital inclination. Since the quasi-periodic trajectories cannot be written analytically, and moreover, they are very sensitive with respect to the initial conditions, difficulties arise when trying to exploit these paths as reference for the control of a formation. This paper proposes a novel approach to find, from the actual quasi periodic natural trajectories, minimal control periodic reference trajectories. Next, it evaluates quantitatively the amount of propellant which is needed to control a spacecraft formation along these paths. The choice of Hill’s classical circular projected configuration as a nominal trajectory is considered as a comparison, showing the clear advantages of the proposed guidance design, which assumes low-perturbed periodic reference orbits as nominal trajectories.  相似文献   

4.
A new theory is formulated for the analytic continuation of quasi-periodic orbits from non-linear, periodic modes of a two degree-of-freedom system in rotating coordinates. Formal solutions of the equations of motion are developed in series expansions, with the non-linear modes as reference solutions. Conditions are determined on the existence and boundedness of the time-dependent coefficients of the velocity field. Boundedness properties of the orbits are specified by an orbit function derived from the Jacobi integral.  相似文献   

5.
In this paper we study the dynamics of a massless particle around the L 1,2 libration points of the Earth–Moon system in a full Solar System gravitational model. The study is based on the analysis of the quasi-periodic solutions around the two collinear equilibrium points. For the analysis and computation of the quasi-periodic orbits, a new iterative algorithm is introduced which is a combination of a multiple shooting method with a refined Fourier analysis of the orbits computed with the multiple shooting. Using as initial seeds for the algorithm the libration point orbits of Circular Restricted Three Body Problem, determined by Lindstedt-Poincaré methods, the procedure is able to refine them in the Solar System force-field model for large time-spans, that cover most of the relevant Sun–Earth–Moon periods.  相似文献   

6.
The recently discovered coorbital satellites of Saturn, 1980S1 and 1980S3, are shown to be librating in horseshoe orbits. By considering the effects of tangential forces on the semimajor axes of the satellite orbits, we derive an accurate relation between the sum of the satellite masses and (a) their minimum angular separation, (b) the variation of their angular separation with time and (c) the libration period. Observations of (b) and (c) are the most practical methods of determining the satellite masses. The orbits of the coorbital satellites of Dione and Tethys are discussed. We demonstrate the possibility of calculating a new value for the mass of Dione and we show that one of the coorbital satellites of Tethys could be moving in a horseshoe orbit even though another satellite is librating in a tadpole orbit about the leading Lagrangian equilibrium point L4. The origin of coorbital satellites and the stability of their orbits are discussed.  相似文献   

7.
Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or \(\pi \), the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273–281,  https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun–Neptune–TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.  相似文献   

8.
A rigorous proof is given for the existence of quasi-periodic solutions with only two degrees of freedom to a planar three-body problem. The solution corresponds physically to the small bodies moving on different, nearly elliptical orbits about a large mass located at a focus. The perihelia of the two orbits are locked in such a way that the difference of the two perihelia has mean value zero.  相似文献   

9.
This paper reports the existence of three types of satellite orbit periodic in coordinates rotating with the Earth. Results on linear orbital stability are presented. Also included is a survey of the author's results on quasi-periodic orbits.  相似文献   

10.
We consider the structural peculiarities of Uranus’s satellite system associated with its separation into two groups: inner equatorial satellites moving in nearly circular orbits and distant irregular satellites with retrograde motion in highly elliptical orbits. The intermediate region is free from satellites in a wide range of semimajor axes. By analyzing the evolution of satellite orbits under the combined effect of solar attraction and Uranus’s oblateness, we offer a celestial-mechanical explanation for the absence of equatorial satellites in this region. M.L. Lidov’s studies during 1961–1963 have served as a basis for our analysis.  相似文献   

11.
Some peculiarities in the motion of retrograde satellites of Jupiter have been investigated. The intermediate orbits were obtained by approximated solution of differential equations before transformation by the Zeipel's method. These orbits are non-keplerian ellipses. For their construction the secular motion of nodes, perijoves, and essential periodic perturbations were taken into account.The eccentricities and inclinations of all the retrograte satellites change in a large range. The motion may happen in a region, which is located very near to the limit cases of our theory. For some satellites the sign of the constant, which characterizes the type of orbit, librating or circular, may change. In some cases the value of this constant may be close to zero. Then the motion of the longitude of perijove will reduce the speed and in some moment the circular orbit may change its direction.  相似文献   

12.
The Lidov–Kozai theory developed by each of the authors independently in 1961–1962 is based on qualitative methods of studying the evolution of orbits for the satellite version of the restricted three-body problem (Hill’s problem). At present, this theory is in demand in various fields of science: in the field of planetary research within the Solar system, the field of exoplanetary systems, and the field of high-energy physics in interstellar and intergalactic space. This has prompted me to popularize the ideas that underlie the Lidov–Kozai theory based on the experience of using this theory as an efficient tool for solving various problems related to the study of the secular evolution of the orbits of artificial planetary satellites under the influence of external gravitational perturbations with allowance made for the perturbations due to the polar planetary oblateness.  相似文献   

13.
We investigated the motion of the perijove and ascending node of the 8th satellite of Jupiter, Pasiphae. The main perturbations by the Sun on the satellite permitted to use an intermediate orbit obtained by approximated solutions of differential equations previously transformed by the Von Zeipel method. The orbit is a non-Keplerian ellipse. The secular motion of the ascending node, argument of perijove, and essential periodic perturbations were taken into account. Using our theory we showed that the inclination and eccentricity of Pasiphae can acquire values by which the orbit becomes a librating one; but, within Pasiphae’s observation period, the motion of its perijove is circulating. Taking into account the results of our previous works on Pasiphae motion, we can conclude that the mean motion of the ascending node is similar for different values of the satellite inclination and eccentricity. But the mean motion of the perijove strongly depends on the orbit inclination and eccentricity, according to the Lidov–Kozai mechanism.  相似文献   

14.
We consider a satellite in a circular orbit about a planet that, in turn, is in a circular orbit about the Sun; we further assume that the plane of the planetocentric orbit of the satellite is the same as that of the heliocentric orbit of the planet. The pair planet–satellite is encountered by a population of small bodies on planet-crossing, inclined orbits. With this setup, and using the extension of Öpik’s theory by Valsecchi et al. (Astron Astrophys 408:1179–1196, 2003), we analytically compute the velocity, the elongation from the apex and the impact point coordinates of the bodies impacting the satellite, as simple functions of the heliocentric orbital elements of the impactor and of the longitude of the satellite at impact. The relationships so derived are of interest for satellites in synchronous rotation, since they can shed light on the degree of apex–antapex cratering asymmetry that some of these satellites show. We test these relationships on two different subsets of the known population of Near Earth Asteroids.  相似文献   

15.
Orbits and manifolds near the equilibrium points around a rotating asteroid   总被引:6,自引:0,他引:6  
We study the orbits and manifolds near the equilibrium points of a rotating asteroid. The linearised equations of motion relative to the equilibrium points in the gravitational field of a rotating asteroid, the characteristic equation and the stable conditions of the equilibrium points are derived and discussed. First, a new metric is presented to link the orbit and the geodesic of the smooth manifold. Then, using the eigenvalues of the characteristic equation, the equilibrium points are classified into 8 cases. A theorem is presented and proved to describe the structure of the submanifold as well as the stable and unstable behaviours of a massless test particle near the equilibrium points. The linearly stable, the non-resonant unstable, and the resonant equilibrium points are discussed. There are three families of periodic orbits and four families of quasi-periodic orbits near the linearly stable equilibrium point. For the non-resonant unstable equilibrium points, there are four relevant cases; for the periodic orbit and the quasi-periodic orbit, the structures of the submanifold and the subspace near the equilibrium points are studied for each case. For the resonant equilibrium points, the dimension of the resonant manifold is greater than 4, and we find at least one family of periodic orbits near the resonant equilibrium points. As an application of the theory developed here, we study relevant orbits for the asteroids 216 Kleopatra, 1620 Geographos, 4769 Castalia and 6489 Golevka.  相似文献   

16.
The paper discusses the existence of periodic and quasi-periodic solutions in the space relativistic problem of three bodies with the help of Poincaré's small parameter method starting from non-Keplerian generating solutions, i.e., using Gauss's method. The main peculiarity of these periodic orbits is the fact that they close, in general, after many revolutions. It is worth noticing that these periodic orbits give a new class of periodic solutions of the classical circular problem of three bodies, if relativistic effects are neglected.  相似文献   

17.
The Darwin-Kaula theory of bodily tides is intended for celestial bodies rotating without libration. We demonstrate that this theory, in its customary form, is inapplicable to a librating body. Specifically, in the presence of libration in longitude, the actual spectrum of Fourier tidal modes differs from the conventional spectrum rendered by the Darwin–Kaula theory for a nonlibrating celestial object. This necessitates derivation of formulae for the tidal torque and the tidal heating rate, that are applicable under libration. We derive the tidal spectrum for longitudinal forced libration with one and two main frequencies, generalisation to more main frequencies being straightforward. (By main frequencies we understand those emerging due to the triaxiality of the librating body.) Separately, we consider a case of free libration at one frequency (once again, generalisation to more frequencies being straightforward). We also calculate the tidal torque. This torque provides correction to the triaxiality-caused physical libration. Our theory is not self-consistent: we assume that the tidal torque is much smaller than the permanent-triaxiality-caused torque, so the additional libration due to tides is much weaker than the main libration due to the permanent triaxiality. Finally, we calculate the tidal dissipation rate in a body experiencing forced libration at the main mode, or free libration at one frequency, or superimposed forced and free librations.  相似文献   

18.
We consider dynamics of a Sun–Jupiter–Asteroid system, and, under some simplifying assumptions, show the existence of instabilities in the motions of an asteroid. In particular, we show that an asteroid whose initial orbit is far from the orbit of Mars can be gradually perturbed into one that crosses Mars’ orbit. Properly formulated, the motion of the asteroid can be described as a Hamiltonian system with two degrees of freedom, with the dynamics restricted to a “large” open region of the phase space reduced to an exact area preserving map. Instabilities arise in regions where the map has no invariant curves. The method of MacKay and Percival is used to explicitly rule out the existence of these curves, and results of Mather abstractly guarantee the existence of diffusing orbits. We emphasize that finding such diffusing orbits numerically is quite difficult, and is outside the scope of this paper.  相似文献   

19.
This contribution deals with fast Earth–Moon transfers with ballistic capture in the patched three-body model. We compute ensembles of preliminary solutions using a model that takes into account the relative inclination of the orbital planes of the primaries. The ballistic capture orbits around the Moon are obtained relying on the hyperbolic invariant structures associated to the collinear Lagrangian points of the Earth–Moon system, and the Sun–Earth system portion of the transfers are quasi-periodic orbits obtained by a genetic algorithm. The trajectories are designed to be good initial guesses to search optimal cost-efficient short-time Earth–Moon transfers with ballistic capture in more realistic models.  相似文献   

20.
This research aims at ascertaining the existence and characteristics of natural long-term capture orbits around a celestial body of potential interest. The problem is investigated in the dynamical framework of the three-dimensional circular restricted three-body problem. Previous numerical work on two-dimensional trajectories provided numerical evidence of Conley’s theorem, proving that long-term capture orbits are topologically located near trajectories asymptotic to periodic libration point orbits. This work intends to extend the previous investigations to three-dimensional paths. In this dynamical context, several special trajectories exist, such as quasiperiodic orbits. These can be found as special solutions to the linear expansion of the dynamics equations and have already been proven to exist even using the nonlinear equations of motion. The nature of long-term capture orbits is thus investigated in relation to the dynamical conditions that correspond to asymptotic trajectories converging into quasiperiodic orbits. The analysis results in the definition of two parameters characterizing capture condition and the design of a capture strategy, guiding a spacecraft into long-term capture orbits around one of the primaries. Both the results are validated through numerical simulations of the three-dimensional nonlinear dynamics, including fourth-body perturbation, with special focus on the Jupiter–Ganymede system and the Earth–Moon system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号