首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 266 毫秒
1.
S.A. Schumm 《Icarus》1974,22(3):371-384
Large Martian channels have been attributed to fluvial erosion primarily because they widen in a downstream direction, appear to be braided in places, have tributaries, and may be sinuous. However, tension fractures in a variety of materials produce features that superficially resemble the Martian channels at, of course, a very different scale.Based on the morphology of these channels as viewed on Mariner 9 images, it is not possible to determine that these features have a fluvial origin. It is probable that most large Martian channels have a structural origin and reflect local or planet-wide tensional forces.  相似文献   

2.
Positive isolated features or knobs have been observed on Mars since Mariner 9 first photographed the planet in 1972. More recently, the Viking Orbiters photographed the surface at increased resolution. With the use of Viking photomosaics, a systematic search for knobs was completed. The knobs were characterized by length, width, geographic location, proximity to streaks and geologic surroundings. Similar isolated features on Earth eroded by fluvial, glacial, and eolian processes were studied and measured. Comparison of length-to-width ratios of Martian knobs to isolated hills on Earth indicate that the Martian knobs are most similar to the isolated hills formed in a hyper-arid environment. The terrestrial features were probably formed initially when solid rock was fractured, then wind erosion, starting at the fractures, continued to sweep away sediments leaving isolated hills. Such hills in fluvial and glacial environments have length-to-width ratios significantly higher than those of the Martian knobs. Other diagnostic features associated with such environments are absent in the case of the Martian knobs. Moreover, streaks, splotches, dunes and pitted and fluted rocks, all indicative of a eolian regime, are associated with the Martian knobs.  相似文献   

3.
Geological mapping of Elysium Planitia has led to the recognition of five major surface units, in addition to the three volcanic constructs Elysium Mons, Hecates Tholus, and Albor Tholus. These units are interpreted to be both volcanic and sedimentary or erosional in origin. The volcano Elysium Mons is seen to have dominated constructional activity within the whole region, erupting lava flows which extend up to 600km from the summit. A major vent system, covering an area in excess of 75 000 km2, is identified within the Elysium Fossae area. Forty-one sinuous channels are visible within Elysium Planitia; these channels are thought to be analogous to lunar sinuous rilles and their formation in this region of Mars is attributed to unusually high regional topographic slopes (up to ~ 1.7). Numerous circumferential graben are centered upon Elysium Mons. These graben, located at radial distances of 175, 205–225, and 330km from the summit, evidently post-dated the emplacement of the Elysium Mons lava flows but pre-dated the eruption of extensive flood lavas to the west of the volcano. A great diversity of channel types is observed within Elysium Fossae. The occurrences of streamlined islands and multiple floor-levels within some channels suggests a fluvial origin. Conversely, the sinuosity and enlarged source craters of other channels suggests a volcanic origin. Impact crater morphology, the occurrence of chaotic terrain, probable pyroclastic deposits upon Hecates Tholus and fluvial channels all suggest extensive volcano-ground ice interactions within this area.NASA Summer Intern.  相似文献   

4.
The discovery of microbiota in the Dry Valleys of Antarctica has encouraged the construction of new models of Martian ecosystems in order to determine if life could have once existed on Mars. The Antarctic cyanobacteria reside just below the surface of sandstone rocks where they are protected from the extreme cold and dry environment. Analogy with the Antarctic Dry Valleys supports speculation that hypothetical micro-organisms existed on Mars in the early history of the planet and could have migrated into suitable rocks as the availability of liquid water decreased. Although evidence for sandstone layers on Mars has not been substantiated, the palaeohydrology of Martian fluvial valleys (MFVs) reveals the evidence of lake bed sediment depositions which have formed consolidated sediments. As the MFVs formation may result from underground drainage processes, the sediment material would be expected to contain debris such as pumice washload, and pumilith of volcanic and meteoritic origin. These materials may have formed consolidated porous terrains similar to the Antarctic sandstone. Therefore, the endolithic model is consistent with the Martian liquid water habitat model of perenially ice-covered lakes.  相似文献   

5.
3.5 billion years (byr) ago, when it is thought that Mars and Earth had similar climates, biological evolution on Earth had made considerable progress, such that life was abundant. It is therefore surmised that prior to this time period the advent of chemical evolution and subsequent origin of life occurred on Earth and may have occurred on Mars. Analysis for organic compounds in the soil buried beneath the Martian surface may yield useful information regarding the occurrence of chemical evolution and possibly biological evolution. Calculations based on the stability of amino acids lead to the conclusion that remnants of these compounds, if they existed on Mars 3.5 byr ago, might have been preserved buried beneath the surface oxidizing layer. For example, if phenylalanine, an amino acid of average stability, existed on Mars 3.5 byr ago, then 1.6% would remain buried today, or 25 pg-2.5 ng of C g-1 Martian soil may exist from remnants of meteoritic and cometary bombardment, assuming that 1% of the organics survived impact.  相似文献   

6.
Paul D. Komar 《Icarus》1979,37(1):156-181
Comparisons are undertaken between the hydraulics of channelized water flows on Mars, large terrestrial rivers, deep-sea turbidity currents, and the catastrophic flow of Lake Missoula floods. Expected bottom shear stresses, velocities and discharges, flow powers, and other parameters are computed for each. Sand transport rates and the times required for channel erosion are estimated for Mangala Channel. These calculations indicate that the turbidity currents and Lake Missoula floods were similar to channelized water flow on Mars in their flow characteristics and in their abilities to erode and transport sediments. Like the Lake Missoula floods, deep-sea turbidity currents are catastrophic in character, being formed by the slumping of large masses of sediment trapped in submarine canyons or deposited on the continental slope. The repeated flows originating from submarine canyons have formed deep-sea channels similar in scale and overall morphology to the Martian outflow channels. The submarine canyon can be viewed as the counterpart of the chaotic terrain or crater which serves as sources for many Martian channels. Like most Martian outflow channels, the deep-sea channels generally lack tributaries or have only minor tributaries, instead consisting of a single pronounced channel extending for several hundred kilometers from its origin at the submarine canyon to deep abyssal depths. The channels vary considerably in dimensions, but most commonly have widths in the range 2 to 15 km with reliefs of 50 to 450 meters, again similar in scale to the Martian channels. Other similarities include sections of anastomosing channels, a general lack of pronounced meandering, and a lack of an apparent “delta” where the transported sediments are deposited. The similarities of channel morphology and flow hydraulics indicate the deep-sea channels and turbidity currents can be useful in furthering our understanding of the Martian outflow channels. Physical processes in the deep-sea occur under a reduced effective gravity because of the overlying water with its buoyancy. The deep-sea channels provide another set of Earth-based channels which can be studied to determine the effects of gravity on such factors as channel meandering and anastomosing characteristics.  相似文献   

7.
On Earth, glacial and periglacial features are common in areas of cold climate. On Mars, the temperature of the present-day surface is appropriate for permafrost, and the presence of water is suspected from data relating to the outgassing of the planet, from remote-sensing measurements over the polar caps and elsewhere on the Martian surface, and from recognition of fluvial morphological features such as channels. These observations and the possibility that ice could be in equilibrium with the atmosphere in the high latitudes north and south of ±40° latitude suggest that glacial and periglacial features should exist on the planet. Morphological studies based mainly on Viking pictures indicate many features that can be attributed to the action of ice. Among these features are extensive talus aprons; debris avalanches; flows that resemble glaciers or rock glaciers; ridges that look like moraines; various types of patterned ground, scalloped scarps, and chaotically collapsed terrain that could be attributed to thermokarst processes; and landforms that may reflect the interaction of volcanism and ice.  相似文献   

8.
The knowledge of Martian geology has increased enormously in the last 40 yr. Several missions orbiting or roving Mars have revolutionized our understanding of its evolution and geological features, which in several ways are similar to Earth, but are extremely different in many respects. The impressive dichotomy between the two Martian hemispheres is most likely linked to its impact cratering history, rather than internal dynamics such as on Earth. Mars' volcanism has been extensive, very long-lived and rather constant in its setting. Water was available in large quantities in the distant past of Mars, when a magnetic field and more vigorous tectonics were active.Exogenic forces have been shaping Martian landscapes and have led to a plethora of landscapes shaped by wind, water and ice. Mars' dynamical behavior continues, with its climatic variation affecting climate and geology until very recent times. This paper tries to summarize major highlights in Mars' Geology, and points to deeper and more extensive sources of important scientific contributions and future exploration.  相似文献   

9.
I. López  J. Lillo 《Icarus》2008,195(2):523-536
Magellan data show that the surface of Venus is dominated by volcanic landforms including large flow fields and a wide range of volcanic edifices that occur in different magmatic and tectonic environments. This study presents the results from a comprehensive survey of volcano-rift interaction in the BAT region and its surroundings. We carried out structural mapping of examples where interaction between volcanoes and regional fractures results in a deflection of the fractures around the volcanic features and discuss the nature of the local volcano-related stress fields that might be responsible for the observed variations of the regional fracture systems. We propose that the deflection of the regional fractures around these venusian volcanoes might be related to volcanic spreading, a process recognized as of great importance in the tectonic evolution of volcanoes on Earth and Mars, but not previously described on Venus.  相似文献   

10.
Wudalianchi volcanic field, located in northeast China, consists of 14 Quaternary volcanoes with each volcano as a steep-sided scoria cone surrounded by gently sloping lava flows. Each cone is topped with a bowl-shaped or funnel-shaped crater. The volcanic cones are constructed by the accumulation of tephra and other ejecta. In this paper, their geologic features have been investigated and compared with some Martian volcanic features at Ascraeus Mons volcanoes observed on images obtained from High-Resolution Imaging Science Experiments (HiRISE), Mars Orbiter Camera (MOC), Context Imager (CTX) and Thermal Emission Imaging System (THEMIS). The results show that both Wudalianchi and Ascraeus Mons volcanoes are basaltic, share similar eruptive and geomorphologic features and eruptive styles, and have experienced multiple eruptive phases, in spite of the significant differences in their dimension and size. Both also show a variety of eruptive styles, such as fissure and central venting, tube-fed and channel-fed lava flows, and probably pyroclastic deposits. Three volcanic events are recognized at Ascraeus Mons, including an early phase of shield construction, a middle eruptive phase forming a low lava shield, and the last stage with aprons mantling both NE and SW flanks. We suggest that magma generation at both Wudalianchi and Ascraeus Mons might have been facilitated by an upwelling mantle plume or upwelling of asthenospheric mantle, and a deep-seated fault zone might have controlled magma emplacement and subsequent eruptions in Ascraeus Mons as observed in the Wudalianchi field, where the volcanoes are constructed along the northeast-striking faults. Fumarolic cones produced by water/magma interaction at the Wudalianchi volcanic field may also serve as an analogue for the pseudocraters identified at Isidis and Cerberus Planitia on Mars, suggesting existence of frozen water in the ground on Mars during Martian volcanic eruptions.  相似文献   

11.
We investigate the expected performance of a wide-angle camera in Martian orbit, which, unlike previous cameras that have flown to Mars, is capable of recording meteor activity in that planet's atmosphere. We show that, based on our current understanding of meteor physics and the interplanetary meteoroid population, several meteors will be detected by this instrument during a single nightside pass on a low Martian orbit. The instrument will also record the signatures of meteor showers expected to occur every Martian year (1.88 Earth years). The results of this investigation will test models of the flux of “large” (mm-cm) meteoroids at the orbit of Mars and their interaction with the Martian atmosphere.  相似文献   

12.
Dunes have similar morphologies on the Earth and Mars. The main differences between Martian and terrestrial dunes are their size, which is larger on Mars, and their duration of formation, which is longer on Mars. As the characteristic time of Martian dunes is in the same order as that of the Martian climatic oscillations, Martian dunes could be recorders of past winds regimes and past climates. In order to test this hypothesis, we performed a morphological study of 550 dune fields with high resolution images and we inferred the directions of the dune formative winds from the orientation of the dune slip faces. Our study shows that 310 dune fields record one to four distinct wind directions with some geometric patterns that do not exist on the Earth such as barchans built by opposite wind directions coexisting in the same dune field. Our study demonstrates that the inferred formative wind directions are only partially in agreement with the current wind-patterns predicted by General Circulation Models (GCM). Several possible causes for the misalignment between dunes and GCM outputs are discussed: these include the local variation of the global circulation due to local topographic effects or the possibility that these dunes could be in a transient geometry or fossil. Such bedforms are considered indeed to be not in equilibrium with the present-day atmospheric conditions. This latter hypothesis is supported by the presence, in some ergs, of closely spaced dunes showing nearly opposite slip face orientations. Therefore, we propose that Martian dune fields are constituted, in some cases, by active and fossil dunes and therefore have the potential to preserve information on paleoclimates over extensive periods.  相似文献   

13.
Despite the fact that microbial cells are unlikely to be found in the Martian soil in the near future, this paper is written on the assumption that some of the seasonally varying concentration of Martian methane is due to ongoing methanogenesis. It is first pointed out that life might have arisen on Mars first and been transported to Earth later. A case is made that an icy origin of life is more likely than a hot origin, especially if biomolecules take advantage of the high encounter rates and stability against hydrolysis, and that microorganisms feed on the ions that comprise eutectic solutions in ice. Although certain difficulties are avoided if RNA and DNA grow while adsorbed on clay grains, double strand-breaks of microbial DNA due to alpha radioactivity are a far greater threat to microbial survival on clay or other rock types than in ice. Developing a relation between the rate of microbial metabolism in ice and the experimentally determined rate of production of trapped gases of microbial origin, one can estimate the concentration of methanogens that could account for the methane production rate as a function of temperature of their habitat. The result, of order 1 cell cm−3 in the Martian subsurface, seems an attainable goal provided samples are taken from at least 1 or 2 m below the hostile surface of Mars. Instruments on NASA’s 2011 Mars Science Lab will measure stable isotopes for methane, water, and carbon dioxide, which on Earth served to distinguish abiotic, thermogenic, and microbial origins. Future measurements of chirality of biomolecules might also provide evidence for Martian life.  相似文献   

14.
The observations of electron inverted ‘V’ structures by the MGS and MEX spacecraft, their resemblance to similar events in the auroral regions of the Earth, and the discovery of strong localized magnetic field sources of the crustal origin on Mars, raised hypotheses on the existence of Martian aurora produced by electron acceleration in parallel electric fields. Following the theory of this type of structures on Earth we perform a scaling analysis to the Martian conditions. Similar to the Earth, upward field-aligned currents necessary for the generation of parallel potential drops and peaked electron distributions can arise, for example, on the boundary between ‘closed’ and ‘open’ crustal field lines due to shears of the flow velocity of the magnetosheath or magnetospheric plasmas. A steady-state configuration assumes a closure of these currents in the Martian ionosphere. Due to much smaller magnetic fields as compared to the Earth case, the ionospheric Pedersen conductivity is much higher on Mars and auroral field tubes with parallel potential drops and relatively small cross scales to be adjusted to the scales of the localized crustal patches may appear only if the magnetosphere and ionosphere are decoupled by a zone with a strong E. Another scenario suggests a periodic short-circuit of the magnetospheric electric fields by a coupling with the conducting ionosphere.  相似文献   

15.
The hydrogen isotopic composition of planetary reservoirs can provide key constraints on the origin and history of water on planets. The sources of water and the hydrological evolution of Mars may be inferred from the hydrogen isotopic compositions of mineral phases in Martian meteorites, which are currently the only samples of Mars available for Earth‐based laboratory investigations. Previous studies have shown that δD values in minerals in the Martian meteorites span a large range of ?250 to +6000‰. The highest hydrogen isotope ratios likely represent a Martian atmospheric component: either interaction with a reservoir in equilibrium with the Martian atmosphere (such as crustal water), or direct incorporation of the Martian atmosphere due to shock processes. The lowest δD values may represent those of the Martian mantle, but it has also been suggested that these values may represent terrestrial contamination in Martian meteorites. Here we report the hydrogen isotopic compositions and water contents of a variety of phases (merrillites, maskelynites, olivines, and an olivine‐hosted melt inclusion) in Tissint, the latest Martian meteorite fall that was minimally exposed to the terrestrial environment. We compared traditional sample preparation techniques with anhydrous sample preparation methods, to evaluate their effects on hydrogen isotopes, and find that for severely shocked meteorites like Tissint, the traditional sample preparation techniques increase water content and alter the D/H ratios toward more terrestrial‐like values. In the anhydrously prepared Tissint sample, we see a large range of δD values, most likely resulting from a combination of processes including magmatic degassing, secondary alteration by crustal fluids, shock‐related fractionation, and implantation of Martian atmosphere. Based on these data, our best estimate of the δD value for the Martian depleted mantle is ?116 ± 94‰, which is the lowest value measured in a phase in the anhydrously prepared section of Tissint. This value is similar to that of the terrestrial upper mantle, suggesting that water on Mars and Earth was derived from similar sources. The water contents of phases in Tissint are highly variable, and have been affected by secondary processes. Considering the H2O abundances reported here in the driest phases (most likely representing primary igneous compositions) and appropriate partition coefficients, we estimate the H2O content of the Tissint parent magma to be ≤0.2 wt%.  相似文献   

16.
Abundant evidence exists for glaciation being an important geomorphic process in the mid-latitude regions of both hemispheres of Mars, as well as in specific environments at near-equatorial latitudes, such as along the western flanks of the major Tharsis volcanoes. Detailed analyses of glacial landforms (lobate-debris aprons, lineated valley fill, concentric crater fill, viscous flow features) have suggested that this glaciation was predominantly cold-based. This is consistent with the view that the Amazonian has been continuously cold and dry, similar to conditions today. We present new data based on a survey of images from the Context Camera (CTX) on the Mars Reconnaissance Orbiter that some of these glaciers experienced limited surface melting, leading to the formation of small glaciofluvial valleys. Some of these valleys show evidence for proglacial erosion (eroding the region immediately in front of or adjacent to a glacier), while others are supraglacial (eroding a glacier’s surface). These valleys formed during the Amazonian, consistent with the inferred timing of glacial features based on both crater counts and stratigraphic constraints. The small scale of the features interpreted to be of glaciofluvial origin hindered earlier recognition, although their scale is similar to glaciofluvial counterparts on Earth. These valleys appear qualitatively different from valley networks formed in the Noachian, which can be much longer and often formed integrated networks and large lakes. The valleys we describe here are also morphologically distinct from gullies, which are very recent fluvial landforms formed during the last several million years and on much steeper slopes (∼20-30° for gullies versus ?10° for the valleys we describe). These small valleys represent a distinct class of fluvial features on the surface of Mars (glaciofluvial); their presence shows that the hydrology of Amazonian Mars is more diverse than previously thought.  相似文献   

17.
Terrestrial and Martian atmospheres are both characterised by a large variety of mesoscale meteorological events, occurring at horizontal scales of hundreds of kilometres and below. Available measurements from space exploration and recently developed high-resolution numerical tools have given insights into Martian mesoscale phenomena, as well as similarities and differences with their terrestrial counterparts. The remarkable intensity of Martian mesoscale events compared to terrestrial phenomena mainly results from low density and strong radiative control. This is exemplified in the present paper by discussing two mesoscale phenomena encountered in the lowest atmospheric levels of both planets with notable differences: nighttime katabatic winds (drainage flow down sloping terrains) and daytime boundary layer convection (vertical growth of mixed layer over heated surfaces). While observations of katabatic events are difficult on Earth, except over vast ice sheets, intense clear-cut downslope circulations are expected to be widespread on Mars. Convective motions in the daytime Martian boundary layer are primarily driven by radiative contributions, usually negligible on Earth where sensible heat flux dominates, and exhibit turbulent variances one order of magnitude larger. Martian maximum heat fluxes are not attained close to the surface as on Earth but a few hundreds of metres above, which implies generalised definitions for mixing layer scales such as vertical velocity w?. Measurements on Mars of winds in uneven topographical areas and of heat fluxes over flat terrains could be useful to assess general principles of mesoscale meteorology applicable to both terrestrial and Martian environments.  相似文献   

18.
New instruments on board the Mars Global Surveyor (MGS) spacecraft began providing accurate, high-resolution image and topography data from the planet in 1997. Though data from the Mars Orbiter Laser Altimeter (MOLA) are consistent with hypotheses that suggest large standing bodies of water/ice in the northern lowlands in the planet's past history, Mars Orbiter Camera (MOC) images acquired to test these hypotheses have provided negative or ambiguous results. In the absence of classic coastal features to test the paleo-ocean hypothesis, other indicators need to be examined. Tuyas and hyaloclastic ridges are sub-ice volcanoes of unique appearance that form in ponded water conditions on Earth. Features with similar characteristics occur on Mars. MOLA analyses of these Martian features provide estimates of the height of putative ice/water columns at the edge of the Utopia Planitia basin and within Ophir Chasma of Valles Marineris, and support the hypotheses of a northern ocean on Mars.  相似文献   

19.
William K. Hartmann 《Icarus》1977,31(2):260-276
Dynamical histories of planetesimals in specified orbits, calculated by Wetherill (1975) and others, have estimates of relative numbers of impacts on different planets. These impact rates, F, are converted to crater production rates, F, by means of tables developed in this paper. Conversions are dependent on impact velocity and surface gravity. Crater retention ages can then be derived from (crater density)/(crater production rate). Such calculations of impact rates and their histories give the only basis, independent of sample dating, for establishing absolute geologic histories of the planets, contrary to published implications that this can be done by comparison of photos alone. A survey of the results, from orbits of interplanetary objects studied to date, indicates that the terrestial planets have crater production rates within a factor ten of each other, and that planet's crater retention ages can probably be determined with a factor of ±3. Further calculations of orbital histories of additional interplanetary bodies are suggested to put photogeologic analyses from spacecraft imagery on a firmer basis.Applications to Mars, as an example, using least-squares fits to crater-count data, suggest an average age of 0.3 to 3 b.y. for two types of channels. The Tharsis volcanics are found to be slightly younger than the channels (strongly confirmed by photomorphology since they are not cut by channels) and Olympus Mons is about 0.06 to 0.6 b.y. old, contrary to recent assertions that Olympus Mons is 2.5 b.y. old and most Martian volcanic provinces older than 3 b.y. Data strongly support the hypothesis that Martian channels formed in a fluvial climate that persisted on Mars until the Tharsis volcanism caused a change in the Martian obliquity state, as outlined by Toon, Ward, and Burns (1977).  相似文献   

20.
Abstract— We investigated the transfer of meteorites from Mars to Earth with a combined mineralogical and numerical approach. We used quantitative shock pressure barometry and thermodynamic calculations of post‐shock temperatures to constrain the pressure/temperature conditions for the ejection of Martian meteorites. The results show that shock pressures allowing the ejection of Martian meteorites range from 5 to 55 GPa, with corresponding post‐shock temperature elevations of 10 to about 1000 °C. With respect to shock pressures and post‐shock temperatures, an ejection of potentially viable organisms in Martian surface rocks seems possible. A calculation of the cooling time in space for the most highly shocked Martian meteorite Allan Hills (ALH) 77005 was performed and yielded a best‐fit for a post‐shock temperature of 1000 °C and a meteoroid size of 0.4 to 0.6 m. The final burial depths of the sub‐volcanic to volcanic Martian rocks as indicated by textures and mineral compositions of meteorites are in good agreement with the postulated size of the potential source region for Martian meteorites during the impact of a small projectile (200 m), as defined by numerical modeling (Artemieva and Ivanov 2004). A comparison of shock pressures and ejection and terrestrial ages indicates that, on average, highly shocked fragments reach Earth‐crossing orbits faster than weakly shocked fragments. If climatic changes on Mars have a significant influence on the atmospheric pressure, they could account for the increase of recorded ejection events of Martian meteorites in the last 5 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号