首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distributions of two swimming crabs endemic to the New Zealand region are described, mostly from material obtained at 118 of 2544 New Zealand Oceanographic Institute benthic stations sampled.

Nectocarcinus antarcticus (Jacquinot) was found within the geographic limits 34°S‐51°S and 166° E‐176° W, with concentrations around Cook Strait, the Chatham Rise, Foveaux Strait, and the Auckland Is. N. bennetti (Takeda & Miyake) occurred between 44° S and 53° S, and 165° E and 180°, most frequently in the south and west, on the ‘highs’ of the Campbell Plateau. Although the distributions overlap between 44° S and 51° S, and this overlap zone produced most of the available material, only one joint occurrence of the two species was noted. This apparent separation was not satisfactorily explained by any of the ecological factors recorded. The depth ranges of both species were broadly similar (0–550 m for TV. antarcticus, 20–474 m for JV. bennetti); both were most frequently obtained at depths less than 200 m. Both occurred primarily on the coarser sediment grades, though N. antarcticus occupied a broader range of grades than N. bennetti.

The size ranges of the two species were similar; carapace lengths were 8.0–62.0 mm for N. antarcticus and 5.8–68.0 mm for N. bennetti. The larger specimens of both species were found towards the southern limits of distribution. Larger specimens of N. antarcticus were absent from depths greater than 120 m; smaller N. antarcticus and all N. bennetti occurred throughout their respective depth ranges. Ovigerous N. antarcticus (smallest, 8.8 mm carapace length) were obtained at depths of 17–263 m from May to October; ovigerous N. bennetti (smallest 36.1 mm) were from depths of 150–183 m in May only.  相似文献   

2.
《Marine Geology》2005,216(3):107-126
We report on the spatial distribution of isotopic compositions of the two planktic foraminifera species Globigerina bulloides and Neogloboquadrina pachyderma (dex.), and the faunal assemblages of planktic foraminifera in 91 surface sediment samples along the Chilean continental slope between 23°S and 44°S. Both δ13C and δ18O data of N. pachyderma (dex.) show little variability in the study area. North of 39°S, the isotopic values of N. pachyderma (dex.) are heavier than those of G. bulloides, whereas south of 39°S, this relation inverses. This is indicative for a change from a well-mixed, deep thermocline caused by coastal upwelling north of 39°S to well-stratified water masses in a non-upwelling environment south of 39°S. In addition, the faunal composition of planktic foraminifera marks this change by transition from an upwelling assemblage north of 39°S to a high-nutrient-non-upwelling assemblage south of 39°S, which is characterized by decreased contributions of upwelling indicators such as G. bulloides, N. pachyderma (sin.), and Globigerinita glutinata. In general, we can conclude that food and light rather than temperature are the primary control of the planktic foraminiferal assemblage between 23°S and 44°S off Chile. Our data point to higher marine productivity at upwelling centers north of 25°S and at 30–33°S. South of 39°S, significant supply of nutrients by fluvial input most likely boosts the productivity.  相似文献   

3.
We present a comparison of the Global Ocean Data Assimilation System (GODAS) five-day ocean analyses against in situ daily data from Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) moorings at locations 90°E, 12°N; 90°E, 8°N; 90°E, 0°N and 90°E, 1.5°S in the equatorial Indian Ocean and the Bay of Bengal during 2002–2008. We find that the GODAS temperature analysis does not adequately capture a prominent signal of Indian Ocean dipole mode of 2006 seen in the mooring data, particularly at 90°E 0°N and 90°E 1.5°S in the eastern India Ocean. The analysis, using simple statistics such as bias and root-mean-square deviation, indicates that standard GODAS temperature has definite biases and significant differences with observations on both subseasonal and seasonal scales. Subsurface salinity has serious deficiencies as well, but this may not be surprising considering the poorly constrained fresh water forcing, and possible model deficiencies in subsurface vertical mixing. GODAS reanalysis needs improvement to make it more useful for study of climate variability and for creating ocean initial conditions for prediction.  相似文献   

4.
Abstract

The water chemistry, flora, and fauna of Lake Rotokawa (38° 37.8’ S, 176° 11.2'E) was studied in 1975–76. The mean pH is 2.1 and thermal inflows may elevate the mean summer temperature of the surface waters 4.2°c above that of nearby cold water Lake Rotongaio (18.9°c). The temperature range of surface water was from 10.1 °c in winter to 23.1°c in summer. The major anions were SO4 2? 679 g.m?3, and Cl‐ 314 g.m?3. Mean concentrations of major cations were Na+ 224 g.m?3, K+ 28.9 g.m?3, Ca2+ 13.3 g.m?3, and Mg2+ 2.6 g.m?3.

Two species of flagellate algae were recorded, of which Euglena anabaena was predominant. Only two benthic macroinvertebrates were found, larvae of Chironomus zealandicus, mean density 253 per square metre, and Helobdella sp., 1.3 per square metre.

The Parariki Stream was influenced by thermal springs in its upper and lower reaches, being cooler (24–25°c) about halfway along its length than near its source (27.8–39.0°c) or confluence (26.5°‐28.0°c) with the Waikato River. In the cooler stretch of the stream where unidentified benthic algae were not limited by high temperature, chlorophyll and total pigment increased from 3.9 to 377.9 mg.m?3 and from 17.5 to 534.4 mg.m?3 respectively, and nutrient levels fell (NO3‐N, 22–10.5 mg.m?3; NH4‐N, 6440–230 mg.m?3; and PO4‐P, 51–19 mg.m?3).  相似文献   

5.
A long-term mean turbulent mixing in the depth range of 200–1000 m produced by breaking of internal waves across the middle and low latitudes (40°S–40°N) of the Pacific between 160°W and 140°W is examined by applying fine-scale parameterization depending on strain variance to 8-year (2005–2012) Argo float data. Results show that elevated turbulent dissipation rate (ε) is related to significant topographic regions, along the equator, and on the northern side of 20°N spanning to 24°N throughout the depth range. Two patterns of latitudinal variations of ε and the corresponding diffusivity (Kρ) for different depth ranges are confirmed: One is for 200–450 m with significant larger ε and Kρ, and the maximum values are obtained between 4°N and 6°N, where eddy kinetic energy also reaches its maximum; The other is for 350–1000 m with smaller ε and Kρ, and the maximum values are obtained near the equator, and between 18°S and 12°S in the southern hemisphere, 20°N and 22°N in the northern hemisphere. Most elevated turbulent dissipation in the depth range of 350–1000 m relates to rough bottom roughness (correlation coefficient?=?0.63), excluding the equatorial area. In the temporal mean field, energy flux from surface wind stress to inertial motions is not significant enough to account for the relatively intensified turbulent mixing in the upper layer.  相似文献   

6.
《Oceanologica Acta》1999,22(5):453-471
Hydrographic data were collected from 3 to 10 September 1996 along two transects; one at 18° N and the other at 90° E. The data were used to examine the thermohaline, circulation and chemical properties of the Bay of Bengal during the withdrawal phase of the southwest monsoon. The surface salinity exhibited wide spatial variability with values as low as 25.78 at 18° N / 87° E and as high as 34.79 at 8° N / 90° E. Two high salinity cells (S > 35.2) were noticed around 100 m depth along the 90° E transect. The wide scatter in T-S values between 100 and 200 m depth was attributed to the presence of the Arabian Sea High Salinity (ASHS) water mass. Though the warm and low salinity conditions at the sea surface were conducive to a rise in the sea surface topography at 18° N / 87° E, the dynamic height showed a reduction of 0.2 dyn.m. This fall was attributed to thermocline upwelling at this location. The geostrophic currents showed alternating flows across both the transects. Relatively stronger and mutually opposite currents were noticed around 25 m depth across the 18° N transect with velocity slightly in excess of 30 cm s−1. Similar high velocity (> 40 cm s−1) pockets were also noticed to extend up to 30 m depths in the southern region of the 90° E transect. However, the currents below 250 m were weak and in general < 5 cm s−1. The net geostrophic volume transports were found to be of the order of 1.5 × 106 m3 s−1 towards the north and of 6 × 106 m3 s−1 towards west across the 18° N and 90° E transects respectively. The surface circulation patterns were also investigated using the trajectories of drifting buoys deployed in the eastern Indian Ocean around the same observation period. Poleward movement of the drifting buoy with the arrival of the Indian Monsoon Current (IMC) at about 12° N along the eastern rim of the Bay of Bengal has been noticed to occur around the beginning of October. The presence of an eddy off the southeast coast of India and the IMC along the southern periphery of the Bay of Bengal were also evident in the drifting buoy data.  相似文献   

7.
Time-series sediment traps were deployed during 1997–2000 in the northwestern North Pacific. The samples from 3000 m depth were investigated in order to study the silicoflagellate skeleton fluxes, the relationships with the geographical differences of their distribution, and their responses to temporal climate variations. At Station 50N (50°N, 165°E), located near the center of the Western Subarctic Gyre (WSG), subarctic-water taxa Distephanus speculum and Distephanus boliviensis dominated in the sinking assemblage. At Station KNOT (44°N, 155°E), located in the southwestern edge of the WSG, D. speculum also dominated throughout the sampled period. The warm-water taxon Dictyocha mandrai increased from the second half of 1998 to the first half of 1999, and the subtropical-water taxon Dictyocha messanensis also increased after the maximum period of D. mandrai flux. Not an obviously discernible seasonality was observed in the assemblages at Stations 50N and KNOT. At Station 40N (40°N, 165°E), at the south of the Subarctic Boundary, both the subarctic-water and the subtropical-water taxa dominated in winter and spring, and in summer and fall, respectively. The temporal assemblage variations at Station 40N significantly reflected the change of Sea Surface Temperature (SST) anomaly. This assemblage variation also implies which water mass, subarctic or subtropical, had more influence at Station 40N. The temporal successions of silicoflagellate assemblages at Station 40N are most likely due to the temporal oceanographic variability caused by global atmospheric changes. The differences of the seasonal flux pattern and the biogeochemical contribution of silicoflagellates at each station were due to the differences of ecosystem at each station.  相似文献   

8.
The interaction between waves and artificial reefs (ARs; a hollow cube weighing 8.24 kN (0.84 t) and a water pipe weighing 1.27 kN (0.13 t)) in shallow waters was investigated with respect to variations in design weight, orientation (for cube; 45° and 90° angles, for pipe; 0°, 90°, and 180° angles to flow), depth (1–20 m), and bottom slope (10?1, 30?1, and 50?1). Physics equations and FLUENT software were used to estimate resisting and mobilising forces, and drag coefficients. Drag coefficients for the hollow cube were 0.76 and 0.85 at 45° and 90° angles to the current, respectively, and 0.97, 0.38, and 1.42 for the water pipe at 0°, 90°, and 180° angles to the current, respectively. Deepwater offshore wave conditions at six stations were transformed into shallow nearshore waters representative of the artificial reef site. Waters deeper than 12 and 16 m are safe to deploy blocks with angles of 45° and 90°, respectively. However, water pipes constructed at angles of 90° and 180° to the current were estimated as being unstable for 365 out of 720 cases at all stations (only one station was stable for all cases). Water pipes angled at 0° were found to be stable in all 360 cases. Slope had a significant effect on weight and depth. Results from this study provide an important reference for engineers performing projects aiming to increase the performance and service life of ARs.  相似文献   

9.
We propose and validate a linear regression model which enables us to predict the summer (June–August) mean of the monthly 90th percentile of significant wave heights (H90) in the western North Pacific (WNP). The most prevailing interannual variability of H90 is identified by applying an Empirical Orthogonal Function analysis to H90 obtained from the ERA-40 wave reanalysis as well as from the optimally interpolated TOPEX/Poseidon (OITP) wave data. It is found that the increase of H90 is correlated with cyclonic circulation in the WNP which links with warm SST anomalies in the Niño-3.4 region. We adopt zonal wind anomaly averaged over the region 5°N–15°N, 130°E–160°E (U10N) as a predictor of the first principal component (PC1) of H90, since U10N is closely correlated with the PC1 of H90. It is revealed that regression models obtained from two different wave datasets are nearly identical. The predictability of the regression model is assessed in terms of the reduction of the root-mean-square (rms) errors between H90 and the reconstructed data. The predictor is found to be successful in reducing the rms errors by up to 40% for the ERA-40 wave reanalysis and by up to 70% for the OITP wave data within the latitudinal band 10°N–25°N, though rms errors exceeding 0.3 m still remain, particularly in the East China Sea.  相似文献   

10.
Spectral wave characteristics were studied based on waves measured for 1 year during 2010 off Gangavaram, Bay of Bengal. Maximum wave height of 5.2 m was observed on 19 May 2010 due to the influence of cyclonic storm LAILA. The wave spectrum was single-peaked during 57 % of the time and the double-peaked spectrum observed was mainly swell-dominated. Low-frequency waves (0.05–0.15 Hz) were predominantly from 150° to 180°, whereas high-frequency waves (>0.15 Hz) during November–January were mainly from 90° to 120°, and during July and August from 180° to 210°. Annual average significant wave height was similar to the value (1 m) observed in the eastern Arabian Sea.  相似文献   

11.
Both spatial and spatiotemporal distributions of the sources of tsunamigenic earthquakes of tectonic origin over the last 112 years have been analyzed. This analysis has been made using tsunami databases published by the Institute of Computational Mathematics and Mathematical Geophysics (Siberian Branch, Russian Academy of Sciences) and the National Aeronautics and Space Administration (United States), as well as earthquake catalogs published by the National Earthquake Information Center (United States). It has been found that the pronounced activation of seismic processes and an increase in the total energy of tsunamigenic earthquakes were observed at the beginning of both the 20th (1905–1920) and 21st (2004–2011) centuries. Studying the spatiotemporal periodicity of such events on the basis of an analysis of the two-dimensional distributions of the sources of tectonic tsunamis has made it possible to determine localized latitudinal zones with a total lack of such events (90°?75° N, 45°–90° S, and 35°?25° N) and regions with a periodic occurrence of tsunamis mainly within the middle (65°?35° N and 25°–40° S) and subequatorial (15° N–20° S) latitudes of the Northern and Southern hemispheres. The objective of this work is to analyze the spatiotemporal distributions of sources of tsunamigenic earthquakes and the effect of the periodic occurrence of such events on the basis of data taken from global tsunami catalogs.  相似文献   

12.
Analysis of carbonate microfossils (planktonic foraminifers and nannoplankton) in the DSDP Hole 362 Quaternary section made it possible to specify its zonal subdivision (almost all zones of Gartner’s high-resolution nannofossil scale are recognized), establish depositional environments, and restore past surface water temperatures. The latter appeared to be several degrees lower than their present-day values, which is evident from the anomalously high share of the subpolar species Neogloboquadrina pachyderma sin. that constitutes 97% of the fossil assemblage in Lower Pleistocene sediments. It is shown that the Benguela upwelling existed throughout the entire Pleistocene, being less intense in the Late Pleistocene and Holocene.  相似文献   

13.
Abstract

A pore‐water pressure probe (piezometer) was implanted in Mississippi delta sediments at a preselected site (Block 28, South Pass area, 29°00´N, 89°15´W) 145 m from an offshore production platform (water depth approx. 19 m) in September 1975. Total pore‐water pressures (uw ) were monitored for extended periods of time at depths of approximately 15 and 8 m below the mudline concurrently with hydrostatic pressures (u8 ) measured at depths of 15 m and approximately 1 m below the mudline. Relatively high excess pore‐water pressures, ue = (uw ‐u8 ), were recorded at the time of probe insertion measuring 99 kPa (14.4 psi) at 15 m and 50 kPa (7.3 psi) at 8 m. Six hours after the probe was implanted, excess pore pressures were still high at 81 kPa (11.8 psi, 15 m) and 37 kPa (5.4 psi, 8 m). Pore pressures appeared to become relatively constant at the 8‐m depth after 7 h had elapsed, and at the 15 m depth after 10–12 h. Excess pore‐water pressures averaged 72 kPa (10.4 psi, 15 m) and 32 kPa (4.6 psi, 8 m) prior to the initial effects of Hurricane Eloise, which passed in close proximity to the probe site. Significant variations in pressures were recorded during storm activity. As the effects of the storm subsided, excess pore‐water pressures began to decline slightly at the 15‐m depth; however, concurrently at the 8‐m depth, pore pressures began to increase gradually. During the period of 21–25 days after the probe was implanted, excess pore pressures appeared to become more constant, averaging 24 kPa (3.5 psi) at 15 m and 43 kPa (6.2 psi) at the 8‐m depth. The presence of methane, a common occurrence in these delta muds, may have influenced, or contributed to, the total pore‐water pressures measured during this experiment.  相似文献   

14.
Meiobenthos from the Waiwhetu Stream (41°14.22′S, 174°54.28′E), a heavily polluted site, was low in density and numbers of species; a tubificid oligochaete Limnodrihts cf. hoffmeisteri dominated. In the Hutt River estuary (41°14.09′S, 174°53.85′E), meiofauna density was the same as in similar sediments world‐wide, but dominance by 2 species of harpacticoid copepods produced a low‐diversity assemblage. The fauna in the Pauatahanui Inlet (41°05.2′S, 174°54.05′E) was comparable in density and diversity to the faunas of muddy estuarine sediments in other parts of the world. The dominance of nematodes, abundance of Echinoderes cf. coulli (Kinorhyncha), and the variety of species suggest that the Pauatahanui site was the most normal of the 3 sampled.  相似文献   

15.
Lake Ototoa is a warm monomictic lake at 36° 31’ S, 174° 14'E. During a year's study (March 1969‐March 1970), the lake became thermally stratified in November, the metalimnion being between depths of 12 m and 16 m. Surface temperatures ranged between 10.2°c (in August) and 25.2°c (in late January), and bottom temperatures between 9.7°c and 17.5°c. The annual heat budget was calculated to be 642 354 KJ.m‐2 (15 500 cal.cm‐2) and the work of the wind in distributing the heat income 1.730 KJ.m‐2 (1766 g.cm.cm‐2). Secchi disc transparencies ranged between 5 m and 9.2 m (mean 7.07 m) and were greatest in the summer. Light transmission per metre was also high, ranging between 61% and 87%. Surface waters were normally supersaturated with oxygen, but during summer stratification oxygen concentrations in the bottom waters dropped to a minimum of 2.3 mg.litre‐2 and a positive heterograde distribution of oxygen with depth was found. The oxygen deficit was 0.015 mg.cm‐2.day‐1 and showed the lake to be oligotrophic. Mean surface pH was 7.82, and the ionic composition of the waters was similar to that of other small New Zealand and Australian lakes located near the sea. Compared with other New Zealand lakes PO4‐P concentrations (range 1.00–10.20 μg.litre‐1) were low and NO3—N concentrations (range 0.12–0.60 mg.litre‐1) high.  相似文献   

16.
The ocean temperature field off the north‐east coast of New Zealand is studied to quantify the annual cycle and reveal the intra‐ and inter‐annual variability. The data used are repeat expendable bathythermograph (XBT) sections between Auckland and either Suva or Honolulu which have been collected quarterly since 1986. These sections give temperature measurements between the surface and 800 m and Auckland and 30°S from 1986 to August 1999. The mean and annual cycle are compared with those from the NOAA World Ocean Atlas (WOA98). The results are similar; however WOA98 lacks the horizontal resolution to fully discern the East Auckland Current and North Cape Eddy, while the XBT analysis lacks the temporal resolution to discern higher frequency intra‐annual signals. The temperature variability in the mixed layer is dominated by the annual cycle, which accounts for 80–90% of the variance. The amplitude of the annual cycle diminishes rapidly with depth, from 2.8°C at the surface, to c. 0.1°C at 180 m. The phase of the annual cycle is retarded with depth, with peak temperatures occurring in February at the surface and in June/July at 180 m. Removing the annual cycle from the time series reveals the more subtle inter‐ and intra‐annual variability. This variability is of the order of 1°C in the upper 50 m, decreasing to 0.3°C at 400–500 m. The surface layer was cold between 1991 and 1994 (c. 0.7°C cooler than average), and 0.7°C warmer than average in 1999. The deeper ocean shows a different signal, being up to 0.3°C cooler in 1990–92, 0.3°C warmer in 1998, and c. 0.2°C warmer than average in 1999. The inter‐annual mixed layer variability is highly correlated with the Southern Oscillation Index and also with inter‐annual terrestrial air temperature and wind measurements from northern New Zealand. In contrast, at higher intra‐annual frequencies, the mixed layer variability is not correlated with air and wind measurements. At these higher frequencies, the air temperature is better correlated with the sea surface temperature (SST) than with the bulk mixed layer temperature.  相似文献   

17.
An angle exists between the initial static shear stress and cyclic shear stress when embankment and retaining walls are subjected to cyclic loadings. To investigate the influence of this angle on the dynamic properties of marine soft clay, tests were performed on Wenzhou soft clay. When the angle was varied from 0° to 90°, the shear strain and excess pore pressure decreased as θ increased while increased as θ increased from 120° to 180°. Shear strain developed more rapidly when θ was 120°, 150°, or 180° than that when θ was 0°, 30°, or 60°. These results indicate that the number of cycles to failure at the larger angles was greater than at the smaller angles. When θ was 90°, the strain in the x-axis direction increased as the number of cycles increased. The development of the excess pore pressure associated with specimen failure was different for different cyclic shear stress ratios and shearing angles. The effect of θ on the strain and excess pore pressure increased as the cyclic shear stress ratio increased.  相似文献   

18.
Vertical distributions of coccolithophores were observed in the depth range 0–50 m in the western subarctic Pacific and western Bering Sea in summer, 1997. Thirty-five species of coccolithophores were collected. Overall, Emiliania huxleyi var. huxleyi was the most abundant taxon, accounting for 82.8% of all coccolithophores, although it was less abundant in the western Bering Sea. Maximum abundance of this species was found in an area south of 41°N and east of 175°E (Transition Zone) reaching >10,000 cells L−1 in the water column. In addition to this species, Coccolithus pelagicus f. pelagicus, which accounted for 4.2% of the assemblage, was representative of the coccolithophore standing crop in the western part of the subarctic Pacific. Coccolithus pelagicus f. hyalinus was relatively abundant in the Bering Sea, accounting for 2.6% of the assemblage. Coccolithophore standing crops in the top 50 m were high south of 41°N (>241 × 106 cells m−2) and east of 170°E (542 × 106 cells m−2) where temperatures were higher than 12°C and salinities were greater than 34.2. The lowest standing crop was observed in the Bering Sea and Oyashio areas where temperatures were lower than 6–10°C and salinities were less than 33.0. From the coccolithophore volumes, the calcite stocks in the Transition, Subarctic, and the Bering Sea regions were estimated to be 73.0, 9.7, and 6.9 mg m−2, respectively, corresponding to calcite fluxes of 3.6, 0.5, and 0.3 mg m−2d−1 using Stoke's Law. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
This account of studies on the algae and bacteria of North Island thermal areas records temperature, pH and species found in these microbial habitats, with special attention to organisms living at the highest temperatures. Thermal features were studied at Rotorua (Whakarewarewa and Ohinemutu), Waiotapu (Tourist Reserve and Lady Knox Geyser), Orakei Korako, Taupo Spa, Waikite Springs, Wairakei thermal valley, Wairakei geothermal field, Tikitere, Ketetahi, Lake Rotokawa (Taupo region), Waimangu, De Brett Thermal Hotel (Taupo).

The upper temperature limit for blue‐green algae in New Zealand is 60–65°c, and the species living at the thermal limit is generally Mastigocladus laminosus, although in some cases Phormidium sp. or Synechococcus sp. was found. The Synechococcus sp. characteristic of high temperatures (73–74°c) present in North America was not found in New Zealand. In virtually all boiling pools (99–101°c) with pH values in the neutral and alkaline range bacteria were found, but in acidic boiling pools, bacteria were absent. The presence in New Zealand of the eucaryotic algae Cyanidium caldarium and Zygogonium sp. is reported for the first time. Further records for the hot spring brine fly Ephydrella thermarum and other ephydrids are given. The observations are compared with previous data on thermal habitats in Yellowstone Park, in Iceland, and in other parts of the world.  相似文献   

20.
Seasonal hydrology of Port Fitzroy,Great Barrier Island,New Zealand   总被引:1,自引:1,他引:0  
At 2‐monthly intervals between March 1974 and January 1975 seawater temperature and salinity (at 0 m and 5 m depths) and turbidity (as Secchi disc visibility) were measured in Port Fitzroy and adjacent bays on Great Barrier Island (36°11'S, 175°21'E). A seasonal pattern was evident in all three parameters. Variation between depths and between high and low tides was generally only slight, although differences of up to 3.6°c and 12.58‰ were recorded occasionally. Maximum temperatures (22–23°c) occurred in January, with minima (13–14°c) in July. Salinities were generally between 35.0 and 35.6‰, but values as low as 22.25‰ at the surface were recorded after heavy rainfall. Secehi disc visibility measurements of turbidity varied between 2.0 and 12.5 m, but were usually 5–9 m.

A graded series of four generalised areas was distinguished, ranging from sheltered, almost estuarine inner bays, to exposed open water with properties similar to outer Hauraki Gulf water.

The circulation through Port Fitzroy comprises the main exchange of water through the northern entrance channel, causing a southerly movement of water on the flood tide and a northerly movement on the ebb, together with a small compensatory exchange through the narrow southern entrance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号