首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We present results of polarimetric observations of the Galilean satellites Io, Europa, Ganymede, and Callisto at phase angles ranging from 0.19° to 2.22°. The observations in the UBVR filters were performed using a one-channel photoelectric polarimeter attached to 70-cm telescope of the Chuguev Observation Station (Ukraine) on November 19-December 7, 2000. We have observed the polarization opposition effect for Io, Europa, and Ganymede to be a sharp secondary spike of negative polarization with an amplitude of about −0.4% centered at phase angles of 0.2°-0.7° and superimposed on the regular negative polarization branch. Although these minima for Io, Europa, and Ganymede show many similarities, they also exhibit a number of distinctions. The polarization opposition effect appears to be wavelength-dependent, at least for Europa and Ganymede. No polarization opposition effect was found for Callisto. The results obtained are discussed within the framework of different mechanisms of light scattering.  相似文献   

2.
We report 12.6-cm-wavelength radar observations of Europa, Ganymede, and Callisto made at the Arecibo Observatory in November 1977 and February 1979. When combined with previous observations, our results establish firmly the distinguishing radar properties of these satellites: (i) high geometric albedos, α; (ii) circular polarization ratios, μC, which anomalously exceed unity; (iii) linear polarization ratios, μL, which are approximately 0.5; and (iv) diffuse scattering which varies as cosnθ, where θ is angle of incidence and 1 ? n ? 2. We tabulate weighted-mean values of α, μC, μL, and n derived from observations between 1975 and 1979. The values of μC for Ganymede and Europa are nearly identical and significantly larger than that for Callisto. The values of n for Ganymede and Callisto are nearly identical and significantly smaller than that for Europa. Although significant albedo and/or polarization features are common in the radar spectra, the fractional rms fluctuation in disk-integrated properties is only ~10%. No time variation in the radar properties has been evident during 1976–1979.  相似文献   

3.
J.B. Murray 《Icarus》1975,25(3):397-404
Visual and photographic observations of the Galilean satellites of Jupiter made in September 1973 with the 108 cm reflector at Pic-du-Midi Observatory are presented. A method of estimating the contrasts and albedos of surface markings on the satellites during transit by comparing them with the adjacent surface of Jupiter is described. Results for Io, Europa, and Ganymede give albedo ranges of 0.28 to 0.67, 0.45 to 0.67, and 0.22 to 0.47, respectively. These are geometric albedos for a phase angle of 5°. The percentages of the disks covered by high albedos are consistent with the conclusions of previous workers regarding the fraction of exposed water ice on the surface.  相似文献   

4.
Photometry obtained in 1973 on the uvby system yields high-precision rotational light curves for Io, Europa, and Ganymede at a mean phase angle of ~6°. By combining our observations with photometry obtained by others over a broader range of phase angle, we alsi derive improved values for the phase coefficients and opposition surges of the four Galilean satellites. The values of V(1, 0) obtained by linear extrapolation to zero phase are accurate to ±0.03 magnitudes. We also derive the colors of the sun of the uvby system and use these to obtain albedos of the satellites in four colors.  相似文献   

5.
The relationship between the k2/Q of the Galilean satellites and the k2J/QJ of Jupiter is derived from energy and momentum considerations. Calculations suggest that the Galilean satellites can be divided into two classes according to their Q values: Io and Ganymede have values between 10 and 50, while Europa and Callisto have values ranging from 200 to 700. The tidal contributions of the Galilean satellites to Jupiter's rotation are estimated. The main deceleration of Jupiter, which is about 99.04% of the total, comes from Io.  相似文献   

6.
We have obtained reflectivity spectra of the trailing and leading sides of all four Galilean satellites with circular variable filter wheel spectrometers operating in the 0.7- to 5.5-μm spectral interval. These observations were obtained at an altitude of 41,000 ft from the Kuiper Airborne Observatory. Features seen in these data include a 2.9-μm band present in the spectra of both sides of Callisto; the well-known 1.5-μm and 2.0-μm combination bands and the previously more poorly defined 3.1-μm fundamental of water ice observed in the spectra of both sides of Europa and Ganymede; and features centered at 1.35 ± 0.1, 2.55 ± 0.1, and 4.05 ± 0.05 μm noted in the spectra of both sides of Io. In an effort to interpret these data, we have compared them with laboratory spectra as well as synthetic spectra constructed with a simple multiple-scattering theory. We attribute the 2.9-μm feature of Callisto's spectra primarily to bound water, with the product of fractional abundance of bound water and mean grain radius in micrometers equaling approximately 3.5 × 10?1 for both sides of the satellite. The fractional amounts of water ice cover on the trailing side of Ganymede, its leading side, and the leading side of Europa were found to be 50 ± 15, 65 ± 15, and 85% or greater, respectively. The bare ground areas on Ganymede have reflectivity properties in the 0.7- to 2.5-μm spectral region comparable to those of Callisto's surface and also have significant quantities of bound water, as does Callisto. Interpretation of the spectrum for the trailing side of Europa is complicated by magnetospheric particle bombardment which causes a perceptible broadening of strong bands, but the ice cover on this side is probably comparable to that on the leading side. These irradiation effects may be responsible for much of the difference in the visual geometric albedos of the two sides of Europa. Minor, but significant, amounts of ferrous-bearing material (either ferrous salts or alkali feldspars but not olivines or pyroxenes) account for the 1.35-μm feature of Io. The two longer wavelength bands are most likely attributable to nitrate salts. Ferrous salts and nitrates can jointly also account for much of the spectral variation in Io's visible reflectivity, thereby eliminating the need to postulate large quantities of sulfur. The absence of noticeable features near 3-μm wavelength in Io's spectra leads to upper bounds of 10% on the fractional cover of water and ammonia ice and 10?3 on the relative abundance of bound water and hydroxylated material on Io. The two sides of Io have similar compositions. We suggest that the systematic increase in fractional water ice cover from Callisto to Ganymede to Europa is bought about by variations in efficiencies of recoating the satellite's surface by interior water brought to the surface, and by the deposition of extrinsic dust. The most important component of the latter is debris, derived from the outer irregular satellites of Jupiter, which impacts the Galilean satellites at relatively low velocities. Europa has the largest water ice cover because its crust is thinnest and thus the frequency of water recoating is the greatest, and because it is farthest from the sources of low-velocity dust. While models which depict Io's surface as consisting primarily of very fine-grained ice are no longer viable, we are unable to definitively distinguish between the salt assemblage and alkali feldspar models. The salt model can better account for Io's reflectivity spectrum from 0.3 to 5 μm, but the absence of appreciable quantities of bound water and hydroxylated material may not be readily understood within the context of that model.  相似文献   

7.
Interplanetary dust grains entering the Jovian plasmasphere become charged, and those in a certain size range get magneto-gravitationally trapped in the corotating plasmasphere. The trajectories of such dust grains intersect the orbits of one or more of the Galilean satellites. Orbital calculations of micron sized dust grains show that they impact the outermost satellite Callisto predominantly on its leading face, while they impact the inner three — Io, Europa and Ganymede — predominantly on the trailing face. These results are offered as an explanation of the observed brightness asymmetry between the leading and trailing faces of the outer three Galilean satellites. The albedo of Io is likely to be determined by its volcanism.  相似文献   

8.
The four Galilean satellites are thought to harbor one or even two global internal liquid layers beneath their surface layer. The iron core of Io and Ganymede is most likely (partially) liquid and also the core of Europa may be liquid. Furthermore, there are strong indications for the existence of a subsurface ocean in Europa, Ganymede, and Callisto. Here, we investigate whether libration observations can be used to prove the existence of these liquid layers and to constrain the thickness of the overlying solid layers. For Io, the presence of a small liquid core increases the libration of the mantle by a few percent with respect to an entirely solid Io and mantle libration observations could be used to determine the mantle thickness with a precision of several tens of kilometers given that the libration amplitude can be measured with a precision of 1 m. For Europa, Ganymede, and Callisto, the presence of a water ocean close to the surface increases by at least an order of magnitude the ice shell libration amplitude with respect to an entirely solid satellite. The shell libration depends essentially on the shell thickness and to a minor extent on the density difference between the ocean and the ice shell. The possible presence of a liquid core inside Europa and Ganymede has no noticeable influence on their shell libration. For a precision of several meters on the libration measurements, in agreement with the expected accuracy with the NASA/ESA EJSM orbiter mission to Europa and Ganymede, an error on the shell thickness of a few tens kilometers is expected. Therefore, libration measurements can be used to detect liquid layers such as Io’s core or water subsurface oceans in Europa, Ganymede, and Callisto and to constrain the thickness of the overlying solid surface layers.  相似文献   

9.
New versions of the ephemerides for the Galilean satellites of Jupiter (Io, Europa, Ganymede, and Callisto) constructed by numerically integrating the equations of motion of the satellites are presented. The satellite motionmodel takes into account the non-sphericity of Jupiter, the mutual perturbations of the satellites, and the perturbations from the Sun and major planets. The initial satellite motion parameters have been improved based on all the available series of ground-based optical observations spanning the interval 1891-2017, spacecraft observations, and radar observations. As a result, the coefficients of the expansion of the satellite coordinates and velocities in terms of Chebyshev polynomials in the interval 1891- 2025 have been obtained. The root-mean-square errors of the observations and the graphs of comparison of the constructed ephemerides both with the observations and with Lainey's numerical ephemerides are presented. The constructed ephemerides are publicly accessible.  相似文献   

10.
G.J. Black  D.B. Campbell 《Icarus》2007,191(2):702-711
We have measured the bulk radar reflectance properties of the mid-size saturnian satellites Rhea, Dione, Tethys, and Enceladus with the Arecibo Observatory's 13 cm wavelength radar system during the 2004 through 2007 oppositions of the Saturn system. Comparing to the better studied icy Galilean satellites, we find that the total reflectivities of Rhea and Tethys are most similar to Ganymede while Dione is most similar to Callisto. Enceladus' reflectivity falls between those of Ganymede and Europa. The mean circular polarization ratios of the saturnian satellites range from ∼0.8 to 1.2, and are on average lower than those of the icy Galilean satellites at this wavelength although still larger than expected for single reflections off the surface. The ratio for the trailing hemisphere of Enceladus may be the exception with a value ?0.56. The 13 cm wavelength radar albedos and polarization ratios may be systematically lower than similar results from the Cassini orbiter's RADAR instrument at 2.2 cm wavelength [Ostro, S.J., and 19 colleagues, 2006. Icarus 183, 479-490]. Overall, these reflectivities and polarization properties, together with the shapes of the echo spectra, suggest subsurface multiple scattering to be the dominant reflection mechanism although operating less efficiently than on the large icy moons of Jupiter. All these saturnian moons and icy jovian moons are atmosphere-less, low temperature water ice surfaces, and any differences in radar properties may be indicative of differences in composition or the effects of various processes that modify the regolith structure. The degree of variation in radar properties with wavelength on each satellite may constrain the thickness and efficiency of the scattering layer.  相似文献   

11.
Data from the recent gravity measurements by the Galileo mission are used to construct wide ranges of interior structure and composition models for the Galilean satellites of Jupiter. These models show that mantle densities of Io and Europa are consistent with an olivine-dominated mineralogy with the ratios of Mg to Fe components depending on mantle temperature for Io and on ice shell thickness for Europa. The mantle density and composition depend relatively little on core composition. The size of the core is largely determined by the core's composition with core radius increasing with the concentration of a light component such as sulfur. For Io, the range of possible core sizes is between 38 and 53% of the satellite's radius. For Europa, there is also a substantial effect of the thickness of the ice layer which is varied between 120 and 170 km on the core size. Core sizes are between 10 and 45% of Europa's radius. The core size of Ganymede ranges between one-quarter and one-third of the surface radius depending on its sulfur content and the thickness of the ice shell. A subset of the Ganymede models is consistent with an olivine-dominated mantle mineralogy. The thickness of the silicate mantle above the core varies between 900 and 1100 km. The outermost ice shell is about 900 km in thickness and is further subdivided by pressure-induced phase transitions into ice I, ice III, ice V, and ice VI layers. Callisto should be differentiated, albeit incompletely. It is proposed that this satellite was never molten at a large scale but differentiated through the convective gradual unmixing of the ice and the metal/rock component. Bulk iron-to-silicon ratios Fe/Si calculated for the inner pair of satellites, Io and Europa, are less than the CI carbonaceous chondrite value of 1.7±0.1, whereas ratios for the outer pair, Ganymede and Callisto, cover a broad range above the chondritic value. Although the ratios are uncertain, in particular for Ganymede and Callisto, the values are sufficiently distinct to suggest a difference in composition between these two pairs of satellites. This may indicate a difference in iron-silicon fractionation during the formation of both classes of satellites in the protojovian nebula.  相似文献   

12.
Olav L. Hansen 《Icarus》1975,26(1):24-29
Infrared (1.5–5 μm) albedos and rotation curves of the Galilean satellites have been obtained. The data suggest that the rotational variation in the infrared is less than ±10% for all four satellites. While no conclusion about rotational variation could be reached for Io, the 1.57 μm data for the outer three satellites marginally suggest phase correlation with the visual variation. The geometric albedos obtained are in general agreement with earlier results. For Io, the absorption feature near 1.5 μm found by Pilcher et al. (1972) is confirmed, thus contradicting the flat spectrum measured by Fink et al. (1973). Io and Ganymede were observed in the 1.57 μm bandpass as they reappeared from eclipse. The curve for Io shows a slight (<10%) overshoot similar to those sometimes reported for visual measurements. This result is based on a single reappearance, and is extremely tentative.  相似文献   

13.
Audouin Dollfus 《Icarus》1975,25(3):416-431
New measurements of the amount of polarization of the Galilean satellites are given and, within the context of other data, are interpreted as follows. The polarization of Europa is consistent with a water-frost surface. Io has a surface of partly absorbing crystals thought to result from evaporates released from the mantle and damaged by radiation. Ganymede has alternating water-frost areas and darker terrain, possibly of a silicaceous nature. Callisto is explained as having a mantle of ice containing embedded blocks of rocks, which occurred when recent evaporation left the blocks piled at the surface in a chaotic manner. This event occurred after the vicinity of Jupiter had been cleared of small orbiting objects able to impact Callisto. Meteorites which continue to enter within the sphere of influence of Jupiter can collide with Callisto only on its leading hemisphere, which is thereby comminuted by impacts. The surface of the trailing hemisphere is not regolithic.  相似文献   

14.
Jupiter's Galilean satellites I–IV, Io, Europa, Ganymede, and Callisto have been observed with the VLA at 2 and 6 cm. The Jovian system was about 4.46 AU from the Earth at the time the observations were taken. The flux densities for satellites I–IV at 2 cm are 15 ± 2, 5.6 ± 1.2, 22.3 ± 2.0, and 26.0 ± 2.5 mJy, respectively, which corresponds to disk brightness temperatures of 92 ± 13, 47 ± 10, 67 ± 6, and 92 ± 9°K, respectively. At 6 cm flux densities of 1.10 ± 0.2, 0.55 ± 0.12, 2.0 ± 0.2, and 3.15 ± 0.2 mJy were found, corresponding to temperatures of 65 ± 11, 44 ± 10, 55 ± 6, and 105 ± 7°K, respectively. The radio brightness temperatures are lower than the infrared, the latter generally being consistent with the temperature derived from equilibrium with absorbed insolation. The radio temperature are qualitatively consistent with the equilibrium temperature for fast rotating bodies considering the high radio reflectivity (low emissivity) as determined from radar measurements by S. J. Ostro (1982). In Satellites of Jupiter (D. Morrison, Ed.). Univ. of Arizona Press, Tucson).  相似文献   

15.
New near-infrared (0.65–2.5 μm) reflectance spectra of the Galilean satellites with 1.5% spectral resolution and ≈2% intensity precision are presented. These spectra more precisely define the water ice absorption features previously identified on Europa, Ganymede, and Callisto at 1.55 and 2.0 μm. In addition, previously unreported spectral features due to water ice are seen at 1.25, 1.06, 0.90, and 0.81 μm on Europa, and at 1.25, 1.04, and possibly 0.71 μm on Ganymede. Unreported absorption features in Callisto's spectrum occur at 1.2 μm, probably due to H2O, and a weak, broad band extending from 0.75 to 0.95 μm, due possibly to other minerals. The spectrum of Io has only weak absorption features at 1.15 μm and between 0.8 and 1.0 μm. No water absorptions are positively identified in the Io spectra, indicating an upper limit of areal water frost coverage of 2% (leading and trailing sides). It is found for Callisto, Ganymede, and Europa that the water ice absorption features are due to free water and not to water bound or absorbed onto minerals. The areal coverage of water frost is ≈ 100% on Europa (trailing side), ≈65% on Ganymede (leading side), and 20–30% on Callisto (leading side). An upper limit of ≈5% bound water (in addition to the 20–30% ice) may be present on Callisto, based on the strong 3-μm band seen by other investigators. A summary of spectra of the satellites from 0.325 to about 5 μm to aid in laboratory and interpretation studies is also presented.  相似文献   

16.
Satellite-aided capture is a mission design concept used to reduce the delta-v required to capture into a planetary orbit. The technique employs close flybys of a massive moon to reduce the energy of the planet-centered orbit. A sequence of close flybys of two or more of the Galilean moons of Jupiter may further decrease the delta-v cost of Jupiter orbit insertion. A Ganymede-Io sequence can save 207 m/s of delta-v over a single Io flyby. A phase angle analysis based on the Laplace resonance is used to find triple-satellite-aided capture sequences involving Io, Europa, and Ganymede. Additionally, the near-resonance of Callisto and Ganymede is used to find triple-satellite-aided capture sequences involving Callisto, Ganymede, and another moon. A combination of these techniques is used to find quadruple-satellite-aided capture sequences that involve gravity-assists of all four Galilean moons. These sequences can save a significant amount of delta-v and have the potential to benefit both NASA’s Jupiter Europa orbiter mission and ESA’s Jupiter Ganymede orbiter mission.  相似文献   

17.
Astrometric satellite positions are derived from timings of their eclipses in the shadow of Jupiter. The 548 data points span 20 years and are accurate to about 0.006 arcsec for Io and Europa and about 0.015 arcsec or better for Ganymede and Callisto. The precision of the data set and its nearly continuous distribution in time allows measurement of regular oscillations with an accuracy of 0.001 arcsec. This level of sensitivity permits detailed evaluation of modern ephemerides and reveals anomalies at the 1.3 year period of the resonant perturbations between Io, Europa and Ganymede. The E5 ephemeris shows large errors at that period for all three satellites as well as other significant anomalies. The L1 ephemeris fits the observations much more closely than E5 but discrepancies for the resonant satellites are still apparent and the measured positions of Io are drifting away from the predictions. The JUP230 ephemeris fits the observations more accurately than L1 although there is still a measurable discordance between the predictions and observations for Europa at the resonance period.  相似文献   

18.
W.B. Hubbard  J.D. Anderson 《Icarus》1978,33(2):336-341
Flyby encounters of the Galilean satellites from a Jupiter orbiter spacecraft could yield information about the second-degree gravity harmonics of these satellites. We have calculated the expected values of these harmonics for a range of plausible interior models in hydrostatic equilibrium. Because the satellites respond to comparable perturbations from rotation and tides, an independent test of hydrostatic equilibrium is feasible. For Io and Ganymede, the expected measurement accuracy from a nominal encounter should make possible an excellent discrimination from the ensemble of interior models. For Europa, a qualitative distinction between near-uniform and centrally condensed models seems feasible. Only for Callisto is the proposed experiment of marginal value.  相似文献   

19.
O.L. Hansen 《Icarus》1973,18(2):237-246
Eclipse observations of Jupiter's satellites Io, Europa, and Ganymede have been obtained in an 8 to 14-μm band pass during 1971. The simplest thermal model able to explain the data for each satellite is a two-layer surface structure with an upper layer, only a few millimeters thick, having low thermal conductivity consistent with fine rock powder or frost, and a subsurface having high thermal conductivity consistent with solid rock or dense ice. The upper layer on Io (γ = 1100 ± 100)2 appears to be different from that on Europa (γ = 3000 ± 1000) and Ganymede (γ = 3400 ± 700), but the two-layer model fits all three satellites.  相似文献   

20.
We simulate the production and orbital evolution of escaping ejecta due to cometary impacts on Io. The model includes the four Galilean satellites, Amalthea, Thebe, Jupiter's gravitational moments, Saturn and the Sun. Five scenarios are examined: an impact at the apex, the sub-jovian point, the anti-jovian point, the antapex, and at the south pole of Io. We estimate that on average a cometary impact injects thrice its mass (in the form of Io surface material) into jovicentric orbit. The majority of the escaping debris comes back to Io, but a sizeable fraction (between 5.0 and 8.7%) manages to reach Europa, and a smaller fraction Ganymede (between 1.5 and 4.6%). Smaller fractions reached Amalthea Thebe, Callisto, and Jupiter itself. For million year time scales, the mass transfer to Europa is estimated as 1.8-3.1×1014 g/Myr. The median time for transfer of ejecta from Io to Europa is ∼56 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号