首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 702 毫秒
1.
The three layered intrusions studied in the Laouni area have been emplaced within syn-kinematic Pan-African granites and older metamorphic rocks. They have crystallized at the end of the regional high-temperature metamorphism, but are free from metamorphic recrystallization, revealing a post-collisional character. The cumulate piles can be interpreted in terms of two magmatic liquid lines of descent: one is tholeiitic and marked by plagioclase–olivine–clinopyroxene cumulates (troctolites or olivine bearing gabbros), while the other is calc-alkaline and produced orthopyroxene–plagioclase rich cumulates (norites). One intrusion (WL (West Laouni)-troctolitic massif), shows a Lower Banded Zone where olivine-chromite orthocumulates are interlayered with orthopyroxene-rich and olivine–plagioclase–clinopyroxene cumulates, whereas the Upper Massive Zone consists mainly of troctolitic and gabbroic cumulates. The other two massifs are more homogeneous: the WL-noritic massif has a calc-alkaline differentiation trend whereas the EL (East Laouni)–troctolitic massif has a tholeiitic one. Separated pyroxene and plagioclase display similar incompatible trace element patterns, regardless of the cumulate type. Calculated liquids in equilibrium with the two pyroxenes for both noritic and troctolitic cumulates are characterized by negative Nb, Ta, Zr and Hf anomalies and light REE enrichment inherited from the parental magmas. Troctolitic cumulates have mantle-derived δ18O (+5 to +6‰), initial 87Sr/86Sr (Sri=0.7030 to 0.7054), Nd (+5 to −1) values whereas noritic cumulates are variably enriched in δ18O (+7 to +9‰), show negative Nd (−7 to −12) and slightly higher Sri (0.7040–0.7065). Based on field, isotopic ratios are interpreted as resulting from a depleted mantle source (Sri=0.7030; Nd=+5.1; δ18O=+5.1‰) having experience short term incompatible element enrichment and variable crustal contamination. The mantle magma was slightly contaminated by an Archaean lower crust in troctolitic cumulates, more strongly and with an additional contamination by an Eburnian upper crust in noritic cumulates. Lower crust input is recorded mainly by Sr and Nd isotopes and upper crust input by O isotopes. This is probably due to the different water/rock ratios of these two crust types. Assimilation of low amounts (<10%) of quartz-bearing felsic rocks, coming from both lower and upper crust, can explain the rise of SiO2 activity, the enrichment in 18O and 87Sr and the lowering of Nd in the noritic cumulates compared to troctolitic ones. The geodynamic model proposed to account for the Laouni tholeiitic magmatism involves a late Pan-African asthenospheric rise due to a rapid lithospheric thinning associated with functioning of shear zones, which allowed tholeiitic magmas to reach high crustal levels while experiencing decreasing degrees of crustal contamination with time.  相似文献   

2.
The petrogenesis of the Fiskenaesset anorthosite body has been investigated using major and trace element data for a large range of rock types from each zone of the complex. The chemistry of these ultramafic to anorthositic cumulates is interpreted in terms of crystal fractionation of a parental, trace element impoverished, tholeiitic magma, involving crystallisation of the cumulus phases olivine, orthopyroxene, clinopyroxene and (dominant) plagioclase feldspar. Amphibole appears not to have been a significant cumulus phase at any stage of crystallisation of the body, the abundant amphibole found in the rocks of the complex being produced by primary intercumulus crystallisation, supplemented by secondary metamorphic recrystallisation. Similarly, magnetite is unlikely to have been a significant early cumulus phase, although, together with chromite, it crystallised as a cumulus phase at high stratigraphic levels in the complex. The metamorphism appears to be largely isochemical, although sub-solidus metamorphic re-equilibration of the REE can be demonstrated on a grain-size scale.The spatial and temporal association between the anorthosite complex and the bordering metavolcanic amphibolites is matched by a strong similarity between the observed trace element chemistry of the amphibolites and the trace element chemistry of calculated successive liquids for the complex. This is taken to suggest a genetic relationship between the evolution of the anorthosite complex and enclosing amphibolites. The presence of trace element impoverished amphibolites (which are not cumulates) with trace element abundances comparable to those of the suggested parental liquid to the anorthosite complex, is used to derive a major element composition for the primary Fiskenasset magma. This composition approximates a moderately aluminous tholeiitic basalt, which may have been generated by hydrous fusion of previously depleted mantle. This primary magma underwent crystal fractionation under low pressure conditions, allowing the development of extensive plagioclase cumulates.The Fiskenaesset anorthosite, and similar bodies, cannot represent a cumulate residue complementary to the enclosing voluminous tonalitic gneisses, which have a calc-alkaline chemistry controlled by high pressure crystal liquid fractionation. Rather, the association between the cumulate layered complex and bordering supracrustal sequence may imply an ancient ocean crust analogue for the development of this component of Archaean high-grade terrains. It is suggested that slices of such Archaean ocean floor may be emplaced laterally into the base of the continental crust during subduction of oceanic lithosphere at Cordilleran type continental margins.  相似文献   

3.
The Bad Vermilion Lake anorthosite complex (2,700 m.y.) is exposed over an area of about 100 km2 near Rainy Lake, Ontario. As is typical of other Archean anorthosites, it is composed of coarse (1–30 cm across), equidimensional, euhedral to subhedral, calcic (An80) plagioclase, in a finer grained mafic matrix. The amount of mafic matrix in individual samples ranges from none to about 70% by volume. The complex has been variably metamorphosed to greenschist facies. Zoisite, chlorite, and hornblende are abundant, but primary plagioclase is preserved in many places. The anorthosite complex is associated with gabbro and with mafic to felsic metavolcanic rocks, and is cut by tonalite plutons and by mafic dikes. Some gabbros contain local concentrations of Fe-Ti oxides and/or apatite, but no chromite. The mafic groundmass of the anorthositic rocks is similar in major and trace element chemistry, including rare earth elements, to the associated basaltic metavolcanics, suggesting that the anorthositic complex may have accumulated from a subvolcanic magma chamber which fed mafic lavas to the surface during its crystallization. Mafic flows and dikes chemically similar to the mafic metavolcanics contain plagioclase megacrysts akin to those of the anorthositic rocks, and thus may represent a link between the anorthosite complex and associated mafic lavas. Elongate pretectonic tonalite intrusions were comagmatic with the felsic metavolcanics, but not with the anorthosites or metabasalts. These silicic rocks may represent low-pressure partial melts of the mafic rocks. There is no direct or indirect evidence for significant volumes of ultramafic material at the present exposure level of the complex. An estimate of the bulk composition of all rocks presumed to be comagmatic with the anorthosites, including gabbros and mafic metavolcanics, is an aluminous basalt with about 20 wt.% Al2O3. This composition has REE abundances unlike those of typical Archean high-Al basalts and probably does not represent that of a primary or evolved melt. The possibility must be considered, therefore, that a substantial fraction of material comagmatic with the anorthosites has been separated from the complex, either by magmatic or tectonic processes.  相似文献   

4.
Whole rock major and trace element abundances in aluminous garnet–spinel websterite, sapphirine-bearing Mg–Al granulite and hibonite-bearing Ca–Al granulite xenoliths from the Chyulu Hills volcanic field, Kenya, suggest that the samples represent a meta-igneous suite linked by fractionation. The incompatible major element contents increase from the websterites to the Mg–Al granulites and further to the Ca–Al granulites. High bulk rock Mg#s and very low concentrations of most incompatible trace elements indicate that the rocks are cumulates rather than crystallized melts. Elevated Ni abundances, impoverishment in Cr and HFSE and high contents of normative plagioclase and olivine in the granulites indicate that their protoliths were similar to troctolite. The textures and metamorphic reaction paths recorded in the granulites suggest igneous emplacement in the crust and cooling from igneous to ambient crustal temperatures accompanied or followed by compression. For the websterite xenoliths, there is an apparent contradiction between the results of PT calculations that suggest high P and T of crystallization of early generation pyroxenes and elevated PT conditions during final equilibration (1.4–2.2 GPa/740–980°C) on the one hand and the positive Eu anomaly that suggests shallow-level plagioclase accumulation on the other hand. This contradiction can be reconciled by a model of compression of a plagioclase-bearing (gabbroic) protolith to mantle depths where it recrystallized to an ultramafic assemblage, which requires foundering of dense lower crustal material into the mantle.  相似文献   

5.
Late Quaternary andesitic magmas in New Zealand contain complexly zoned antecrysts and glomerocrysts that are not in equilibrium with either the host whole rock compositions or siliceous groundmass glass and glass inclusions. Glass inclusions represent partial melts of mafic to gabbroic cumulates in the lower crust that mix with restite crystals, or cumulates from earlier magma batches. Assimilation of partial melts of mid-crustal rocks, represented by glass in crustal xenoliths, contributes a crustal component to the andesites. Magmas at Egmont are stored at about the brittle/ductile transition at about 10 km depth and variability in the composition of erupted material is a function of the composition of the recharging magma, and which parts of the storage system are tapped during the eruption. At Taranaki recharge occurs on a c. 1400 year cycle while interactions within the storage give rise to shorter period events. A similar process on a less well constrained timescale operates at Ruapehu. Andesites are therefore complex mixtures of fractionated mantle basalts, siliceous partial melts of both the lower crust and underplated cumulates, restite and cumulate crystals. Further modification occurs by interaction with partial melts of lower to middle crustal basement as geotherms increase with time.  相似文献   

6.
We examined aluminous mafic rock (with or without corundum or sapphirine) alternating with peridotite from the Ronda peridotite massif, southern Spain. On the basis of petrographic characteristics, these mafic rocks show a decompression history from high pressure (P > 1.5 GPa), but on the basis of their geochemical characteristics, they are crystal accumulates of plagioclase, clinopyroxene, and olivine formed within the lower crust (P < 1 GPa). A complex evolution history, including higher-pressure recrystallization after initial formation as cumulate gabbros at lower-pressure conditions, is proposed. The aluminous mafic rocks and their peridotite hosts are inferred to be recycled crustal materials now observed as centimeter-scale layered components in alpine-type peridotite. The rocks retained their original cumulate compositions; that is, their compositions were not affected by melting and metasomatic modifications during subduction, intense deformation within the upper mantle, and upwelling to the surface.  相似文献   

7.
J.C. Duchesne  B. Charlier 《Lithos》2005,83(3-4):229-254
Whole-rock major element compositions are investigated in 99 cumulates from the Proterozoic Bjerkreim–Sokndal layered intrusion (Rogaland Anorthosite Province, SW Norway), which results from the crystallization of a jotunite (Fe–Ti–P-rich hypersthene monzodiorite) parental magma. The scattering of cumulate compositions covers three types of cumulates: (1) ilmenite–leuconorite with plagioclase, ilmenite and Ca-poor pyroxene as cumulus minerals, (2) magnetite–leuconorite with the same minerals plus magnetite, and (3) gabbronorite made up of plagioclase, Ca-poor and Ca-rich pyroxenes, ilmenite, Ti-magnetite and apatite. Each type of cumulate displays a linear trend in variation diagrams. One pole of the linear trends is represented by plagioclase, and the other by a mixture of the mafic minerals in constant proportion. The mafic minerals were not sorted during cumulate formation though they display large density differences. This suggests that crystal settling did not operate during cumulate formation, and that in situ crystallization with variable nucleation rate for plagioclase was the dominant formation mechanism. The trapped liquid fraction of the cumulate plays a negligible role for the cumulate major element composition. Each linear trend is a locus for the cotectic composition of the cumulates. This property permits reconstruction by graphical mass balance calculation of the first two stages of the liquid line of descent, starting from a primitive jotunite, the Tjörn parental magma. Another type of cumulate, called jotunite cumulate and defined by the mineral association from the Transition Zone of the intrusion, has to be subtracted to simulate the most evolved part of the liquid line of descent. The proposed model demonstrates that average cumulate compositions represent cotectic compositions when the number of samples is large (> 40). The model, however, does not account for the K2O evolution, suggesting that the system was open to contamination by roof melts. The liquid line of descent corresponding to the Bjerkreim–Sokndal cumulates differs slightly from that obtained for jotunitic dykes in that the most Ti-, P- and Fe-rich melts (evolved jotunite) are lacking. The constant composition of the mafic poles during intervals where cryptic layering is conspicuous is explained by a compositional balance between the Fe–Ti oxide minerals, which decrease in Fe content in favour of Ti, and the pyroxenes which increase in Fe.  相似文献   

8.
The Archean Shawmere Anorthosite Complex, at the southern end of the Kapuskasing Structural Zone, consists dominantly of anorthosite (An65 –85) with minor gabbroic and ultramafic units, which are completely enclosed and cut by tonalites. Both the anorthosites and the tonalites are themselves cut by narrow dikes of gabbroic anorthosite. All of the rocks have undergone high grade metamorphism and are recrystallized so that few igneous textures remain.The anorthosites, gabbros and ultramafic rocks of this complex are cumulates which contain calcic plagioclase (An65–95) and have atomic Mg/(Mg + Fe2+) ratios (Mg#) greater than 0.6; less than 3 ppm Rb; 150–210 ppm Sr; and less than 60 ppm Ba. REE abundanees range from 0.2 to 10 times chondritic and exhibit both light-enriched and light-depleted REE patterns. The lower Mg# for the samples having more enriched light REE indicates substantial fractions of ferromagnesian minerals crystallized in addition to plagioclase during fractional crystallization, suggesting that the parent magma was basaltic, and not anorthositic. The ranges in Sr, Ba and REE abundances required for the magmas are typical of those for tholeiitic basalts from Archean greenstone belts. Thus the Shawmere Anorthosite Complex may represent cumulates of a crustal-level magma chamber which could have been the immediate source of basic Archean volcanics.One gabbroic anorthositic dike sample has a steeply fractionalted REE pattern with heavy REE abundances less than chondrites and a large positive Eu anomaly. The proposed interpretations is that this rock formed by partial melting of mafic cumulates, perhaps those of the Shawmere Anorthosite Complex itself.  相似文献   

9.
元古宙岩体型斜长岩的特征及研究现状   总被引:1,自引:0,他引:1  
斜长岩是指斜长石含量>90%的岩浆岩,可分为6类。其中,岩体型斜长岩仅赋存于前寒武纪变质地体中,形成时代主要为元古宙(2.1~ 0.9 Ga),代表地球演化史上很重要的构造-热事件。岩体呈穹隆状或层状产出,具典型堆晶结构,有含钾长石和斜长石出溶片晶的巨晶斜长石和富铝辉石。巨晶的出溶指示了岩浆由高压至低压的变压结晶过程,体现了斜长岩体深成、浅侵位的特点。关于斜长岩的源区,之前普遍认为源于幔源玄武质岩浆,而近10年来更趋向于源区为下地壳,母岩浆的成分为纹长苏长岩和铁闪长岩等新认识;其成因模式以底侵模式和地壳舌状物熔融模式最具代表性。岩体型斜长岩时空上常与奥长环斑花岗岩共生,构成AMCG(Anorthosite Mangerite Charnockite Granite)岩石组合,被认为属非造山岩浆作用的产物,可能代表大陆裂谷环境。然而,新近一些年龄结果显示,它们形成于造山作用的后期阶段,暗示岩体产出于碰撞后环境。斜长岩体中常赋存有Fe Ti V氧化物矿床,有的富含P及Cu,Ni硫化物等,属典型的岩浆矿床。对此,目前主要有结晶分异过程、早期堆晶过程及不混熔分离3种成因机制解释。由此对今后研究中值得关注的问题提出了一些看法。  相似文献   

10.
Summary Crust-derived xenoliths hosted by Miocene basaltic diatremes in the Hyblean Plateau (south-eastern Sicily, Italy) provide new information regarding the nature of a portion of the central Mediterranean lower crust. These xenoliths can be divided into three groups: gabbros (plagioclase + clinopyroxene + Fe–Ti oxides ± apatite ± amphibole ± Fe-rich green spinel), diorites (An-poor plagioclase, clinopyroxene ± Fe–Ti oxides ± orthopyroxene) and mafic granulites (plagioclase + clinopyroxene + green spinel ± orthopyroxene ± Fe–Ti oxides). Gabbros form the main subject of this paper. They represent cumulates whose igneous texture has been locally obliterated by metamorphic recrystallization and shearing. They were permeated by Fe–Ti-rich melts related to tholeiitic-type fractional crystallisation. Incompatible element ratios (Zr/Nb = 5–26; Y/Nb = 1.4–11) indicate that these cumulate gabbros derived from MORB liquids. Late-stage and hydrothermal fluids caused diverse, sometimes important, metasomatic trasformations. Petrographic and geochemical comparison with gabbroids from well-known geodynamic settings show that the Hyblean lower crustal xenoliths were probably formed in an oceanic or oceanic-continent transition environment.  相似文献   

11.
Lavas and pyroclastic products of Nisyros volcano (Aegean arc, Greece) host a wide variety of phenocryst and cumulate assemblages that offer a unique window into the earliest stages of magma differentiation. This study presents a detailed petrographic study of lavas, enclaves and cumulates spanning the entire volcanic history of Nisyros to elucidate at which levels in the crust magmas stall and differentiate. We present a new division for the volcanic products into two suites based on field occurrence and petrographic features: a low-porphyricity andesite and a high-porphyricity (rhyo)dacite (HPRD) suite. Cumulate fragments are exclusively found in the HPRD suite and are predominantly derived from upper crustal reservoirs where they crystallised under hydrous conditions from melts that underwent prior differentiation. Rarer cumulate fragments range from (amphibole-)wehrlites to plagioclase-hornblendites and these appear to be derived from the lower crust (0.5–0.8 GPa). The suppressed stability of plagioclase and early saturation of amphibole in these cumulates are indicative of high-pressure crystallisation from primitive hydrous melts (≥ 3 wt% H2O). Clinopyroxene in these cumulates has Al2O3 contents up to 9 wt% due to the absence of crystallising plagioclase, and is subsequently consumed in a peritectic reaction to form primitive, Al-rich amphibole (Mg# > 73, 12–15 wt% Al2O3). The composition of these peritectic amphiboles is distinct from trace element-enriched interstitial amphibole in shallower cumulates. Phenocryst compositions and assemblages in both suites differ markedly from the cumulates. Phenocrysts, therefore, reflect shallow crystallisation and do not record magma differentiation in the deep arc crust.  相似文献   

12.
The Hidra Massif (Rogaland Complex, SW Norway) mainly consists of plagioclase cumulates (anorthosites and leuconorites), which grade progressively into a fine-grained (200 μm). locally porphyritic, jotunitic rock towards the contact with the granulite facies gneisses. The massif is cross-cut by thin (10 cm up to 1 m) charnockitic dykes.The petrographical and geochemical evolution of the Hidra Massif can be explained by fractional crystallization of a jotunitic parental magma. Major and trace element constraints indicate that mafic phases are underabundant in the exposed levels of the massif, most likely as a result of plagioclase flotation in the early stages of solidification. Partitioning into the cumulate minerals (mainly plagioclase and orthopyroxene) governs the trace element contents of the leuconoritic adcumulates. However, the trace element geochemistry of the apparently early formed anorthositic orthocumulates largely depends upon the amount of a trapped intercumulus liquid. On the basis of trace element abundances (high REE, Rb, Th, U; negative Eu anomalies) the silicic charnockitic dykes can be considered as the residual liquid of the anorthositic fractionation trend. The higher initial 87Sr86Sr ratios (0.7086 ± 0.0006 vs 0.7055 ± 0.0004 for the plagioclase cumulates and jotunites) point to contamination of the charnockitic liquids by surrounding gneissic material.  相似文献   

13.
The Sept Iles layered intrusion (Quebec, Canada) is dominated by a basal Layered Series made up of troctolites and gabbros, and by anorthosites occurring (1) at the roof of the magma chamber (100-500 m-thick) and (2) as cm- to m-size blocks in gabbros of the Layered Series. Anorthosite rocks are made up of plagioclase, with minor clinopyroxene, olivine and Fe-Ti oxide minerals. Plagioclase displays a very restricted range of compositions for major elements (An68-An60), trace elements (Sr: 1023-1071 ppm; Ba: 132-172 ppm) and Sr isotopic ratios (87Sr/86Sri: 0.70356-0.70379). This compositional range is identical to that observed in troctolites, the most primitive cumulates of the Layered Series, whereas plagioclase in layered gabbros is more evolved (An60-An38). The origin of Sept Iles anorthosites has been investigated by calculating the density of plagioclase and that of the evolving melts. The density of the FeO-rich tholeiitic basalt parent magma first increased from 2.70 to 2.75 g/cm3 during early fractionation of troctolites and then decreased continuously to 2.16 g/cm3 with fractionation of Fe-Ti oxide-bearing gabbros. Plagioclase (An69-An60) was initially positively buoyant and partly accumulated at the top of the magma chamber to form the roof anorthosite. With further differentiation, plagioclase (<An60) became negatively buoyant and anorthosite stopped forming. Blocks of anorthosite (autoliths) even fell downward to the basal cumulate pile. The presence of positively buoyant plagioclase in basal troctolites is explained by the low efficiency of plagioclase flotation due to crystallization at the floor and/or minor plagioclase nucleation within the main magma body. Dense mafic minerals of the roof anorthosite are shown to have crystallized from the interstitial liquid.The processes related to floating and sinking of plagioclase in a large and shallow layered intrusion serve as a proxy to refine the crystallization model of the lunar magma ocean and explain the vertically stratified structure of the lunar crust, with (gabbro-)noritic rocks at the base and anorthositic rocks at the top. We propose that the lunar crust mainly crystallized bottom-up. This basal crystallization formed a mafic lower crust that might have a geochemical signature similar to the magnesian-suite without KREEP contamination, while flotation of some plagioclase grains produced ferroan anorthosites in the upper crust.  相似文献   

14.
A suite of mafic pyroxenite xenoliths and clinopyroxene megacrysts was brought to the surface by Cenozoic nephelinites of the Jbel Saghro Volcanic Field (Anti-Atlas, Morocco). The large population of samples was subdivided into five groups: (i) clinopyroxenites sensu stricto; (ii) olivine clinopyroxenites; (iii) mica-bearing clinopyroxenites; (iv) kaersutite-bearing clinopyroxenites; (v) clinopyroxene megacrysts. These xenoliths display a cumulate texture (adcumulate, heteradcumulate with poikilitic clinopyroxene including olivine). The clinopyroxenes have the composition of augite and show an appreciable variation of MgO (7.02–14.80 wt.%), TiO2 (0.58–5.76 wt.%) and Al2O3 (2.81–12.38 wt.%) contents in grains. The clinopyroxenes are characterized by convex upward chondrite-normalized REE patterns, they display very similar trace element compositions with low contents of incompatible elements such as Rb (0−0.9 ppm), Ba (0.1–8.3 ppm), Th (0.1−0.3 ppm), U (0.01−0.04 ppm) and Nb (1.3–3.2 ppm). REE contents of the calculated melts in equilibrium with the clinopyroxene megacrysts and clinopyroxene from pyroxenite xenoliths are similar to those of the nephelinites exposed in Jbel Saghro. Crystallization temperatures of pyroxenite xenoliths and clinopyroxene megacrysts range from 950 °C to 1150 °C. Clinopyroxene barometry yielded pressure of crystallization ranging from 0.4 to 0.8 GPa for pyroxenite xenoliths and 0.3 to 0.7 GPa for clinopyroxene megacrysts. This pressure range is in agreement with pyroxenite xenoliths and clinopyroxene megacrysts being crystallized from their parental melts at the lower and upper crust.  相似文献   

15.
The howardite, eucrite and diogenite (HED) clan of meteorites are ultramafic and mafic igneous rocks and impact-engendered fragmental debris derived from a thoroughly differentiated asteroid. Earth-based telescopic observation and data returned from vestan orbit by the Dawn spacecraft make a compelling case that the asteroid (4) Vesta is the parent asteroid of HEDs, although this is not universally accepted. Diogenites are petrologically diverse and include dunitic, harzburgitic and noritic lithologic types in addition to the traditional orthopyroxenites. Diogenites form the lower crust of Vesta. Cumulate eucrites are gabbroic rocks formed by accumulation of pigeonite and plagioclase from a mafic magma at depth within the crust, while basaltic eucrites are melt compositions that likely represent shallow-level dikes and sills, and flows. Some basaltic eucrites are richer in incompatible trace elements compared to most eucrites, and these may represent mixed melts contaminated by partial melts of the mafic crust. Differentiation occurred within a few Myr of formation of the earliest solids in the Solar System. Evidence from oxygen isotope compositions and siderophile element contents favor a model of extensive melting of Vesta forming a global magma ocean that rapidly (period of a few Myr) segregated and crystallized to yield a metallic core, olivine-rich mantle, orthopyroxene-rich lower crust and basaltic upper crust. The igneous lithologies were subjected to post-crystallization thermal processing, and most eucrites show textural and mineral-compositional evidence for metamorphism. The cause of this common metamorphism is unclear, but may have resulted from rapid burial of early basalts by later flows caused by high effusion rates on Vesta. The observed surface of Vesta is covered by fragmental debris resulting from impacts, and most HEDs are brecciated. Many eucrites and diogenites are monomict breccias indicating a lack of mixing. However, many HEDs are polymict breccias. Howardites are the most thoroughly mixed polymict breccias, yet only some of them contain evidence for residence in the true regolith. Based on the numbers of meteorites, compositions of howardites, and models of magma ocean solidification, cumulate eucrites and their residual ferroan mafic melts are minor components of the vestan crust.  相似文献   

16.
Recent detailed field studies in several anorthosite complexes have shown that anorthosites are frequently associated with weakness zones in the crust which may have favoured their emplacement at mid-crust levels. Recent experimental data have shown that the parent magma compositions of various anorthosite massifs lie on thermal highs in the relevant phase diagrams at 10–13 kbar, indicating that these magmas cannot be derived by fractionation of peridotitic mantle melts but by melting of gabbronoritic sources in the lower crust at 40–50 km depths. In the Sveconorwegian Province terne boundaries have been traced in deep seismic profiles to Moho offsets or to tongues of lower crustal material underthrust to depths higher than 40 km. In Southern Norway, we suggest that a lithospheric-scale weakness zone (the Feda transition zone?) has channelled the Rogaland anorthosites through linear delamination, asthenospheric uprise and melting of a mafic lower crustal tongue.  相似文献   

17.
Abundant ferroan, metaluminous granitoids (970–950 Ma) emplaced at the end of the Sveconorwegian collisional orogeny (1130–900 Ma) are dominated by intermediate to silicic compositions with rare mafic facies. Both 73% fractional crystallization of an amphibole-bearing gabbroic cumulate substracted from the parent mafic composition and 30% non-modal batch melting of an amphibolitic source equivalent in composition to the mafic facies produce a monzodioritic liquid with appropriate trace element composition. A better fit is obtained for the partial melting process. Both processes could have occurred simultaneously to produce mafic cumulates and restites. As there is no evidence for large volumes of dense mafic rocks in the Sveconorwegian upper crust, these dense mafic rocks were probably produced in the lower crust. Formation of these granitoids, thus, contributed to the vertical stratification of the Proterozoic continental crust and also to the transfer of water from the lower crust to the surface.  相似文献   

18.
The Mersin ophiolite, represented by approximately 6-km-thick oceanic lithospheric section on the southern flank of the Taurus calcareous axis, formed in the Mesozoic Neo-Tethyan ocean some time during Late Cretaceous in southern Turkey. The ultramafic and mafic cumulates having over 3 km thickness consist of dunite ± chromite, wehrlite, clinopyroxenite at the bottom and pass into gabbroic cumulates in which leucogabbro, olivine-gabbro and anorthosite are seen. Crystallization order is olivine (Fo91−80) ± chromian spinel (Cr# 60-80), clinopyroxene (Mg#95−77), plagioclase (An95.6−91.6) and orthopyroxene (Mg#68−77). Mineral chemistry of ultramafic and mafic cumulates suggest that highly magnesian olivines, clinopyroxenes and absence of plagioclase in the basal ultramafic cumulates are in good agreement with products of high-pressure crystal fractionation of primary basaltic melts beneath an island-arc environment. Major, trace element geochemistry of the cumulative rocks also indicate that Mersin ophiolite was formed in an arc environment. Coexisting Ca-rich plagioclase and Forich olivine in the gabbroic cumulates show arc cumulate gabbro characteristics. Field relations as well as the geochemical data support that Mersin ophiolite formed in a supra-subduction zone tectonic setting in the southern branch of the Neo-Tethys in southern Turkey.  相似文献   

19.
Massif anorthosites form when basaltic magma differentiates in crustal magma chambers to form low-density plagioclase and a residual liquid whose density was greater than that of enclosing crustal rocks. The plagioclase and minor pyroxene crystallized in-situ on the floor of the magma chamber to produce the anorthosite complex, and the residual liquid migrated downwards, eventually to solidify as dense Fe-rich cumulates some of which were removed to the mantle. These movements were facilitated by high temperatures in Proterozoic continental crust, thus explaining the restriction of large anorthosite massifs to this period in Earth history.  相似文献   

20.
Over the last ~267 ky, the island of Lipari has erupted magmas ranging in compositions from basaltic andesites to rhyolites, with a notable compositional gap in the dacite field. Bulk geochemical and isotopic compositions of the volcanic succession, in conjunction with major and trace elemental compositions of minerals, indicate that the rhyolites were dominantly generated via crystal fractionation processes, with subordinate assimilation. Radiogenic (Sr, Nd, and Pb) and stable (O) isotopes independently suggest ≤30 % of crustal contamination with the majority of it occurring in mafic compositions, likely relatively deep in the system. Within the rhyolites, crystal-rich, K2O-rich enclaves are common. In contrast to previous interpretations, we suggest that these enclaves represent partial melting, remobilization and eruption of cumulate fragments left-over from rhyolite melt extraction. Cumulate melting and remobilization is supported by the presence of (1) resorbed, low-temperature minerals (biotite and sanidine), providing the potassic signature to these clasts, (2) reacted Fo-rich olivine, marking the presence of mafic recharge, (3) An38–21 plagioclase, filling the gap in feldspar composition between the andesites and the rhyolites and (4) strong enrichment in Sr and Ba in plagioclase and sanidine, suggesting crystallization from a locally enriched melt. Based on Sr-melt partitioning, the high-Sr plagioclase would require ~2300 ppm Sr in the melt, a value far in excess of Sr contents in Lipari and Vulcano magmas (50–1532 ppm) but consistent with melting of a feldspar-rich cumulate. Due to the presence of similar crystal-rich enclaves within the rhyolites from Vulcano, we propose that the eruption of remobilized cumulates associated with high-SiO2 rhyolites may be a common process at the Aeolian volcanoes, as already attested for a variety of volcanic systems around the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号