首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Tropical forests play a major role in storing large carbon stocks and regulating energy, and water fluxes, but such forest cover is decreasing rapidly in spite of the policy attention on reducing deforestation. High-resolution spatiotemporal maps are unavailable for the forests in majority of the tropical regions in Asia because of the persistent cloud cover and haze cover. Recent advances in radar remote sensing have provided weather-independent data of earth surface, thus offering an opportunity to monitor tropical forest change processes with relatively high spatiotemporal resolutions. In this research, we aim to examine the tropical deforestation process and develop a spatial model to simulate future forest patterns under various scenarios. Riau Province from central Sumatra of Indonesia is selected as the study area; this province has received much attention worldwide because the highest CO2 emission resulting from tropical deforestation has been recorded. Annual time series PALSAR data from 2007 to 2010 were analyzed for forest mapping and detecting land cover changes. A spatial model was calibrated using the Bayesian method. Modeling parameters were customized for the local subregions that allocate deforestation on the basis of their empirical relationships to physical and socioeconomic drivers. The model generated landscape spatial patterns mirrored the possible locations and extent of deforested areas by 2030 and provided time-series crucial information on forest landscape under various scenarios for future landscape management projects. The results suggested that the current deforestation process is in a critical stage where some subregions may face unprecedented stress on primary forest costing rivers and forest ecosystems by the end of 2020. The perspective views of Riau Province generated by the model highlighted the need for forest/environmental planning controls for the conservation of environmentally sensitive areas.  相似文献   

2.
湿地景观格局的动态变化与区域土地利用/覆盖格局的变化有着十分紧密的联系。以纳帕海、碧塔海和属都湖三块高原湿地所在的云南省香格里拉县建塘镇为例,在遥感和GIS技术的支持下,对该区域1974、1987和2000三期Landsat TM(ETM)影像进行了解译,分析了26 a间的土地利用/覆盖变化规律,并结合景观格局动态分析的方法,借助FRAGSTATS软件定量分析了该区景观格局特征及其动态变化。结果表明:该区土地利用/覆盖状况变化显著,主要土地利用/覆盖类型有林地以822 hm2/a的速度在大面积减少,并主要转为灌木林地,使得后者在26 a间扩大高达17倍,变化幅度最大。建设用地和耕地的面积分别扩大了6倍和2倍,而草地和雪地面积持续减少。相应地,该区景观格局定量分析显示,有林地的斑块密度增大而平均斑块面积减小迅速,呈破碎化趋势,灌木林地的斑块密度、平均斑块面积均增加,草地则与之相反均减小,耕地的斑块密度降低而平均斑块面积增加,在不断融合成大斑块,其余各景观单元斑块密度增大平均斑块面积减小,同时各斑块几何形状在1987年变化最剧烈,景观格局趋于复杂。  相似文献   

3.
There has been extensive debate on the conservation impact of people located within protected areas. In a tiger reserve in central India, we find that the densely populated villages located outside the park boundary are better connected to regional markets by road networks, and are associated with greater deforestation rates and more forest fragmentation compared to the more isolated villages in the park interior. The park itself however appears well protected in terms of forest cover and connectivity. Instead of focusing on resettlement of forest villages, forest protection needs may be better served by working with these surrounding communities to develop alternate mechanisms for income generation.  相似文献   

4.
Temperate forest represents the smallest area among the main world's forest biomes, but is one of those most threatened by forest loss. Chile contains most of the temperate forest in South America and more than half of the temperate forest in the southern hemisphere. Chilean temperate forest is considered to be one of the world's biodiversity hotspots. In this study we assessed the rate of land use and land cover (LULC) change over time, identified the main LULCs replacing native forest, and described how changes have evolved in contrasting physiographical conditions and through different historical phases of the landscape over the last 40 years. To achieve this, we analysed LULC change with particular focus on forest cover in three areas representing different physiographical conditions and histories of human occupation in the Araucanía Region of Chile, namely the Central Valley, the Coastal range, and the Andean range. We found substantial differences in temporal and intra-regional patterns of forest loss and LULC change. In the Central Valley, forest loss started long ago, and the area occupied by native forest nowadays is less than 5% of the landscape. In the Coastal range, rapid land cover change has taken place since 1973, with an increasing rate of forest loss over time. We detected a similar but less intense pattern in the forests of the Andean range. Overall, the general pattern points to a process of landscape homogenization in all three physiographical areas. Exotic tree plantations have spread over large geographical areas, becoming the dominant land cover. Land cover change in the Araucanía Region reflects a model of change in which areas with better environmental conditions and accessibility are occupied first for productive activities. As the availability of suitable areas for the expansion of productive activities diminishes, these activities start to move into physiographical areas which were previously “protected” by adverse environmental conditions or poor accessibility. This model of production growth could lead to the complete deforestation of areas outside national protected areas, and other areas which still remain inaccessible due to technological restrictions on exploitation.  相似文献   

5.
A comprehensive understanding of the patterns that occur as human processes transform landscapes is necessary for sustainable development. We provide new evidence on how landscapes change by analysing the spatial patterns of human processes in three forest landscapes in southern Chile at different states of alteration (40%-90% of old-growth forest loss). Three phases of landscape alteration are distinguished. In Phase I (40%-65% of old-growth forest loss), deforestation rates are < 1% yr−1, forests are increasingly degraded, and clearance for pastureland is concentrated on deeper soils. In Phase II (65%-80%), deforestation reaches its maximum rate of 1-1.5% yr−1, with clearance for pastureland being the main human process, creating a landscape dominated by disturbed forest and shrubland. In this phase, clearance for pastureland is the primary driver of change, with pastures expanding onto poorer soils in more spatially aggregated patterns. In Phase III (80%-90%), deforestation rates are again relatively low (<1% yr−1) and forest regrowth is observed on marginal lands. During this phase, clearance is the dominant process and pastureland is the main land cover. As a forest landscape is transformed, the extent and intensity of human processes vary according to the existing state of landscape alteration, resulting in distinctive landscape patterns in each phase. A relationship between spatial patterns of land cover and human-related processes has been identified along the gradient of landscape alteration. This integrative framework can potentially provide insights into the patterns and processes of dynamic landscapes in other areas subjected to intensifying human use.  相似文献   

6.
7.
巴西热带雨林地区森林景观转化及破碎化导致森林生态系统的功能和区域环境发生变化,并引起全球范围内的关注。以欧洲太空局全球土地利用/土地覆被数据和Landsat解译数据为基础,利用热点提取、信息熵、地统计分析模型及轨迹分析的方法探讨不同砍伐阶段森林破碎性的变化特点以及森林破碎化与整个区域景观格局变化的相关性。结果表明:① 热带雨林地区的森林面积迅速减少,其中,Rondonia州、Maton Grosso州和Para州最为典型。② 森林破碎性的变化趋势并非整体性的增加或减少,而是出现明显的局地性特点;③ 森林砍伐的数量与土地系统的信息熵呈正相关,即森林的数量及质量直接决定巴西热带雨林地区的土地系统稳定性。  相似文献   

8.
景观类型分析在土地覆被变化中的作用   总被引:1,自引:1,他引:0  
  相似文献   

9.
One restriction of landscape studies is that land use and cover change is often regarded as irreversible. A highly dynamic landscape in southern Chile was selected to show that forest cover change involves a series of complex transitions and trajectories. Using Landsat images from 1976, 1985, 1999 and 2007 an in-depth analysis of the transition matrix was conducted to separate random and systematic transitions which were grouped into trajectories using a pixel-history approach. Main trajectories were linked to fragmentation indices and farming systems through cluster analysis. Of the 247 trajectories identified, old growth forest persistence comprised 22% of the landscape, whereas deforestation trajectories comprised 20.9% and were mostly composed of changes from old growth forest to shrubland (13.9%). Trajectories of forest degradation from old growth to secondary forest comprised 19.7% of the landscape. The periods 1976-1985 and 1999-2007 concentrated the most systematic deforestation and degradation transitions. In turn, random transitions predominated between 1985 and 1999, probably in response to economic factors that acted suddenly on the landscape during the 80’s, such as the woodchip export and aquaculture booms. A close relationship between landscape fragmentation and the proportion of systematic transitions and farming systems was found; specifically, the highest entropy indices occurred in clusters which exhibited the lowest proportion of systematic transitions and the highest proportion (>70%) of peasant agricultural systems. Understanding the complexity of forest cover change trajectories is relevant for improving the prediction of possible landscape evolutions and establishing landscape management priorities.  相似文献   

10.
Swidden agriculture is often deemed responsible for deforestation and forest degradation in tropical regions, yet swidden landscapes are commonly not visible on land cover/use maps, making it difficult to prove this assertion. For a future REDD+ scheme, the correct identification of deforestation and forest degradation and linking these processes to land use is crucial. However, it is a key challenge to distinguish degradation and deforestation from temporal vegetation dynamics inherent to swiddening. In this article we present an approach for spatial delineation of swidden systems based on landscape mosaics. Furthermore we introduce a classification for change processes based on the change matrix of these landscape mosaics. Our approach is illustrated by a case study in Viengkham district in northern Laos. Over a 30-year time period the swidden landscapes have increased in extent and they have degraded, shifting from long crop-fallow cycles to short cycles. From 2007 to 2009 degradation within the swidden system accounted for half of all the landscape mosaics change processes. Pioneering shifting cultivation did not prevail. The landscape mosaics approach could be used in a swidden compatible monitoring, reporting and verification (MRV) system of a future REDD+ framework.  相似文献   

11.
流域土地利用/覆被变化对洪河保护区湿地景观的影响   总被引:16,自引:0,他引:16  
刘红玉  李兆富 《地理学报》2007,62(11):1215-1222
从流域尺度, 应用遥感和GIS 技术对1954 年以来6 个时段土地利用/ 覆被变化进行分析, 并采用景观生态学方法对洪河保护区及其所在浓江河流域湿地景观多样性和景观连通度进行计算, 系统研究了流域土地利用变化对保护区湿地景观的影响。结果显示: ① 浓江河流域大规模土地利用发生在20 世纪80 年代之后, 年均耕地面积增长速度为101 km2/a; ② 土地利用/ 覆被变化直接导致流域湿地景观多样性降低, 同时也间接影响了洪河保护区湿地景观多样性; ③ 流域土地利用变化带来的景观连通度降低严重割断了景观之间原有的物质交换和功能维持关系, 是导致保护区湿地景观结构和功能改变的主要因素之一; ④ 恢复保护区周围一定面积的湿地, 维持良好的景观连通度是实现保护区自然保护效益的方法之一。  相似文献   

12.
基于TM数据的广州市番禺区土地覆被格局分析   总被引:2,自引:0,他引:2  
以覆盖番禺区1990年、1995年、2000年、2005年4个时相Landsat-TM影像为主要数据源,借助GIS手段和景观生态学方法生成土地覆被图。在数量化研究LUCC的基础上,借助景观格局指数反映番禺区4个时相土地覆被的变化机制,对土地覆被景观格局生态效应研究提供依据。研究表明:番禺区的土地利用结构在1990~1995年间处于开发调整时期,2000年后土地利用结构调整趋于成熟,土地覆被变化伴随着城市化的进程趋于平缓。研究时期内,番禺区的景观破碎度增加,土地利用结构的复杂程度也在增加,人为因素导致的土地覆被类型变化的影响逐渐替代自然作用下土地覆被类型情况。  相似文献   

13.
Loss of native forest is a key conservation concern globally, for reasons of biodiversity, climate change and ecosystem services. Landscape measures are used widely to characterize forest loss and associated landscape structure, but often without regard for structure imposed by the data used, and associated assumptions. Notably, forest loss is often expressed simply as net change in forest cover over time, but this approach does not account for turnover (i.e. the gross losses and gains of forest). It also ignores forest age (e.g. young regrowth forest or mature forest), which is significant in conservation terms. We investigate the effects of removing common data constraints on landscape characterization, as typically used in landscape dynamic analyses. We produced fine-resolution (0.0225 ha) classified maps from satellite imagery of the temperate Araucanía Region of Chile, for 1986, 1999 and 2008. We calculated areas of land-use classes and associated landscape indices. Landscape measures and trends through time varied markedly around the region, with forest loss and fragmentation confined to areas not designated as protected. Net (‘headline’) figures masked very large turnover through time, with about 30% of unprotected land switching land use each decade. Accounting for this, in unprotected areas the loss of established native forest was 2.4% and 3.5% per year in the two time periods, much higher than equivalent ‘standard’ figures. Using finer-resolution data increased estimates of native forest loss and reversed temporal trends in patch density and mean patch size, compared with the commonly-used National Vegetation Classification (6.25 and 4.5 ha resolution). Interestingly, mean patch size of native forest actually switched, from a decreasing trend to an increasing one, with continued deforestation. We conclude that landscape characterization can lead to effective conservation practices, but it is necessary to use appropriate data resolution, define the data domain carefully and examine change through time, including the degree of dynamism (turnover) within the landscape: our results suggest a strong need to consider continuity of forest cover as well as overall totals.  相似文献   

14.
以遥感数据进行土地利用/覆被分类为基础,利用景观格局指数研究快速城市化地区地表覆被格局变化时,面临两大难题,即① 混合像元影响分类的精度存在不确定性,直接影响格局分析结论的可靠性;② 景观格局指数,难以有效分析城市内部局部地区景观格局演变过程的变化特征。针对上述关键问题,本文以不透水表面组分表征城市的主体景观,运用地统计学及剖面线方法分析深圳市地表覆被格局的空间分异及其演变特征。结果表明:① 1990-2005 年,深圳地表覆被空间格局经历了分散-单中心聚集-多中心分散-多中心聚集的演变过程,在经历了东西-西北东南-东北西南-南北方向的发展过程后,景观整体的自相关程度高,空间梯度差异小。1990 年的不透水表面组分比2005 年低20%~40%,并且早期局地变化波动较大,后期变化波动明显减小。在局地空间演变上,老城区变化小,新城区及工业区变化大,城市不透水表面的局地空间差异性显著缩小。② 城市不透水表面具有显著的梯度特征,在空间上主要呈现连续渐变的特点,因而在格局分析方法上,地统计学与剖面线方法可以同时从整体和局地两个层次对空间格局演变进行有效刻画。  相似文献   

15.
The East Coast of the North Island of New Zealand is world renowned for its severe erosion, flooding, and sedimentation. Extensive deforestation between 1880–1920 initiated this period of dramatic landscape transformation, and today reforestation is seen as the panacea. However, a century of pastoral farming has left a legacy of a highly degraded landscape, which is currently redistributing the products of this erosion. The rate and level of landscape recovery will influence the ability of communities to carry out future land use. This paper uses the results of a decade of geomorphic research into the controls and processes of landscape change to illustrate some of the likely future impacts on the landscape and its land use, and to identify some still unanswered questions. This increasing understanding, together with changing community attitudes, provides the opportunity to maximise the benefits of reforestation and other management interventions.  相似文献   

16.
Tropical deforestation is widely believed to directly influence the climate at a number of scales. Yet while much has been written about the tropical forest-climate relationship, there is little empirical evidence showing if and how local and regional climates are modified by deforestation. This study presents the results of an analysis of deforestation and climate change in a rain forest in southern Mexico. Records from 18 climate stations in the Selva Lacandona of Chiapas, Mexico were examined and related to an analysis of deforestation based on Landsat images. The area surrounding some stations has been deforested since the stations were established, while the area surroundings others has remained forested. Strong climatic trends were generally evident at the deforested stations, including decreases in the average daily maximum temperature and temperature range. No precipitation changes were observed. A comparison of the results with microclimatic experiments and modeling studies suggests that the climatic impacts of deforestation are overgeneralized at the local scale. Landscape heterogeneity appears to influence the biophysical mechanisms linking tropical forests and climate, and should be explicitly represented in modeling studies.  相似文献   

17.
深圳市不透水表面的遥感监测与时空格局   总被引:3,自引:0,他引:3  
刘珍环  王仰麟  彭建 《地理研究》2012,31(8):1535-1545
定量监测城市不透水表面扩展过程,是分析城市景观格局动态,深入剖析城市地区空间镶嵌体内部异质性景观相互转化的重要基础。以深圳市为例,通过定量划分城市不透水表面等级体系,计算不透水表面的转移矩阵与景观格局指数,分析不透水表面的时空动态,结果表明:1990~2005年间,高盖度及极高盖度的不透水表面持续增加,中盖度及低盖度不透水表面先增加后减少,而自然地表及极低盖度的不透水表面则为先减少后恢复,反映了城市化进程对城市地表覆被的结构性影响。景观格局变化显示景观多样性程度较高,且经历了低-高-低-高的变化;斑块在1990年以自然地表为主,1995年以后以中盖度等级为主,高盖度等级显著增加。自然地表和中等盖度的不透水表面变化分别主导着前期和中后期的变化过程。城市建设的迅速扩张,将林地、农田、水体及滩涂等自然地表快速地转变为不同功能的建设用地,主导着不透水表面等级分布的梯度性变化。  相似文献   

18.
This study evaluates the dynamics and identifies the indirect biophysical and socio‐economic factors related to the recovery, degradation and deforestation of the tropical dry forest (TDF) cover in the municipality of Tehuantepec, Oaxaca, Mexico. Annual rates and transition matrices were determined to identify indirect factors; the cartographic information of 25 variables with shift points were overlaid and Generalized Linear Models (GLM) were applied. The change process with the greatest impact in TDF during the study period (1993–2011) was degradation, with 10468 ha degraded (12 per cent of the initial tropical cover); recovery of coverage was the second most important change process, with 4808 ha (5.5 per cent); and deforestation was the change process with the lowest impact, with a loss of 2800 ha (3.23 per cent). The net balance was negative, with a decrease (through land degradation and deforestation) of 8460 ha (9.75 per cent). The recovery of coverage was mainly associated with biophysical factors such as land suitability and accessibility to natural vegetation. On the other hand, deforestation and degradation of coverage were associated with both biophysical and socioeconomic factors such as land suitability, accessibility to natural vegetation, migration, marginalization, population pressure, economy, education and health. The findings of this study determined the spatial distribution of forest recovery, deforestation and degradation processes at a regional level, allowing for future researchers to focus their efforts at local and landscape levels. Also, the work allows for an approximation of the factors associated with the change processes studied, hence supporting the allocation of resources for the establishment of management, conservation, development and restoration strategies of tropical dry forests at the regional level.  相似文献   

19.
Analyzing temporal changes in forest amount and configuration is paramount to better design future forest management interventions. Such analyses are especially required for tropical biomes, which are usually subject to dynamic and heterogeneous land uses. Recent studies have suggested that many tropical biomes are passing through the process of “forest transition”, i.e. an overall change from forest loss to forest gain. However, this hypothesis remains scarcely tested, due to the difficulty of obtaining detailed, quantitative historical records of forest cover. In this study, we investigate 38 years of land use change in Brazil's Atlantic Forest, a biodiversity hotspot, from 1976 to 2014, using multitemporal datasets from aerial photographs and satellite images. We classified the historical series to produce land use maps and calculated a set of landscape metrics, including total forest cover, patch size, patch shape and patch connectivity. Our results indicated non-linear changes through time in forest loss and gain and also in landscape structure, which can be classified into two distinct periods. The first period (1976–1996) was marked by expressive forest loss and fragmentation, whereas the second (1996–2014) was characterized by a much less intense forest dynamics, with little deforestation being balanced by forest regeneration. We attribute the forest dynamics observed to temporal changes in socioeconomic factors, such as increasing human settlements and changes in environmental protection policies. Our results show that current forests are a heterogeneous mosaic of forests with different ages, and support the hypothesis that forest transition is occurring in Atlantic Forest landscapes.  相似文献   

20.

Tropical deforestation is widely believed to directly influence the climate at a number of scales. Yet while much has been written about the tropical forest-climate relationship, there is little empirical evidence showing if and how local and regional climates are modified by deforestation. This study presents the results of an analysis of deforestation and climate change in a rain forest in southern Mexico. Records from 18 climate stations in the Selva Lacandona of Chiapas, Mexico were examined and related to an analysis of deforestation based on Landsat images. The area surrounding some stations has been deforested since the stations were established, while the area surroundings others has remained forested. Strong climatic trends were generally evident at the deforested stations, including decreases in the average daily maximum temperature and temperature range. No precipitation changes were observed. A comparison of the results with microclimatic experiments and modeling studies suggests that the climatic impacts of deforestation are overgeneralized at the local scale. Landscape heterogeneity appears to influence the biophysical mechanisms linking tropical forests and climate, and should be explicitly represented in modeling studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号