首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study focuses on the implementation of PISO algorithm to simulate cavitating flows. For simulation of unsteady behaviors of cavitation which have practical applications, the development of unsteady PISO algorithm based on the non-conservative approach is investigated. The effects of mixture compressibility are considered to improve accuracy of simulations. For multi-phase simulation, single-fluid Navier–Stokes equations, along with the volume fraction transport equation, are employed. The bubble dynamics model is utilized to simulate phase change. To prove capabilities of the developed PISO algorithm to simulate cavitating flows, unsteady simulation of cavitation around NACA0015 hydrofoil, a two dimensional flat plat, and a three dimensional circular disk are performed. The frequency of flow, pressure distributions, cavitating vortex shedding, and cavity characteristics are analyzed to discern results accuracy. To investigate accuracy of results, comparisons with available published experimental data are made and good agreement is achieved.  相似文献   

2.
A technique for predicting the bubble growth along a two-dimensional hydrofoil with traveling bubble cavitation is presented. The method is based on the dynamic response of ambient microbubbles to the flow field and the subsequent diffusion of dissolved air into the flow field cavities. The bubble growth model is divided into three components, including the prediction of 1) the hydrofoil surface pressure distribution, 2) the ambient microbubble response to the pressure distribution, and 3) the diffusive mass flow rate. The hydrofoil velocity and pressure field is determined by two-dimensional thin airfoil theory. The microbubble response to the pressure field is given by the Rayleigh-Plesset equation with the addition of a mass diffusion term. The diffusion of dissolved gasses into the cavitation bubbles is determined by a solution to the steady-state diffusion equation under spherically symmetric convective flow. Results are given for the bubble wake of a NACA 66-006 (a = 0.8meanline) hydrofoil with traveling bubble cavitation. The effect of the relative velocity of the cavitation bubbles with respect to the surrounding water is investigated as well as the significance of the mass diffusion term in the Rayleigh-Plesset equation.  相似文献   

3.
Ventilated cavitation which is acknowledged as an efficient drag reduction technology for underwater vehicle is characterised by the very disparate length and time scales, posing great difficulty in the application of this technology. A multiscale numerical approach which integrates a sub-grid air entrainment model into the two-fluid framework is proposed in this paper to resolve the complex flow field created by ventilated cavity. Simulations have been carried out for the partially ventilated cavity underneath flat plate, with special efforts putting on understanding the gas entrainment at the cavity tail and the bubble dispersion process downstream. The flow parameters including the void fraction, the bubble velocity and the bubble size distributions in and downstream of the ventilated cavity are fully investigated. Comparisons between the numerical results with the experimental data are in satisfactory agreement, demonstrating the potential of the proposed methodology. The ventilation rate effect on the cavity shape and bubbly flow parameters are further investigated, obtaining the law of bubble dispersion and the bubble size evolution. This research not only provide a useful method for the investigation on the multiscale multiphase flow, but also give insight on understanding the combined drag reduction mechanism resulted from large-scale cavity and microbubbles.  相似文献   

4.
Sezen  Savas  Bal  Sakir 《中国海洋工程》2020,34(2):232-244
In this study, non-cavitating and cavitating flow around the benchmark DTMB 4119 model propeller are solved using both viscous and potential based solvers. Cavitating and non-cavitating propeller radiated noises are then predicted by using a hybrid method in which RANS(Reynolds-averaged Navier-Stokes) and FWH(Ffowcs Williams Hawkings) equations are solved together in open water conditions. Sheet cavitation on the propeller blades is modelled by using a VOF(Volume of Fiuld) method equipped with Schnerr-Sauer cavitation model.Nevertheless, tip vortex cavitation noise is estimated by using two different semi-empirical techniques, namely Tip Vortex Index(TVI, based on potential flow theory) and Tip Vortex Contribution(TVC). As the reference distance between noise source and receiver is not defined in open water case for TVI technique, one of the outputs of this study is to propose a reference distance for TVI technique by coupling two semi-empirical techniques and ITTC distance normalization. At the defined distance, the starting point of the tip vortex cavitation is determined for different advance ratios and cavitation numbers using potential flow solver. Also, it is examined that whether the hybrid method and potential flow solver give the same noise results at the inception point of tip vortex cavitation.Results show that TVI method based on potential flow theory is reliable and can practically be used to replace the hybrid method(RANS with FWH approach) when tip vortex cavitation starts.  相似文献   

5.
In practical maritime conditions, ship hulls experience heave motion due to the action of waves, which can further drive the ship’s propellers to oscillate relative to the surrounding water. In order to investigate the motion of a propeller working behind a surface vessel sailing in waves, a numerical simulation is conducted on a propeller impacted by heave motion in cavitating flow using the Reynolds-averaged Navier-Stokes (RANS) method. The coupling of the propeller’s rotation and translation is fulfilled using equations of motion defined for this purpose. The heave motion is simplified as a periodic motion based on a sinusoidal function. The numerical transmission of information from the unsteady flow field is achieved using the overset grid approach. In this manner, the unsteady thrust coefficient and torque coefficient of propellers in different periods of heave motion are analyzed. A comparative study is implemented on the unsteady cavitation performance and wake characteristics of propeller. With the propeller’s heave motion, the flow field non-uniformity constantly changes the load on the propeller during each revolution period and each heaving period, the propeller load and the wake field are closely related to the variation of heave motion period. The results obtained from the numerical simulation are expected to serve as a useful theoretical reference for the numerical analysis of a propeller in a heave motion.  相似文献   

6.
For the growth and departure of bubbles from an orifice, a free energy lattice Boltzmann model is adopted to deal with this complex multiphase flow phenomenon. A virtual layer is set at the boundary of the flow domain to deal with the no-slip boundary condition. Effects of the viscosity, surface tension, gas inertial force and buoyancy on the characteristics of bubbles when they grow and departure from an orifice in quiescent liquid are studied. The releasing period and departure diameter of the bubble are influenced by the residual gas at the orifice, and the interaction between bubbles is taken into consideration. The relations between the releasing period or departure diameter and the gravity acceleration show fair agreements with previous numerical and theoretical results. And the influence of the gas outflow velocity on bubble formation is discussed as well. For the bubbles growing in cross-flow field, effects of the cross-flow speed and the gas outflow velocity on the bubble formation are discussed, which is related to the application in ship resistance reduction. And optimal choice of the ship speed and gas outflow velocity is studied. Cases in this paper also prove that this high density ratio LBM model has its flexibility and effectiveness on multiphase flow simulations.  相似文献   

7.
为准确探讨破碎波作用下气体如何卷入以及气泡的形成与输运特性, 文章结合粒子图像测速技术(particle image velocimetry, PIV)、高速相机和气泡测量系统, 以及基于Navier-Stokes方程的三维数值模型对气泡形成及其运动过程进行研究。研究结果表明: 文章建立的数值模型能合理地捕捉到破碎波作用下气体的卷入及其输运过程; 波浪的破碎会形成较大的气腔, 其破裂过程又将产生大量的气体微团; 气泡会增加水体的紊动, 造成水体与空气交界面附近形成大量的漩涡以及水体的飞溅; 气泡的破裂会消耗大量的水体能量, 同时发现较大的紊动动能与气泡的生成有关, 且气泡数随平均紊动动能的增加呈线性增长关系。  相似文献   

8.
Localizing noise sources in cavitation experiments is an important research subject along with predicting noise levels. A cavitation tunnel propeller noise localization method is presented. Propeller noise measurement experiments were performed in the MOERI cavitation tunnel. To create cavitating conditions, a wake-generating dummy body was devised. In addition, 10 hydrophones were put inside a wing-shaped casing to minimize the unexpected flow inducing noise around the hydrophones. After measuring both of the noises of the rotating propeller behind the dummy body and acoustic signals transmitted by a virtual source, the data were processed via three objective functions based on the ideas of matched field processing and source strength estimation to localize noises on the propeller plane. In this paper, the measured noise analysis and the localization results are presented. Through the experiments and the analysis, it was found that the source localization methods that have been used in shallow water applications could be successfully adapted to the cavitation tunnel experiments.  相似文献   

9.
When the shock wave of underwater explosion propagates to the surfaces of different boundaries, it gets reflected. Then, a negative pressure area is formed by the superposition of the incident wave and reflected wave. Cavitation occurs when the value of the negative pressure falls below the vapor pressure of water. An improved numerical model based on the spectral element method is applied to investigate the cavitation effect of underwater shock near different boundaries, mainly including the feature of cavitation effect near different boundaries and the influence of different parameters on cavitation effect. In the implementation of the improved numerical model, the bilinear equation of state is used to deal with the fluid field subjected to cavitation, and the field separation technique is employed to avoid the distortion of incident wave propagating through the mesh and the second-order doubly asymptotic approximation is applied to simulate the non-reflecting boundary. The main results are as follows. As the peak pressure and decay constant of shock wave increases, the range of cavitation domain increases, and the duration of cavitation increases. As the depth of water increases, the influence of cavitation on the dynamic response of spherical shell decreases.  相似文献   

10.
This paper is concerned with the interaction of bubbles, a submerged or floating structure, and free surface waves. A three-dimensional fully nonlinear model has been developed based on the coupling of the boundary integral method (BIM) for bubble dynamics and free surface waves and the finite element method for structure deformation. The present method is well validated by comparing the numerical results with the experimental data. Three structure characteristics, including fixed, rigidly moving and flexible, are investigated separately to determine their influence on bubble dynamics. For a free-floating structure, the free surface causes not only a larger reduction in peak pressure for a rigid structure compared with a fixed body but also the modification of the bubble period and structural response. The interaction between a bubble and a flexible structure, in the absence of a free surface, is simulated. Both the rigid motion and the deformation at the local structure appear in the simulation. The effect of the structural thickness on the reduction in peak pressure is also considered.  相似文献   

11.
Bottom ventilated cavitation has been proven as a very effective drag reduction technology for river ships and planning boats. The ability of this technology to withstand the sea wave impact usual for seagoing ships depends on the ship bottom shape and could be enhanced by some active flow control devices. Therefore, there is the need in numerical tools to estimate the effects of bottom changes and to design such devices. The fundamentals of active flow control for the ship bottom ventilated cavitation are considered here on the basis of a special model of cavitating flows. This model takes into account the air compressibility in the cavity, as well as the multi-frequency nature of the incoming flow in wavy seas and of the cavity response on perturbations by incoming flow. The numerical method corresponding to this model was developed and widely manifested with an example of a ship model tested in a towing tank at Froude numbers between 0.4 and 0.7.The impact of waves in head seas and following seas on cavities has been studied in the range of wavelengths from 0.45 to 1.2 of the model (or ship) length. An oscillating cavitator-spoiler was considered as the flow controlling devices in this study. The oscillation magnitude and the phase shift between cavitator oscillation and the incoming waves have been varied to determine the best flow control parameters. The main results of the provided computational analysis include oscillations of cavity surface, of the pressure in cavity and of the moment of hydrodynamic load on the cavitator. The major part of computations has been carried out for the flap oscillating at the frequency coinciding with the wave frequency, but the effect of a frequency shift is also analyzed.  相似文献   

12.
为了降低空化造成的水动力性能损失,基于仿生学原理,参考座头鲸鳍肢剖面形状,将前缘波浪构型引入到水翼设计中,研究波状前缘水翼的非定常空化特性,并探究前缘参数改变对空化控制的效果和规律。选用NACA634-021水翼为基准模型,进行前缘参数化重构,设计出3种不同的波状水翼进行对比研究。采用大涡模拟(LES)方法对空化流场进行精细化数值模拟,针对基准水翼和不同波幅与波长参数下的波状水翼开展了空化周期、升阻力系数、压力脉动以及流向涡结构的对比分析。结果发现,波状水翼在抑制空化和降低压力脉动方面都取得了显著效果。其中,3种不同的波状水翼空化抑制率分别为15.7%、18.6%和27.9%,压力脉动幅值分别降低了55.3%、67.3%和74.6%。分析表明,波浪前缘的引入使得空化的分区效应更加凸显,空化从波谷处初生,增大波幅或减小波长都可以加强对空化的抑制效果,并可以提高升力系数以及显著降低水翼表面的压力脉动。前缘波浪构型还将诱发向下游发展的对转涡结构,不同前缘参数的波状水翼涡结构的演化是相似的,空泡发展与溃灭的整个过程对涡结构的发展也具有显著影响。  相似文献   

13.
One of the underlying assumptions in the effective medium theory describing the propagation of acoustic waves through bubble clouds is that the probability of an individual bubble being located at some position in space is independent of the locations of other bubbles. However, bubbles within naturally occurring clouds may be influenced by the dynamics of the fluids in which they are entrained so that they become preferentially concentrated, or clustered, leading to statistical dependence in their positions. For bubble clouds in which the important scattering terms include those with interactions between at least two bubbles, statistical dependence between bubble positions leads to a reduction in the attenuation of the coherent acoustic pressure field from that which would be predicted for a nonclustered bubble cloud. Bubble clustering can be accommodated in effective medium theories using correlation functions describing the relationship between the positions of the bubbles. For double scattering, the two-bubble correlation (i.e., the pair correlation function) must be used, for triple scattering, the three bubble correlation must be used, and so on. In contrast to the three attenuation of the coherent field, making the assumption of independent bubble positions leads to an underestimate of the incoherent field. Both the coherent and incoherent acoustic fields for bubble clouds exhibiting correlated bubble positions are explored in this paper with the use of numerical simulations.  相似文献   

14.
K. I. Matveev   《Ocean Engineering》2003,30(9):1179-1190
Artificial cavitation, or ventilation, is produced by releasing gas into the liquid flow. One of the objectives of creating this multiphase flow is to reduce frictional and sometimes wave resistance of a marine vehicle completely or partially immersed in the water. Flows around surface ships moving along the water–air boundary are considered in this paper. It is favorable to achieve a negative cavitation number in the developed cavitating flow under the vessel’s bottom in order to generate additional lift. Cavities, formed in the flow, have limiting parameters that are affected by propulsion and lift-enhancing devices. Methods for calculating these influences and the results of a parametric study are reported.  相似文献   

15.
海水总有机碳(TOC)分析技术研究   总被引:2,自引:0,他引:2  
超声化学是声学与化学相互交叉而发展起来的一门新兴学科,它作为一种新颖的声化学技术正在日益受到人们的重视.超声化学主要是利用超声空化效应而进行的.时超声空化效应氧化降解有机物以及反应过程中的多泡声致发光机理进行了研究,就应用多泡声致发光技术来表征海水总有机碳(TOC)的可行性进行了分析,同时指出了应用超声空化效应-多泡声致发光技术测量海水总有机碳(TOC)的巨大潜力以及发展前景.  相似文献   

16.
This study employed direct numerical simulation to simulate the fully nonlinear interaction between the water waves, the submerged breakwater, and the seabed under differing wave conditions. In the numerical simulation, the laminar flow condition in the seabed was applied to evaluate the more exact fluid resistance acting on the porous media. Varying incident wave conditions were applied to the flow field resulting from the wave–structure–seabed interaction, and the variation in the pore water pressure beneath the submerged breakwater was investigated along the cross-section of the submerged breakwater. Structural safety and scouring were also considered on the basis of the numerical results for the flow field around the structure and the variation of the pore water pressure.  相似文献   

17.
A formation model for deep-sea manganese nodules based on ascending bubble trains of geogas is proposed. The bubble train forces material in the sediments and particles adsorbed by the bubbles to the sediment—water interface where precipitation reactions occur. In the presence of a nucleating agent a nodule is formed. Such a model might explain a number of observations concerning nodular structure, genesis and distribution.  相似文献   

18.
针对波浪模式问题,将变分多尺度方法与自由面捕捉技术相结合;把波浪模式的各个物理量分解到“粗” “细”两种尺度上,引入消除数值伪振荡的稳定化结构;最后求解“粗” “细”两种尺度耦合的整体变分多尺度方程,模拟了水波自由晃动的1个周期和波浪的传播过程。模拟结果表明:采用变分多尺度方法模拟水波晃动和波浪传播不会引起数值伪振荡,得到精确的数值解,能够正确模拟水波自由晃动的周期性变化现象以及波浪的传播过程。  相似文献   

19.
This paper deals with the development of a Matlab-Simulink model of a marine current turbine system through the modeling of the resource and the rotor. The simulation model has two purposes: performances and dynamic loads evaluation in different operating conditions and control system development for turbine operation based on pitch and speed control. In this case, it is necessary to find a compromise between the simulation model accuracy and the control-loop computational speed. The blade element momentum (BEM) approach is then used for the turbine modeling. As the developed simulation model is intended to be used as a sizing and site evaluation tool for current turbine installations, it has been applied to evaluate the extractable power from the Raz de Sein (Brittany, France). Indeed, tidal current data from the Raz de Sein are used to run the simulation model over various flow regimes and yield the power capture with time.  相似文献   

20.
This paper presents a numerical study on the drag reduction mechanism created by a ventilated partial cavity and its associated effects by the downstream dispersed microbubbles. A semi-empirical approach is introduced to model the discrete interface of the ventilated cavity and its complex gas leakage rate induced by the local turbulent shear stress. Based on the Eulerian–Eulerian two-fluid modeling framework, a population balance approach based on MUltiple-SIze-Group (MUSIG) model is incorporated to simulate the dynamical effects of bubbly flow along the test body. Particular attention is also directed to grasp a better understanding of the size evolution of microbubble and its associated effects on drag reduction. Model predictions are validated against three experimental measurements carried out in a high-speed water tunnel by Schauer (2003) and Wosnik et al. (2005). Close examination of the flow structures, gas void fraction distributions and its resultant density ratio provides valuable insights on the complex physical phenomenon, helping to consolidate idea to maximize the drag reduction for ventilated cavitating vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号