首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
中子星可以通过重子物质和暗物质的相互作用吸积暗物质,且在一定条件下, 中子星吸积的暗物质粒子可以引发自引力塌缩形成小型黑洞, 生成的黑洞可能会进一步吞噬中子星.依据文献已有模型, 基于以上物理过程给出了在暗物质粒子不同质量下对暗物质粒子--中子的散射截面的限制.使用弱相互作用大质量粒子(Weakly Interacting Massive Particle, WIMP)模型, 并考虑暗物质粒子是玻色子的情形, 讨论了暗物质粒子有无自相互作用以及有无湮灭等条件下对限制暗物质参数的影响.既考虑了已发现的两个中子星系统来给出对暗物质参数空间的限制,也考虑了两个可能存在的年老中子星来预测未来观测可能对暗物质参数空间的限制.对于考虑玻色--爱因斯坦凝聚(Bose-Einstein Condensate, BEC)的玻色子暗物质, 在无自相互作用或有弱自相互作用, 无湮灭或有很小湮灭截面的条件下,中子星给出的间接观测对暗物质粒子-中子散射截面的限制的强度比XENON1T直接探测实验来得更强.未来, 如果在银心附近能观测到年老中子星, 其观测结果可以提升模型给出的对暗物质粒子--中子散射截面的限制, 从而帮助人们进一步理解暗物质.  相似文献   

2.
Archer declared HD 105020 to be an Algol-type binary with a K-type main star and a period as short as two days. This, if confirmed, would be very significant. We made 21 observations of this star on three nights in 1984 using the 2.0-m telescope and Reticon system of McDonald Observatory, and 3 observations on two nights in 1991 using the 2.1-m telescope with TI2 CCD system of Kitt peak Observatory and found (1) that the radial velocity varied little over successive nights and the spin velocity to be small, hence it cannot be an Algol star with a two-day period and (2) that the radial velocity varied considerably at different times, and that the star could well be a spectroscopic binary with a period of about 20 days.  相似文献   

3.
One of the prime astrophysical interests of the Observatorium Bosscha is, and has always been, double star research: visual double star research with the double-60 cm Zeiss telescope (dedicated in 1928), and theoretical research of evolved massive spectroscopic binaries (since 1972). For one thing, this is the very reason that this IAU Colloquium No. 80, celebrating the 60th anniversary of the Observatorium Bosscha in Lembang, is devoted to binary astrophysics.Up to now, visual, photographic, and photometric tools have been used for binary research at the Observatorium Bosscha. An important, essential additional tool for binary research is spectrographic equipment, in order to measure radial velocities of binary components.Therefore, we suggest to make a plan for a new modern telescope, a reflector with a primary mirror of about 2 m in diameter and with a modern spectrograph/detector combination for radial velocity measurements.At a number of major astronomical observatories scientists have been considerating to erect new telescopes devoted primarily to radial velocity measurements. The reason for this is that at the end of this decade the parallax and proper motion measurements to be made by the ESA astrometric satellite Hipparcos will become available of more than 100 000 single stars and double stars. At that time there will be a compelling need for radial velocity measurements of all these stars to complement the parallax and proper motion measurements. With the combination of this data enormous progress will be made in double star research, and in the study of galactic dynamics, another topic of interest of the Observatorium Bosscha. If it could be realized to build such a dedicated radial velocity telescope in Indonesia, Indonesian astronomers could take a leading role in this field of research.Without going into technical details, we would like to emphasize here that such a new instrument should be a trueNew Generation Telescope, and that the Institut Teknologi Bandung should participate from the very beginning in its design, construction and assembling, and the subsequent servicing; ITB could participate in the field of optics, mechanics, and electronics. Modern astronomy offers tremendous challenges to technology, which are of great interest to technological institutes. The new telescope should be computer controlled, and the spectrograph should have a modern digital read-out (Reticon, IPCS, or CCD). The telescope should have one of those recently becoming availablethin mirrors, allowing more mechanical freedom. It could be a telescope with a siderostat which feeds the light into a fixed telescope, thus improving both the stability of the telescope and that of the spectrograph. In this way the staff and students of ITB, as well as the technical staff of the Observatorium Bosscha will be drawn into modern techniques of many varieties. And for ITB such an enterprise may even have a spin-off into other fields than astronomy.One aspect which is of great importance for the new telescope is the selection of its site. The present site of the Observatorium Bosscha in Lembang is a good one, but for a new modern telescope one wants to make sure that it is going to be located at the most ideal site.Therefore an Indonesian site-survey should be initiated promptly. Site survey equipment is available at many big observatories and could be borrowed. The site survey should extend over at least 4–5 years to monitor the meteorological and environmental situation at many sites.In the meantime the design and fund rainsing can be considered. Modern day astronomy depends on financial support from governments and inter-governmental organizations. Therefore it is urged that a proposal for a new telescope as indicated above clearly describes the advantages of such a new telescope both for astrophysical research in Indonesia, and for the introduction of new technologies in Indonesian technological institutes.The recently formed Steering Committee for Indonesian-Netherlands Astrophysics (INA) is willing to explore the possibilities for this plan. We hope that after investigating the interest of ITB in this matter, a proposal could be made before the end of this year.Paper presented at the Lembang-Bamberg IAU Colloquium No. 80 on Double Stars: Physical Properties and Generic Relations, held at Bandung, Indonesia 3–7 June, 1983.  相似文献   

4.
We present an analysis of the metallicity and star formation activities of H II regions in the interacting system Arp 86, based on the first scientific observations using multi-object spectroscopy with the 2.16 m telescope at the Xinglong Observing Station. We find that the oxygen abundance gradient in Arp 86 is flatter than that in normal disk galaxies, which confirms that gas inflows caused by tidal forces during encounters can flatten the metallicity distributions in galaxies. The companion galaxy NGC 7752 is currently experiencing a galaxy-wide starburst with a higher star formation rate surface density than the main galaxy NGC 7753, which can be explained in that the companion galaxy is more susceptible to the effects of interaction than the primary. We also find that the galaxy 2MASX J23470758+2926531 has similar abundance and star formation properties to NGC 7753, and may be a part of the Arp 86 system.  相似文献   

5.
We have detected asymmetry in the symbiotic star CH Cyg through the measurement of precision closure phase with the Integrated Optics Near-Infrared Camera (IONIC) beam combiner, at the infrared optical telescope array interferometer. The position of the asymmetry changes with time and is correlated with the phase of the 2.1-year period found in the radial velocity measurements for this star. We can model the time-dependent asymmetry either as the orbit of a low-mass companion around the M giant or as an asymmetric, 20 per cent change in brightness across the M giant. We do not detect a change in the size of the star during a 3-year monitoring period neither with respect to time nor with respect to wavelength. We find a spherical dust shell with an emission size of 2.2 ± 0.1 D * full width at half-maximum around the M giant star. The star to dust flux ratio is estimated to be 11.63 ± 0.3. While the most likely explanation for the 20 per cent change in brightness is non-radial pulsation, we argue that a low-mass companion in close orbit could be the physical cause of the pulsation. The combined effect of pulsation and low-mass companion could explain the behaviour revealed by the radial velocity curves and the time-dependent asymmetry detected in the closure-phase data. If CH Cyg is a typical long secondary period variable then these variations could be explained by the effect of an orbiting low-mass companion on the primary star.  相似文献   

6.
大口径望远镜受大气湍流的影响,光学分辨率远远小于其自身光路所决定的衍射极限。为了相应的自适应光学系统设计,首先有必要对大气波动进行仿真以提供环境数据。通常的大气波前仿真方法需要通过计算结构函数,得到功率谱函数,进而得到仿真波前,但该方法存在计算速度慢,中间变量存储空间大的问题,给大口径望远镜或者长时间仿真带来很大不便。介绍了一种可行的基于迭代分形法的波前仿真方法,复杂度达到O(N),可以大大提高波前仿真的速度。  相似文献   

7.
For several decades, the search for extraterrestrial intelligence (SETI) has proceeded using advanced astronomical techniques. Different strategies have been proposed for target selection for targeted searches with goals of improving the chances of successful detection of signals from technological civilizations that may inhabit planets around solar-type stars, and to minimize the chances of missing signals from unexpected sites. In this paper we demonstrate that these goals are best achieved by observing star clusters. We show that standard open clusters are not appropriate for SETI scans because their disruption time scale is shorter than the characteristic time scale for the development of a protective atmospheric layer on a habitable planet. However, the old open clusters, those older than some Gy are optimal candidates for SETI surveys as their ages are older than the likely time for intelligent civilizations to emerge and the probability of catastrophic orbital modification as a result of close encounters with other cluster stars is, in general, rather negligible. The final performance of the proposed survey can be significantly increased by using initially a radio telescope beam larger than the cluster apparent size so that the entire cluster can be observed simultaneously. Globular clusters are also good candidates from the statistical point of view but only if hypothetical civilizations located in these clusters have been able to develop astronomical engineering technologies or have been involved in (rather speculative) cosmic colonization. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The scientific objective of the Planetary (& Lunar) Rotation Monitor (PRM) telescope is to study the terrestrial planet's (the Moon's) rotation and its interior structure and physics by in-situ observation. In order to verify the brand new principle of observations and the data processing method, the prototype of the telescope is designed and manufactured. The prototype's optical system consists of a commercial telescope and trihedron mirror set placed at the entrance of its light path to realize the capability of observing three fields of view (FOVs) simultaneously. The ground-based validation observation began in 2017, and the images containing the stars from three FOVs were achieved. Star images from different FOVs are initially mixed together, but they can be classified into the three FOVs respectively by calculating the displacement of star images on the CCD plate between two adjacent exposures, to make the observational effect be identical with three independent observations of the three FOVs respectively. After image processing, from the orientation variation of the three FOVs simultaneously in space due to the Earth's rotation, the direction of the rotation axis of the Earth in space can be derived. Its deviation from the theoretical value is about 1 in average, indicating that the working principle and data processing method are effective. The main errors in observations are discussed, including the atmospheric refraction, the thermal deformation of the commercial telescope tube, the low optical resolution caused by the short focal length, the optical aberration in the multi-FOV observation, etc. It is indicated that the spatial resolution of the telescope can be enhanced with a longer focal length, and the observational reliability can be improved by optimizing the thermal deformation control. Improving the optical design in the simultaneous observation of multiple FOVs will also be helpful to the accuracy enhancement.  相似文献   

9.
The Hill stability criterion is applied to analyse the stability of a planet in the binary star system of HD 41004 AB, with the primary and secondary separated by 22 AU, and masses of 0.7 M and 0.4 M, respectively. The primary hosts one planet in an S‐type orbit, and the secondary hosts a brown dwarf (18.64 MJ) on a relatively close orbit, 0.0177 AU, thereby forming another binary pair within this binary system. This star‐brown dwarf pair (HD 41004 B+Bb) is considered a single body during our numerical calculations, while the dynamics of the planet around the primary, HD 41004 Ab, is studied in different phase‐spaces. HD 41004 Ab is a 2.6 MJ planet orbiting at the distance of 1.7 AU with orbital eccentricity 0.39. For the purpose of this study, the system is reduced to a three‐body problem and is solved numerically as the elliptic restricted three‐body problem (ERTBP). The Hill stability function is used as a chaos indicator to configure and analyse the orbital stability of the planet, HD 41004 Ab. The indicator has been effective in measuring the planet's orbital perturbation due to the secondary star during its periastron passage. The calculated Hill stability time series of the planet for the coplanar case shows the stable and quasi‐periodic orbits for at least ten million years. For the reduced ERTBP the stability of the system is also studied for different values of planet's orbital inclination with the binary plane. Also, by recording the planet's ejection time from the system or collision time with a star during the integration period, stability of the system is analysed in a bigger phase‐space of the planet's orbital inclination, ≤ 90°, and its semimajor axis, 1.65–1.75 AU. Based on our analysis it is found that the system can maintain a stable configuration for the planet's orbital inclination as high as 65° relative to the binary plane. The results from the Hill stability criterion and the planet's dynamical lifetime map are found to be consistent with each other. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We performed extensive data simulations for the planned ultra‐wide‐field, high‐precision photometric telescope ICE‐T (International Concordia Explorer Telescope). ICE‐T consists of two 60 cm‐aperture Schmidt telescopes with a joint field of view simultaneously in two photometric bandpasses. Two CCD cameras, each with a single 10.3k × 10.3k thinned back‐illuminated device, would image a sky field of 65 square degrees. Given a location of the telescope at Dome C on the East Antarctic Plateau, we searched for the star fields that best exploit the technical capabilities of the instrument and the site. We considered the effects of diurnal air mass and refraction variations, solar and lunar interference, interstellar absorption, overexposing of bright stars and ghosts, crowding by background stars, and the ratio of dwarf to giant stars in the field. Using NOMAD, SSA, Tycho‐2 and 2MASS‐based stellar positions and BVIJH magnitudes for these fields, we simulated the effects of the telescope's point‐spread‐function, the integration, and the co‐addition times. Simulations of transit light curves are presented for the selected star fields and convolved with the expected instrumental characteristics. For the brightest stars, we showed that ICE‐T should be capable of detecting a 2 REarth Super Earth around a G2 solar‐type star, as well as an Earth around an M0‐star – if these targets were as abundant as hot Jupiters. Simultaneously, the telescope would monitor the host star's surface activity in an astrophysically interpretable manner (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
An interferometric astrometric mission, aiming at accuracies at around the10 microarcsec level, was recommended as a high priority concept within thenew ESA Horizon 2000+ scientific programme. The original outline concept forsuch a mission, GAIA, presented its general feasibility but did not addressmany questions of implementation or optimisation. Another concept of aninterferometer for a scanning astrometric satellite is presented. It containsa simpler optical telescope and a more efficient detector system. The designutilizes the full resolution of all light in the dispersed fringes of aFizeau interferometer. A preliminary optimization of the satellite indicatesthat two telescope units with a baseline of 100 cm will achieve a precisionof 3, 8, 22, 68, 302 microarcsec for parallaxes of stars with V = 12, 14, 16, 18, 20 mag, respectively, from a 5 year mission. Simultaneousspectrophotometry of the entire spectrum of each star will be obtained with aresolution corresponding to intermediate band photometry. The expectedprecision of this photometry is about 0.003 mag for V = 16. The performance is good in crowded fields, at least up to one star per 5 arcsec2. A Hipparcos-type beam combiner of 150 cm width is placed in front of atelescope with 4 square apertures of 50 cm. The assumed focal length is f = 60 m and the field 0.5 degree diameter. The detector consists of CCDs used for time delayed integration (drift-scan.)  相似文献   

12.
We consider the effect of a supernova (SN) explosion in a very massive binary that is expected to form in a portion of Population III stars with the mass higher than  100 M  . In a Population III binary system, a more massive star can result in the formation of a black hole (BH) and a surrounding accretion disc. Such BH accretion could be a significant source of the cosmic reionization in the early Universe. However, a less massive companion star evolves belatedly and eventually undergoes a SN explosion, so that the accretion disc around a BH might be blown off in a lifetime of companion star. In this paper, we explore the dynamical impact of a SN explosion on an accretion disc around a massive BH, and elucidate whether the BH accretion disc is totally demolished or not. For the purpose, we perform three-dimensional hydrodynamic simulations of a very massive binary system, where we assume a BH of  103 M  that results from a direct collapse of a very massive star and a companion star of  100 M  that undergoes a SN explosion. We calculate the remaining mass of a BH accretion disc as a function of time. As a result, it is found that a significant portion of gas disc can survive through three-dimensional geometrical effects even after the SN explosion of a companion star. Even if the SN explosion energy is higher by two orders of magnitude than the binding energy of gas disc, about a half of disc can be left over. The results imply that the Population III BH accretion disc can be a long-lived luminous source, and therefore could be an important ionizing source in the early Universe.  相似文献   

13.
The photometric method detects planets orbiting other stars by searching for the reduction in the light flux or the change in the color of the stellar flux that occurs when a planet transits a star. A transit by Jupiter or Saturn would reduce the stellar flux by approximately 1% while a transit by Uranus or Neptune would reduce the stellar flux by 0.1%. A highly characteristic color change with an amplitude approximately 0.1 of that for the flux reduction would also accompany the transit and could be used to verify that the source of the flux reduction was a planetary transit rather than some other phenomenon. Although the precision required to detect major planets is already available with state-of-the-art photometers, the detection of terrestrial-sized planets would require a precision substantially greater than the state-of-the-art and a spaceborne platform to avoid the effects of variations in sky transparency and scintillation. Because the probability is so small of observing a planetary transit during a single observation of a randomly chosen star, the search program must be designed to continuously monitor hundreds or thousands of stars. The most promising approach is to search for large planets with a photometric system that has a single-measurement precision of 0.1%. If it is assumed that large planets will have long-period orbits, and that each star has an average of one large planet, then approximately 104 stars must be monitored continuously. To monitor such a large groups of stars simultaneously while maintaining the required photometric precision, a detector array coupled by a fiber-optic bundle to the focal plane of a moderate aperture (≈ 1 m), wide field of view (≈50°) telescope is required. Based on the stated assumptions, a detection rate of one planet per year of observation appears possible.  相似文献   

14.
We consider a method for obtaining information on polarization of astronomical objects radiation at diffraction limited resolution—differential speckle polarimetry. As an observable we propose to use averaged cross spectrum of two short-exposure images corresponding to orthogonal polarizations, normalized by averaged power spectrum of one of images. Information on polarization can be extracted if object under study can be described by model with several parameters. We consider two examples: pointlike source whose photocenter position depends on orientation of passing polarization and exozodiacal dust disc around a star. In first case the difference between photocenter positions can be measured with precision of 8 µas for 2.5-m telescope and 1.2 µas for 6-m telescope for object V = 13 m . For second example method allows detection of discs around central star of V = 1 m with fractional luminosities of 1.8 × 10?5 and 5.6 × 10?6 for 2.5- and 6-m telescope, respectively.  相似文献   

15.
本文描述了近年来广泛发展起来的天体物理实测技术中的一项重要进展——纤维光学分光技术方法在天体光谱观测中的应用及2.16m望远镜实用系统的特点和初步应用结果  相似文献   

16.
类地行星(月球)自转监测望远镜的科学目标是在行星(月球)表面现场测量行星(月球)自转并研究其内部结构和物理性质.为了验证全新的观测原理和资料处理方法,项目团队设计制造了一套原理样机,在一台商用天文望远镜的光路前端增加3面反射镜组,使其具有同时观测3个视场的能力.自2017年起在地面上开展了观测实验,获得了混合有3视场星象的图像.通过计算星象在前后图像上的位移实现了归属视场识别,使得观测效果与分视场独立观测等同,证明了用一台设备同时观测多视场的可行性.处理图像并通过3个视场中心的指向变化归算地球自转轴的空间指向,与理论值比较偏差平均约1′′,证明了观测原理和数据处理方法有效.对各种观测误差来源进行了分析,包含大气折射、仪器热稳定性和光学分辨能力的影响等,指出采用更长焦距的望远镜可以提高空间分辨率,优化形变控制可以提高观测稳定性.改进多视场同时观测中的光学设计也有助于精度的提高.  相似文献   

17.
Dust particles, like photons, carry information from remote sites in space and time. From knowledge of the dust particles' birthplace and their bulk properties, we can learn about the remote environment out of which the particles were formed. This approach is called “Dust Astronomy” which is carried out by means of a dust telescope on a Dust Observatory in space. Targets for a dust telescope are the local interstellar medium and nearby star forming regions, as well as comets and asteroids. Dust from interstellar and interplanetary sources is distinguished by accurately sensing their trajectories. Trajectory sensors may use the electric charge signals that are induced when charged grains fly through the detector. Modern in-situ dust impact detectors are capable of providing mass, speed, physical and chemical information of dust grains in space. A Dust Observatory mission is feasible with state-of-the-art technology. It will (1) provide the distinction between interstellar dust and interplanetary dust of cometary and asteroidal origin, (2) determine the elemental composition of impacting dust particles, and (3) monitor the fluxes of various dust components as a function of direction and particle masses.  相似文献   

18.
In this paper the researchers collected 28 times of maximum light including 4 times of those observed at the Xinglong station, the National Astronomical Observation of China between May 27, 2004 and June 1, 2004 and 1 time of maximum light from a 60 cm telescope on May 4, 1984. It found that the O-C point distribution was more completely compared than in any papers published before. The period is decreasing at the rate of about (1.4±0.1)×10−8 per year, which should not be caused by stellar evolution. It might be only part of a binary orbital light-time variation or other unknown reason. The time scale is longer than Pocs and Szeidl’s suggestion; the star needs more observations before we can be certain of the exact light-time variation.  相似文献   

19.
The space telescope Search for Terrestrial Exo-Planets (STEP) employed a method of sub-pixel technology which ensures that the astrometric accuracy of the telescope on the focal plane is at the order of 1 μas. This kind of astrometric precision is promising to detect the earth-like planets beyond the solar system. In this paper, we analyze the influence of some key factors, including the errors in the stellar proper motion, parallax, the optical center of the system, and the velocity and position of the satellite, on the detection of exoplanets. We propose a relative angular distance method to evaluate the non-linear terms in the variation of star-pair's angular distance caused by the possibly existing exoplanet. This method could avoid the direct influence of measuring errors of the position and proper motion of the reference stars. Supposing that there are eight reference stars and a target star with a planet system in the same field of view, we simulate their five-year observational data, and use the least square method to get the parameters of the planet orbit. Our results show that the method is robust to detect terrestrial planets based on the 1 μas precision of STEP.  相似文献   

20.
斑点干涉成像技术是克服大气湍流影响,提高地面大口径望远镜分辨本领的有效途径之一。该技术利用斑点相机拍摄一系列的短曝光像,使得大气湍流冻结,再经过图像处理获得高分辨率重建像。该技术设备简单,易于实现,很快在观测天文学中得到了广泛的应用,尤其是对双星的研究。首先回顾了天文高分辨率重建技术的发展,并介绍了相关研究成果。描述了几种典型的斑点干涉成像处理方法及其优缺点。对图像噪声类型及滤波方法进行了分析。在上海天文台1.56m望远镜上开展了双星斑点干涉观测实验,目标星等4~7mag,双星目标星等差小于2。分别采用斑点干涉术和迭代位移叠加法成功实现了双星目标的高分辨率成像,初步证明了在1.56m望远镜上进行斑点干涉成像实验,能够达到接近望远镜衍射极限的分辨率水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号