首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The bounded quasi-periodic relative trajectories are investigated in this paper for on-orbit surveillance, inspection or repair, which requires rapid changes in formation configuration for full three-dimensional imaging and unpredictable evolutions of relative trajectories for non-allied spacecraft. A linearized differential equation for modeling J 2 perturbed relative dynamics is derived without any simplified treatment of full short-period effects. The equation serves as a nominal reference model for stationkeeping controller to generate the quasi-periodic trajectories near the equilibrium, i.e., the location of the chief. The developed model exhibits good numerical accuracy and is applicable to an elliptic orbit with small eccentricity inheriting from the osculating conversion of orbital elements. A Hamiltonian structure-preserving controller is derived for the three-dimensional time-periodic system that models the J 2-perturbed relative dynamics on a mean circular orbit. The equilibrium of the system has time-varying topological types and no fixed-dimensional unstable/stable/center manifolds, which are quite different from the two-dimensional time-independent system with a permanent pair of hyperbolic eigenvalues and fixed-dimensions of unstable/stable/ center manifolds. The unstable and stable manifolds are employed to change the hyperbolic equilibrium to elliptic one with the poles assigned on the imaginary axis. The detailed investigations are conducted on the critical controller gain for Floquet stability and the optimal gain for the fuel cost, respectively. Any initial relative position and velocity leads to a bounded trajectory around the controlled elliptic equilibrium. The numerical simulation indicates that the controller effectively stabilizes motions relative to the perturbed elliptic orbit with small eccentricity and unperturbed elliptic orbit with arbitrary eccentricity. The developed controller stabilizes the quasi-periodic relative trajectories involved in six foundational motions with different frequencies generated by the eigenvectors of the Floquet multipliers, rather than to track a reference relative configuration. Only the relative positions are employed for the feedback without the information from the direct measurement or the filter estimation of relative velocity. So the current controller has potential applications in formation flying for its less computation overload for on-board computer, less constraint on the measurements, and easily-achievable quasi-periodic relative trajectories.  相似文献   

2.
Large ΔV amounts are often required to maintain the relative geometry which is needed to implement a formation flying concept. A wise use of the orbital environment makes the orbit keeping phase easier, reducing the overall propellant consumption. A first important step in this direction is the selection of formation configurations and orbits which, while still satisfying the mission requirements, are less subject to perturbations resulting naturally in closed relative motion. Within this frame, a number of studies have been recently carried out in order to identify possible sets of invariant relative orbits under the effects of the Earth oblateness, a conservative force commonly referred to as J2 which is also the most important perturbation for Low Earth Orbit. These efforts clearly marked the difficulties connected with achieving genuine periodic relative motion under J2 effect, but they also showed the existence of a set of conditions on the orbital parameters which allow for quasi-periodic J2 trajectories. This paper presents these particular trajectories, by means of deeper theoretical explanations, showing the dependency of the shape of the relative configurations on the orbital inclination. Since the quasi-periodic trajectories cannot be written analytically, and moreover, they are very sensitive with respect to the initial conditions, difficulties arise when trying to exploit these paths as reference for the control of a formation. This paper proposes a novel approach to find, from the actual quasi periodic natural trajectories, minimal control periodic reference trajectories. Next, it evaluates quantitatively the amount of propellant which is needed to control a spacecraft formation along these paths. The choice of Hill’s classical circular projected configuration as a nominal trajectory is considered as a comparison, showing the clear advantages of the proposed guidance design, which assumes low-perturbed periodic reference orbits as nominal trajectories.  相似文献   

3.
The propagation and Poincaré mapping of perturbed Keplerian motion is a key topic in Celestial Mechanics and Astrodynamics, e.g., to study the stability of orbits or design bounded relative trajectories. The high-order transfer map (HOTM) method enables efficient mapping of perturbed Keplerian orbits using the high-order Taylor expansion of a Poincaré or stroboscopic map. The HOTM is only accurate close to the expansion point and therefore the number of revolutions for which the map is accurate tends to be limited. The proper selection of coordinates is of key importance for improving the performance of the HOTM method. In this paper, we investigate the use of different element sets for expressing the high-order map in order to find the coordinates that perform best in terms of accuracy. A new set of elements is introduced that enables extremely accurate mapping of the state, even for high eccentricities and higher-order zonal perturbations. Finally, the high-order map is shown to be very useful for the determination and study of fixed points and center manifolds of Poincaré maps.  相似文献   

4.
The aim of the time distribution methodology presented in this paper is to generate constellations whose satellites share a set of relative trajectories in a given time, and maintain that property over time without orbit corrections. The model takes into account a series of orbital perturbations such as the gravitational potential of the Earth, the atmospheric drag, the Sun and the Moon as disturbing third bodies and the solar radiation pressure. These perturbations are included in the design process of the constellation. Moreover, the whole methodology allows to design constellations with multiple relative trajectories that can be distributed in a minimum number of inertial orbits.  相似文献   

5.
We investigate the evolution of high Earth satellite orbits under gravitational perturbations from the Sun and light pressure forces, without the Earth shadow effect. We present the disturbing function of the problem provided that the satellite is a sphere. The mean value of the disturbing function in the absence of resonances between the mean unperturbed motion of the satellite and the mean motion of the Sun has also been obtained. The semimajor axis of the satellite orbit and the mean value of the disturbing function are shown to be integrals of the averaged osculating equations. TheHill version of the problem, whereby the distance to the satellite is much smaller than the Earth–Sun distance, has been studied in detail: we have constructed the phase portraits of the oscillations at various parameters and described three types of quasiperiodic satellite trajectories—librational and rotational trajectories as well as Earth collision trajectories. Numerical simulations of trajectories have allowed the additional effects caused by light pressure to be described: the displacement of the bounded trajectory of the satellite as a whole relative to the trajectory of the classical three-body problem into a region more distant from the Sun.  相似文献   

6.
Finding relative satellite orbits that guarantee long-term bounded relative motion is important for cluster flight, wherein a group of satellites remain within bounded distances while applying very few formationkeeping maneuvers. However, most existing astrodynamical approaches utilize mean orbital elements for detecting bounded relative orbits, and therefore cannot guarantee long-term boundedness under realistic gravitational models. The main purpose of the present paper is to develop analytical methods for designing long-term bounded relative orbits under high-order gravitational perturbations. The key underlying observation is that in the presence of arbitrarily high-order even zonal harmonics perturbations, the dynamics are superintegrable for equatorial orbits. When only J 2 is considered, the current paper offers a closed-form solution for the relative motion in the equatorial plane using elliptic integrals. Moreover, necessary and sufficient periodicity conditions for the relative motion are determined. The proposed methodology for the J 2-perturbed relative motion is then extended to non-equatorial orbits and to the case of any high-order even zonal harmonics (J 2n , n ≥ 1). Numerical simulations show how the suggested methodology can be implemented for designing bounded relative quasiperiodic orbits in the presence of the complete zonal part of the gravitational potential.  相似文献   

7.
The three-dimensional relative motion of a subsatellite with respect to a reference station in an elliptical orbit is studied. A general theory based on the variation of the relative elements, i.e. the instantaneous differences between the orbital parameters of the subsatellite and those of the station, is formulated in order to incorporate arbitrary perturbing forces acting on both satellites. The loss of precision inherent in the subtraction of almost identical quantities is avoided by the consistent use of difference variables. In the absence of perturbations exact analytical representations can be obtained for the relative state parameters. The influences of air drag and Earth's oblateness on the relative motion trajectories are investigated and illustrated graphically for a number of cases.  相似文献   

8.
Analytic expressions are derived for the perturbation of planetary orbits due to a thick constant density asteroid belt. The derivations include extensions and adaptations of Plakhov's analytic expressions for the perturbations in five of the orbital elements for closed orbits around Saturn's rings. The equations of Plakhov are modified to include the effect of ring thickness and additional equations are derived for the perturbations in the sixth orbital element, the mean anomaly. The gravitational potential and orbital perturbations are derived for the asteroid belt with and without thickness, and for a hoop approximation to the belt. The procedures are also applicable to Saturn's rings and the newly discovered rings of Uranus.The effects of the asteroid belt thickness on the gravitational potential coefficients and the orbital motions are demonstrated. Comparisons between the Mars orbital perturbations obtained using the analytic expressions and those obtained using numerical integration are discussed. The effects of the asteroid belt on the Earth based ranging to Mars are also demonstrated.  相似文献   

9.
A numerical method to determine the electromagnetic field of a steadily rotating magnetosphere with an inclined magnetic moment under a given boundary condition on an arbitrary shaped boundary surface is presented. The region may include the light cylinder. The present method, together with a companion method giving particle motion and creation, makes an iterative scheme to obtain a global model of the pulsar magnetosphere. A key problem for explaining the particle acceleration in pulsars is to solve field-aligned electric field in an accelerating region bounded by an ideal-MHD region. The present method is fit to connect a solution for the non-ideal-MHD region with another solution for the ideal-MHD region on a boundary surface whose location should also be solved (i.e., a floating boundary). The integration scheme is based on the boundary element method and it has great advantage as compared with other methods like the finite difference method and the Fourier transformation method.  相似文献   

10.
The design of spacecraft trajectories is a crucial part of a space mission design. Often the mission goal is tightly related to the spacecraft trajectory. A geostationary orbit is indeed mandatory for a stationary equatorial position. Visiting a solar system planet implies that a proper trajectory is used to bring the spacecraft from Earth to the vicinity of the planet. The first planetary missions were based on conventional trajectories obtained with chemical engine rockets. The manoeuvres could be considered 'impulsive' and clear limitations to the possible missions were set by the energy required to reach certain orbits. The gravity-assist trajectories opened a new way of wandering through the solar system, by exploiting the gravitational field of some planets. The advent of other propulsion techniques, as electric or ion propulsion and solar sail, opened a new dimension to the planetary trajectory, while at the same time posing new challenges. These 'low thrust' propulsion techniques cannot be considered 'impulsive' anymore and require for their study mathematical techniques which are substantially different from before. The optimisation of such trajectories is also a new field of flight dynamics, which involves complex treatments especially in multi-revolution cases as in a lunar transfer trajectory. One advantage of these trajectories is that they allow to explore regions of space where different bodies gravitationally compete with each other. We can exploit therefore these gravitational perturbations to save fuel or reduce time of flight. The SMART-1 spacecraft, first European mission to the Moon, will test for the first time all these techniques. The paper is a summary report on various activities conducted by the project team in these areas.  相似文献   

11.
We investigate the evolution of the rotational axes of exoplanets under the action of gravitational and magnetic perturbations. The planet is assumed to be dynamically symmetrical and to be magnetised along its dynamical-symmetry axis. By qualitative methods of the bifurcation theory of multiparametric PDEs, we have derived a gallery of 69 phase portraits. The portraits illustrate evolutionary trajectories of the angular momentum of a planet for a variety of the initial conditions, for different values of the ratio between parameters describing gravitational and magnetic perturbations, and for different rates of the orbital evolution. We provide examples of the phase portraits, that reveal the differences in topology and the evolutionary track of in the vicinity of an equilibrium state. We determine the bifurcation properties, i.e., the way of reorganisation of phase trajectories in the vicinities of equilibria; and we point out the combinations of parameters’ values that permit ip-overs from a prograde to a retrograde spin mode.  相似文献   

12.
We derive an expression for the mutual gravitational force and torque of two bodies having arbitrary shapes and mass distributions, as an expansion in power series of their products of inertia and of the relative coordinates of their centres of mass. The absolute convergence of all the power series developed is rigorously demonstrated. The absence of transcendental functions makes this formalism suitable for fast numerical applications. The products of inertia used here are directly related to the spherical harmonics coefficients, and we provide a detailed analysis of this relationship.  相似文献   

13.
We reexamine the classical virial theorem for bounded orbits of arbitrary autonomous Hamiltonian systems possessing both regular and chaotic orbits. New and useful forms of the virial theorem are obtained for natural Hamiltonian flows of arbitrary dimension. A discrete virial theorem is derived for invariant circles and periodic orbits of natural symplectic maps. A weak and a strong form of the virial theorem are proven for both flows and maps. While the Birkhoff Ergodic Theorem guarantees the existence of the relevant time averages for both regular and chaotic orbits, the convergence is very rapid for the former and extremely slow for the latter. This circumstance leads to a simple and efficient measure of chaoticity. The results are applied to several problems of current physical interest, including the Hénon–Heiles system, weak chaos in the standard map, and a 4D Froeschlé map.  相似文献   

14.
The present study deals with numerical modeling of the elliptic restricted three-body problem as well as of the perturbed elliptic restricted three-body (Earth-Moon-Satellite) problem by a fourth body (Sun). Two numerical algorithms are established and investigated. The first is based on the method of the series solution of the differential equations and the second is based on a 5th-order Runge-Kutta method. The applications concern the solution of the equations and integrals of motion of the circular and elliptical restricted three-body problem as well as the search for periodic orbits of the natural satellites of the Moon in the Earth-Moon system in both cases in which the Moon describes circular or elliptical orbit around the Earth before the perturbations induced by the Sun. After the introduction of the perturbations in the Earth-Moon-Satellite system the motions of the Moon and the Satellite are studied with the same initial conditions which give periodic orbits for the unperturbed elliptic problem.  相似文献   

15.
Using alternative independent variables in lieu of time has important advantages when propagating the partial derivatives of the trajectory. This paper focuses on spacecraft relative motion, but the concepts presented here can be extended to any problem involving the variational equations of orbital motion. A usual approach for modeling the relative dynamics is to evaluate how the reference orbit changes when modifying the initial conditions slightly. But when the time is a mere dependent variable, changes in the initial conditions will result in changes in time as well: a time delay between the reference and the neighbor solution will appear. The theory of asynchronous relative motion shows how the time delay can be corrected to recover the physical sense of the solution and, more importantly, how this correction can be used to improve significantly the accuracy of the linear solutions to relative motion found in the literature. As an example, an improved version of the Clohessy-Wiltshire (CW) solution is presented explicitly. The correcting terms are extremely compact, and the solution proves more accurate than the second and even third order CW equations for long propagations. The application to the elliptic case is also discussed. The theory is not restricted to Keplerian orbits, as it holds under any perturbation. To prove this statement, two examples of realistic trajectories are presented: a pair of spacecraft orbiting the Earth and perturbed by a realistic force model; and two probes describing a quasi-periodic orbit in the Jupiter-Europa system subject to third-body perturbations. The numerical examples show that the new theory yields reductions in the propagation error of several orders of magnitude, both in position and velocity, when compared to the linear approach.  相似文献   

16.
An approximate semi-analytic solution of a two-body problem with drag is presented. The solution describesnon-lifting orbital motion in a central, inverse-square gravitational field. Drag deceleration is a non-linear function of velocity relative to a rotating atmosphere due to dynamic pressure and velocity-dependent drag coefficient. Neglected are aerodynamic lift, gravitational perturbations of the inverse-square field, and kinematic accelerations due to coordinate frame rotation at earth angular rate. With these simplifications, it is shown that (i) orbital motion occurs in an earth-fixed invariable plane defined by the radius and relative velocity vectors, and (ii) the simplified equations of motion are autonomous and independent of central angle measured in the invariable plane. Consequently, reduction of the differential equations from sixth to second-order is possible. Solutions for the radial and circumferential components of relative velocity are reduced to quadratures with respect to radial distance. Since the independent variable is radial distance, the solutions are singular at zero radial velocity (e. g., for circular orbits). General atmospheric density and drag coefficient models may be used to evaluate the velocity quadratures. The central angle and time variables are recovered from two additional quadratures involving the velocity quadratures. Theoretical results are compared with numerical simulation results.Presently affiliated with AVCO Systems Division, Wilmington, MA 01887, U.S.A.  相似文献   

17.
The Fokker-Planck equation for small stochastic changes to particles in Kepler orbits has to be formulated in terms of the integrals of motion. We generalize the modelling of proton and electron collisional perturbations to gas particles on trajectories through the solar system in order to include both spatial and velocity diffusion. The general solution is obtained in terms of a 4-dimensional normal distribution. Treatment of the singularity in the Fokker-Planck operator reduces the dimensionality by one. In addition to extending earlier results for anisotropic collisional heating in the thermal approximation, the present formulation gives the changes in density due to the mean repulsive force and to perturbations of trajectories (spatial diffusion). The net diffusion is almost everywhere towards the sun and the density increase is significant in the downstream hydrogen wake, particularly where destructive depletion is strong and gravitational focussing weak.  相似文献   

18.
Numerical orbit integrations have been conducted to characterize the types of trajectories in the one-dimensional Newtonian three-body problem with equal masses and negative energy. Essentially three different types of motions were found to exist. They may be classified according to the duration of the bound three-body state. There are zero-lifetime predictable trajectories, finite lifetime apparently chaotic orbits, and infinite lifetime quasi-periodic motions. The quasi-periodic orbits are confined to the neighbourhood of Schubart's stable periodic orbit. For all other trajectories the final state is of the type binary + single particle in both directions of time. The boundaries of the different orbit-type regions seem to be sharp. We present statistical results for the binding energies and for the duration of the bound three-body state. Properties of individual orbits are also summarized in the form of various graphical maps in a two-dimensional grid of parameters defining the orbit. Supported by the Academy of Finland.  相似文献   

19.
Nonstationary hydrodynamic models of a viscous accretion disk around a central compact object were constructed. Two different numerical methods (TVD and SPH) are used to study the dynamics of dissipatively unstable acoustic perturbations at the nonlinear stage in terms of the standard α-disk model. The standard disk accretion in the Shakura-Sunyaev model is unstable against acoustic waves for various parameters of the system. If the α parameter, which specifies the level of turbulent viscosity, exceeds α?0.03, then a complex nonstationary system of small-scale weak shock waves is formed. The growth rate of the perturbations is higher in the central disk region. For α?0.2, the relative shock amplitude can exceed 50% of the equilibrium disk parameters. The reflection of waves from the disk boundaries and their nonlinear interaction are important factors that can produce unsteady accretion. The luminosity of such a disk undergoes quasi-periodic oscillations at a level of several percent (?5%) of the equilibrium level.  相似文献   

20.
We show that a class of solutions for a vacuum cylindrically symmetric gravitational field with nonvanishing cosmological constant reduce to the welknown Levi-Civita metric close to the axis. All the circular geodesics in this generalized vacuum are time like, null or space like depending on the relative magnitudes of the two parameters appearing in the solutions.For other particles moving inZ=constant plane there are some cases where the trapping of timelike and null trajectories occur, while in other cases some of the particles may orbit round the axis in a fixed zone bounded by two limiting radii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号