首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 734 毫秒
1.
地壳应变场对气压短周期变化的响应   总被引:5,自引:0,他引:5       下载免费PDF全文
大气压力变化可分为由日、月引力和太阳热辐射产生的潮汐变化和非潮汐频段的短周期气压变化,其引起的地壳应变可达10-9量级.我们选用分钟采样的观测精度达10-9量级的钻孔应变仪,对山东省泰安台2O02~2005年气压及体应变分钟值资料进行深入分析,研究了地壳应变场对短周期气压变化的响应规律.频谱分析结果表明,短周期气压变化对体应变的影响主要集中在周期大于2000 s的低频段.利用小波分解方法,得出了短周期气压系数随不同频段和不同时间的变化规律:高频段(周期小于960 s)气压系数数值较小,随频率变化幅度较大;低频段(周期大于960 s)气压系数数值较大,但变化趋于平稳;在频段一定的情况下,短周期气压系数随时间变化较平稳.从钻孔应变仪观测原理和按余弦函数分布的载荷作用于地壳表面的应力解出发,得出了地壳不同深度对不同频率短周期气压场的响应,理论计算与实际观测基本相符.研究结果表明,短周期气压变化对低频信号(周期大于2000 s)的影响较大,提取低频地球自由振荡信号时要消除气压影响,对苏门答腊大地震激发的地球球型自由振荡的功率谱分析验证了这一结论.  相似文献   

2.
旋转弹性椭球地球模型的固体潮理论值计算   总被引:2,自引:0,他引:2       下载免费PDF全文
吴庆鹏 《地震学报》1990,12(3):282-291
根据Wahr 1981年提出的理论,导出了计算旋转弹性地球模型的重力固体潮、地倾斜固体潮和地面应变固体潮的公式,并在此基础上编写出相应的计算程序.为了显示旋转和扁度对地球模型的重力固体潮、地倾斜固体潮和地面应变固体潮的影响,计算了东经120°不同纬度处的旋转弹性椭球地球模型(1066A模型)和G-B地球模型的重力固体潮、地倾斜固体潮和地面应变固体潮.计算结果表明,旋转和扁度对重力固体潮、地倾斜固体潮和地面应变固体潮的最大幅度分别为1.4×10-8 m/s2、0.2ms和0.5×10-9.   相似文献   

3.
岩石圈黏度是大陆动力学研究中一个重要参数,但是岩石圈黏度,尤其是横向小尺度(<100 km)黏度结构的确定是一个挑战.本文根据电阻率和黏度与它们控制因素的相似关系,直接把一条跨过青藏高原东缘和四川龙门山断裂带的大地电磁(MT)探测的电阻率剖面转换成黏度结构作为输入,在GPS速度和地表地形数据的约束下,利用地球动力学数值模拟获得了该剖面的二维地壳/岩石圈黏度结构.本文推断的黏度与前人获得的区域尺度的黏度值一致,但揭示出了更多的细节.本文的黏度结构揭示出研究区域内的地壳/岩石圈黏度存在较大的空间变化范围(约5量级),黏度值分布在1.48×10^17~8.44×10^22 Pa·s之间;龙门山断裂带下的黏度存在强烈的小尺度横向变化,其中、下地壳的黏度分别为1.99×10^18~8.21×10^20 Pa·s(平均1.17×10^20 Pa·s)和4.09×10^19~7.08×10^20 Pa·s(平均1.77×10^20 Pa·s).基于该黏度结构的地球动力学模型表明驱动青藏高原中-下地壳物质流动的可能是热-化学浮力,以及上地壳和中-下地壳可能处于解耦状态.本文获得的黏度结构可以为龙门山断裂带地震成因和机制、岩石圈小尺度变形和构造应力状态的深入研究提供重要的帮助.  相似文献   

4.
计算视复电阻率的新的近似公式   总被引:1,自引:1,他引:1       下载免费PDF全文
刘崧 《地球物理学报》1988,31(6):687-694
本文推导并评价了一个新的计算视复电阻率的近似公式,其视振幅表达式为|ρs(ω)|≈ρs(ω)|ρs(ω)=ρs(ω)|,视相位表达式为φs(ω)≈sum from i=1 to n(Bi(ω)φi(ω)),这里Bi(ω)是按各介质复电阻率振幅计算的稀释系数。此近似公式比迄今为止已发表过的同类近似公式都精确,可在频率域激电法数值模拟计算视复电阻率时应用。  相似文献   

5.
孙小龙  向阳  李源 《地震学报》2020,42(6):719-731
以河南范县井为例,利用不同的水力响应模型分析了井水位对地震波、固体潮和气压的响应特征,并基于相关水力响应模型反演估算了含水层的水力参数。结果显示:在高频加载作用过程中,井-含水层系统中的水流模式以水平向为主,而在低频加载作用过程中,则为水平向和垂直向共存的混合模式;利用周期为10—102 s的高频段的地震波响应模型估算的含水层导水系数值较大,为7.20×10?3 m2/s,利用周期为3.75×104 s的低频段的固体潮响应模型估算的含水层导水系数值较小,为2.02×10?6 m2/s,而利用周期为102—104 s的中等频率段的气压响应模型得到的估算值介于二者之间,为3.44×10?5 m2/s。由此分析认为,在周期性加载作用过程中,井-含水层系统内的水流模式与加载频率有关,基于不同水力响应模型反演估算的含水层水力参数存在尺度效应。本研究取得的认识,既可为井水位动态响应的机理解释提供理论基础,也可为目标含水层水力参数的原位测量提供技术支撑。   相似文献   

6.
本文提出一个新算法,用来高精度计算三维不均匀地球模型中地震位错引起的地表以及空间固定点同震重力变化.具体地说,我们首先把实际三维不均匀地球分解成球对称地球模型和对应的横向不均匀增量,分别进行计算,二者对应的计算结果分别称为球对称解和三维响应.由于球对称解可直接利用球对称地球模型位错理论计算得到,本文的目标是计算三维响应即地球的横向不均匀结构对同震重力变化的影响.然后,我们把三维响应再分为震源的响应和地球横向不均匀结构的响应,它们可分别借助对震源函数的扰动以及对平衡方程式的变分求解.本文推导出六个特殊点源位错引起的地表以及空间固定点同震重力变化计算公式(一个垂直走滑位错,两个相互垂直的倾滑位错,三个开裂位错),对这些公式进行适当组合就可以计算任意位置任意类型位错产生的同震重力变化,对应的计算公式同步给出.接着,依据36阶P波速度模型,我们利用岩石试验经验关系式推导出三维S波速度模型,密度模型,位场模型以及重力模型.最后,利用上述三维模型,本文计算出三种典型类型的点源位错产生的同震重力变化,结果显示三维响应与位错类型,震源深度都有关系,其最大响应占球对称解的0.5%左右,且在所有影响因素中S波速度模型影响最大.数值结果同时表明,三维响应中震源的响应与地球横向不均匀构造的响应处于同一量级.本文给出的地表和空间固定点同震重力变化计算公式可分别高精度解析地表重力和卫星重力观测数据(GRACE、GOCE等),提高大地测量数据理论解析水平.  相似文献   

7.
地幔的蠕变性质   总被引:1,自引:0,他引:1       下载免费PDF全文
地幔的蠕变特性是地球物理学中一个普遍关心的问题。本文以地球模型和地球热模型为基础,结合理论导出的蠕变方程和岩石蠕变实验的结果,考虑到温度、压力、晶粒直径及相变过程对地幔流变特性的影响,计算了整个地幔的蠕变性质和等效粘滞性。 结果表明,当晶粒直径d≤1毫米时,扩散蠕变是主要的,地幔行为与牛顿流体相似。当d≥10毫米时,幂函数蠕变成为主要的形变机制,地幔呈非牛顿粘滞性。从得出的结果来看,并不存在高粘的下地幔。  相似文献   

8.
柴达木盆地深部物理参数的反演   总被引:1,自引:0,他引:1       下载免费PDF全文
通过研究地球对表面载荷的响应来反演确定地球深部的物理参数.采用分为4层的地球模型,各层的介质被看作Maxwell粘弹性体.将柴达木盆地沉降发育过程中积累的沉积物作为随时间变化的载荷加于地表,通过拟合柴达木盆地沉降中心附近地区的沉降过程来研究该地区地壳的厚度及剪切模量、岩石层地幔的粘性及软流层的粘性等物理参数.计算结果表明,该地区地壳的剪切模量不会超过全球平均值的60%,岩石层地幔的粘性系数不大于1.5×1023Pa·s.通过研究对该地区的深部物理参数得出了新的认识.  相似文献   

9.
SNREI地球对表面负荷和引潮力的形变响应   总被引:5,自引:2,他引:5       下载免费PDF全文
基于PREM模型,利用非自转、球型分层、各向同性、理想弹性(SNREI)地球的形变理论,讨论了地球在不同驱动力作用下的形变特征.采用地球位移场方程的4阶Runge Kutta数值积分方法,解算了在表面负荷和日月引潮力作用下地球表面和内部形变和扰动位,并给出了地球表面的负荷Love数和体潮Love数.结果表明在固体内核中的形变很小,液核中低阶(n<10)负荷位移随半径的变化非常复杂.当负荷阶数超过10时,地核中的形变和扰动位都很小,地球的响应主要表现为弹性地幔中的径向位移,且随深度增加急剧减弱,负荷阶数越高这种衰减的速度越快.SNREI地球的地表负荷Love数和体潮Love数与信号频率的依赖关系很弱.在计算体潮Love数的过程中,采用了SNREI地球的运动方程,同时考虑了由于地球自转和椭率引起的核幔边界附加压力,这一近似处理方法获得的结果能很好地符合地球表面重力潮汐实际观测结果.  相似文献   

10.
罗志才  周浩  钟波  李琼 《地球物理学报》2015,58(9):3061-3071
考虑到不同坐标系下各个方向观测值对反演地球重力场的频谱贡献不同,建立了顾及多方向观测值权比的动力积分法,并利用该方法反演了高精度的GOCE HL-SST卫星重力场模型.首先,分析了不同坐标系下各个方向观测值与地球重力场信息的响应关系,其中惯性系(IRF)下X、Z方向的观测值分别对扇谐系数、带谐系数最为敏感,Z方向的解算精度在全频段均略高于X、Y方向;地固系(EFRF)下各个方向的独立解算精度均与能量守恒法的解算精度相当;局部指北坐标系(LNOF)下X、Z和Y三个方向的解算精度依次递减,且Y方向在47阶附近有明显"驼峰"现象.其次,比较了不同坐标系下顾及三个方向观测值权比的加权解算模型,其中加权联合解算模型精度在20至70阶次均明显优于等权解算模型,在带谐项和共振阶次精度提升明显,且LNOF下的加权联合解算精度要优于IRF和EFRF.最后,比较了GOCE和CHAMP卫星的模型解算精度,采用本文计算方法,仅利用2个月GOCE轨道观测值解算的模型精度优于包含更长观测时段信息的AIUB-CHAMP01S和EIGEN-CHAMP03S模型,且略优于ASU-GOCE-2months模型.  相似文献   

11.
We have considered the influence of ocean temperature and salinity changes, mass changes of the Greenland ice sheet (GIS) and the isostatic response of the solid earth to the most recent glacial cycle on 20th century sea-level change along the US east coast with the intention of better understanding the observed signal as well as determining the potential of the tide gauge data for constraining the recent (past 50–100 yr) mass balance of the GIS and earth viscosity structure. Our results show that the signal due to steric changes is large and displays a complex spatial variation which can account for a significant portion of the observed signal. In contrast, that due to changes in the GIS is relatively small and insensitive to the specific geometry of the mass balance model adopted. As a consequence, the tide gauge data alone are not capable of providing useful constraints on either the magnitude or form of recent GIS mass balance. Our inference of mantle viscosity structure based on the tide gauge data was affected dramatically when the steric effect was accounted for: An earth model with an upper mantle viscosity of 8 × 1019 Pa s and a lower mantle viscosity of 5 × 1022 Pa s produced the best fit to the steric-corrected data; the optimal fit to the uncorrected data was obtained for upper and lower mantle viscosities of 5 × 1020 Pa s and 1022 Pa s, respectively.  相似文献   

12.
We examine the dependence of glacial-isostatic adjustment (GIA) due to changes in the Vatnajökull Ice Cap, Iceland, on the underlying viscosity structure. Iceland offers a unique case study for GIA research, with a thinner elastic lithosphere underlain by a low-viscosity zone or asthenosphere, as opposed to regions such as Fennoscandia or North America described by a thicker lithosphere, while not necessarily featuring an asthenosphere.A laterally homogeneous spherical earth model is used consisting of an elastic lithosphere, a viscoelastic asthenosphere, a viscoelastic upper and lower mantle and a fluid core. We examine the response of the earth model to three ice models with circular plans and cross-section profiles based on the assumption of perfectly plastic material, but with different load histories. These are: (1) A history where the ice cap grows from a AD 900 minimum to a maximum at 1890, followed by a uniform decrease until 1991, continuing to the present day at an average rate based on recent mass-balance measurements, (2) a history that is the same as the first, except for constant ice volumes prior to 1890, and (3) a history that is again the same as the first model, except that the post-1991 changes correspond to the measured mass-balance values. We first compare the response to each ice model using typical earth-model parameters for Iceland presented in the literature. We then undertake a parameter-space search, where we assess the importance of lithosphere thickness, asthenosphere viscosity and basal asthenosphere depth, to predicted vertical-displacement rates, and compare them to rates determined from GPS measurements obtained from campaigns conducted between 1991 and 1999.The earth-viscosity structure that provides the optimum predictions with respect to the GPS-derived vertical-displacement rates consists of an elastic lithosphere with a thickness of between 20 and 30 km, an asthenosphere viscosity between 1 and 2 × 1018 Pa s, and a basal asthenosphere depth between 250 km and possibly greater than 400 km. We find that the very low asthenosphere viscosity values of ca. 1017 Pa s sometimes suggested in the literature are not necessary to account for the rapid vertical-displacement rates observed, which are the result of the contemporary decrease in the mass of the ice cap not considered previously.  相似文献   

13.
本文利用大范围的震后GPS数据和黏弹性球形地球位错理论,定量研究了日本M_W9.0地震周边地区地幔黏滞性结构的垂向变化.首先结合陆地和海底的GPS观测数据,以及基于球形地球位错理论格林函数和贝叶斯反演方法,反演了该地震的同震滑动分布,发现其最大错动量高达59m.然后在均一地幔黏滞性结构的假设前提下,确定了震源周边地区地幔黏滞因子的最优解,发现依据该地幔黏滞因子获得的理论远场震后位移和GPS观测结果之间的均方根误差高达0.81cm,不能解释远场观测结果.为解决上述问题,本文对震中周边地区地幔黏滞性结构沿垂向方向进行分层,建立了一个随深度变化的地幔黏滞性构造模型,然后综合利用远近场的GPS数据对该地区地幔黏滞因子进行反演研究,结果表明,震源周边地区岩石圈弹性层厚度最优解为40km,40~220km深度的地幔黏滞因子最优解为6×10~(18)Pa·s,220~670km深度之间的地幔黏滞因子最优解为1.5×10~(19)Pa·s.上述地幔黏滞性构造使远场的均方根误差降为0.12cm,仅为利用均一地幔黏滞性构造所得均方根误差值的15%,大大提高了远场模拟结果的准确性.最后,观测值和模拟值之间的均方根误差分析表明,近场震后形变数据主要约束浅层的地幔黏滞性结构,而远场震后形变数据主要约束深部的地幔黏滞性结构.  相似文献   

14.
Repeated gravity measurements were carried out from 1991 until 1999 at sites SE of Vatnajökull, Iceland, to estimate the mass flow and deformation accompanying the shrinking of the ice cap. Published GPS data show an uplift of about 13 ± 5 mm/a near the ice margin. A gravity decrease of –2 ± 1 μGal/a relative to the Höfn base station, was observed for the same sites. Control measurements at the Höfn station showed a gravity decrease of –2 ± 0.5 µGal/a relative to the station RVIK 5473 at Reykjavík (about 250 km from Höfn). This is compatible, as a Bouguer effect, with a 10 ± 3 mm/a uplift rate of the IGS point at Höfn and an uplift rate of ~20 mm/a near the ice margin. Although the derived gravity change rates at individual sites have large uncertainties, the ensemble of the rates varies systematically and significantly with distance from the ice. The relationship between gravity and elevation changes and the shrinking ice mass is modelled as response to the loading history. The GPS data can be explained by 1-D modelling (i.e., an earth model with a 15-km thick elastic lithosphere and a 7·1017 Pa·s asthenosphere viscosity), but not the gravity data. Based on 2-D modelling, the gravity data favour a low-viscosity plume in the form of a cylinder of 80 km radius and 1017 to 1018 Pa·s viscosity below a 6 km-thick elastic lid, embedded in a layered PREM-type earth, although the elevation data are less well explained by this model. Strain-porosity-hydrology effects are likely to enhance the magnitude of the gravity changes, but need verification by drilling. More accurate data may resolve the discrepancies or suggest improved models.  相似文献   

15.
In land surveys, the weathering layer can often distort the seismic signal due to it passing through rapid velocity and density changes, dispersion, scattering and inelastic absorption. In a simple spring‐dashpot model for the earth response, an equivalent medium groups these complex phenomena into two parameters only; these are called ground viscosity and ground stiffness. The most recent controllers for vibrators can estimate both parameters. To validate these measurements, Saudi Aramco conducted an experiment measuring ground viscosity and stiffness from two different vibrator control systems over an area of varying terrain conditions, including unconsolidated sand and limestone outcrop. The two systems measured different values, but detected similar trends that correlated well with weathering conditions and surface geology, e.g. lower viscosity values on the outcrop than on the sand. The ratio of ground viscosity to ground stiffness can approximate the shallow S‐wave velocity, which we converted into P‐wave velocity through calibration with sparse uphole data. Static corrections incorporating this velocity information somewhat improved the focusing of seismic time sections. This new approach does not require additional acquisition efforts, and can model shallow complex formations in arid areas where classical static methods often fail.  相似文献   

16.
The viscosity of lower crust of Qinghai-Tibet Plateau on earth should be determined. It has become a predominant problem in quantitative research on geodynamics. Its order of magnitude will have a great influence on the results of quantitative modeling. To obtain the viscosity of lower crust of Qinghai-Tibet Plateau, this parameter was calculated by three methods. The first is based on the estimation on the temperature state of Qinghai-Tibet Plateau in the deep part, and the viscosity of lower crust of northern Plateau was recomputed with strain rate derived from rheology law and GPS observation. Effective viscosity of middle crust in Kunlun region is between 1020 and 1022 Pa·s, and that of lower crust is between 1019 and 1021 Pa·s; the second is based on three kinds of rheological models used to fit the post-seismic deformation recorded by cross-over fault GPS sites set after M s8.1 Kunlun earthquake in 2001. The viscosity of lower crust obtained by this method is of 1017 Pa·s order of magnitude. However, higher viscosity is required to fit the data of south fault better, and the lower one is required to fit the data of north fault better. The viscosity of lower crust, which was obtained by fitting the cross-over fault post-seismic deformation after M s7.6 Luhuo earthquake in 1973, is of 1019 Pa·s order of magnitude. Non-linear relationship between effective viscosity and strain rate is ignored in the former research of effective viscosity. This research shows the difference of effective viscosity obtained from laboratory experiment, and shorter and longer time post-seismic deformation after large earthquakes can be explained in phase. Supported by National Basic Research Program of China (Grant No. 2004CB418405), National Natural Science Foundation of China (Grant No. 40774048), Important Direction Item of Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. KZCX2-YW-123) and Basic Scientific Research Project of Earthquake (Grant No. 02076902-05)  相似文献   

17.
This paper describes the velocity pattern of a slow‐moving earth flow containing a viscous shear band and a more or less rigid landslide body on top. In the case of small groundwater fluctuations, Bingham's law may describe the velocity of these slow‐moving landslides, with velocity as a linear function of excess shear stress. Many authors have stated that in most cases a non‐linear version of Bingham's law best describes the moving pattern of these earth flows. However, such an exponential relationship fails to describe the hysteresis loop of the velocity, which was found by some authors. These authors showed that the velocity of the investigated earth flows proved to be higher during the rising limb of the groundwater than during the falling limb. To explain the hysteris loop in the velocity pattern, this paper considers the role of excess pore pressure in the rheological behaviour of earth flows by means of a mechanistic model. It describes changes in lateral internal stresses due to a change in the velocity of the earth flow, which generates excess pore pressure followed by pore pressure dissipation. Model results are compared with a hysteresis in the velocity pattern, which was measured on the Valette landslide complex (French Alps). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Current constraints on the glacial isostatic adjustment (GIA) process are mainly provided by relative sea-level data and GPS measurements. Due to a lack of resolving power in the shallow earth (down to about 200 km), these data sets only provide weak constraints on the shallow viscosity structure and the thickness of the lithosphere. Future high-resolution gravity data, as expected from ESA’s Gravity field and steady-state Ocean Circulation Explorer (GOCE) launched on March 17, 2009, are predicted to provide additional information on the shallow earth, more specifically the viscosity structure. Here we present an overview of recent developments in extracting information on rheology and stratification of the shallow earth from high-resolution quasi-steady gravity and geoid data to be obtained from GOCE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号