首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
地震动相干效应会导致桥梁结构的动力响应有别于一致激励。为了研究相干效应对高墩大跨桥梁这种重要构筑物动力响应的影响,以西部某高墩大跨连续刚构铁路桥实际工程为研究对象,利用相位差谱人工地震波合成技术,建立了考虑相干效应的高墩大跨桥梁数值分析模型。对比分析了纵向和横向地震激励下,部分相干效应对结构动力响应的影响,并与一致激励的情况进行了对比,研究了不同工况下主梁和桥墩内力响应的变化规律。结果表明:纵向激励下,部分相干效应对连续刚构桥高墩影响明显,其弯矩、剪力和相对位移均为最大值,墩高对其非常敏感,且会增大该桥伸缩缝位移响应;横向激励下,部分相干效应对连续梁桥体系的桥墩剪力、弯矩和位移响应有明显放大作用。  相似文献   

2.
为研究曲线桥梁结构桥墩高度参数对地震响应的敏感性,借助有限元分析软件Midas Civil,通过分类处理建立边墩为变高墩和中墩为变高墩两类有限元分析模型。根据Newmark-β法对多自由度体系的曲线桥梁结构进行动力时程分析,结合曲线桥梁结构地震激励的输入基本方式,计算两类墩高布置形式下两跨曲线连续梁桥结构的基本周期、墩顶位移、主梁内力和桥墩墩底内力的变化规律,通过对计算结果分析探究桥墩高度参数和桥墩高度比参数对曲线桥梁结构地震响应的影响规律。研究结果表明:相同条件下,Ⅱ类曲线桥梁的整体刚度小于Ⅰ类曲线桥梁结构;各墩顶径向位移对桥墩高度比和墩高参数敏感性不同;中墩顶曲线主梁内力耦合机理复杂,难以用较少结构参数表征;变高墩墩底内力与曲线桥梁桥墩布置类型密切相关。研究结果可用于指导山区曲线桥梁结构的抗震分析和设计。  相似文献   

3.
考虑动水压力影响的单柱式桥墩地震反应分析   总被引:3,自引:1,他引:2  
在Morison方程的基础上,用附加水质量法考虑动水压力对桥墩的影响,以单柱式桥墩为研究对象,以ABAQUS有限元软件为计算平台,建立了考虑桩-土动力相互作用的单柱式桥墩地震反应分析模型,考虑土体和桥墩混凝土的动力非线性特征,分析了地震动作用下动水压力对单柱式桥墩的墩顶相对墩底位移、加速度、剪力和弯矩反应的影响,并探讨了水位对单柱式桥墩地震反应特性的影响。结果表明:动水压力改变桥墩的地震反应特性,增大了桥墩顶部相对底部的位移、墩顶绝对加速度和墩底的内力,水位变化影响桥墩的地震反应特性。对于深水桥墩抗震设计计算,考虑动水压力效应、水位变化是有必要的。  相似文献   

4.
为确定桩土作用对一座位于Ⅲ类场地上的110m三跨连续梁桥地震易损性曲线和震后通行能力的影响,首先建立墩底固结和考虑桩土作用2种有限元模型,选取50条实测的、符合工程场地条件的不同强度地震波作为输入,分别以桥墩墩顶和支座最大位移为目标响应,计算得到转角延性比和支座剪应变值,进而构建桥墩和支座的易损性曲线;然后通过宽界限法建立桥梁系统的地震易损性曲线,提出新的平均损伤水平值计算公式并结合易损性曲线评估该连续梁桥的震后通行能力。分析结果表明,同一地震强度下考虑桩土作用时的桥墩位移峰值比墩底固结情况大,更符合实际情况;对于桥梁构件易损性曲线而言,考虑桩土作用时支座破坏超越概率最大,但与墩底固结情况相比相差不大;采用桥梁系统地震易损性曲线评价桥梁交通流量变化更加合理,固结模型的震后交通流量评估Ⅲ类场地情况时不可忽略桩土作用对桥梁地震易损性的影响。  相似文献   

5.
设计制作一座人字曲线桥模型,进行了多维输入的振动台试验,分析了结构在地震作用下的震害现象,并探讨了多维输入下的地震响应特点。结果表明:人字曲线桥梁梁体和桥墩主要表现为以弯曲裂缝为主的破坏模式,竖向输入是梁跨中裂缝出现的主要原因,桥墩裂缝主要受水平输入的影响。梁跨中加速度响应受竖向输入影响最大,墩顶纵桥向加速度响应受竖向输入分量影响并不显著。单维竖向输入降低墩体竖向加速度响应,三向输入则加大墩体竖向加速度响应;对于人字桥梁伸缩缝宽度设置,分支直梁处可只考虑纵桥向地震输入,分支曲梁处则要考虑水平双向地震输入。  相似文献   

6.
目前对于S形曲线桥梁在地震激励下的动力响应尚缺乏试验研究。以一座S形钢筋混凝土曲线桥梁工程为对象,设计和制作了一座相似比为1/20的模型桥梁,通过对模型桥震害现象以及各测点应变、加速度、位移响应的分析研究了该桥梁的抗震性能及抗震能力。研究表明:在整个测试过程中桥墩钢筋均未屈服;小震输入时,桥墩墩底加速度峰值小于墩顶,墩梁径向相对位移大于切向相对位移;大震输入时由于桥墩出现较严重的扭转,导致墩顶加速度峰值小于墩底,墩梁的径向相对位移小于切向相对位移。因此在此类桥梁设计时应严格控制桥墩扭转,防止因扭转而导致桥梁失稳破坏;同时应控制墩梁的相对位移,严防落梁等地震灾害的发生。  相似文献   

7.
为研究大跨度悬索桥在多点激励作用下的地震响应规律,在已有的功率谱模型基础上提出了改进的功率谱模型,并将其应用到人工地震波合成过程中。以某水库上主跨720 m双塔单跨悬索桥为研究对象,用Midas civil建立全桥有限元模型,采用大质量法进行不同波速多点激励地震响应分析。结果表明:大跨度悬索桥在多点激励作用下的主塔内力响应、主塔位移响应及主梁位移响应均受行波效应、衰减效应、不相干效应及衰减后地震波叠加效应影响,且最终的响应值由衰减后地震波的叠加效应与衰减效应的共同作用决定;500 m/s多点激励下衰减后的地震波叠加加强效应与衰减效应共同作用后,对主塔轴力响应、主塔塔底顺桥向剪力响应、左塔上横梁处剪力和弯矩响应的加强效果最大;各波速多点激励下,主塔顶顺桥向位移响应相对变化率均大于零且几乎保持不变,主梁两端顺桥向位移响应相对变化率在1 000 m/s波速取得最大值,主梁竖向位移响应在500 m/s取得最大值并随波速的增加逐渐接近一致激励情况。  相似文献   

8.
地震作用下,相邻主梁间的碰撞会改变桥台-引桥-刚构连续梁桥结构体系的动力响应。为了探究主桥结构形式、墩高、引桥跨数和伸缩缝间距等结构参数对伸缩缝处碰撞效应和桥梁结构地震响应的影响,以某实际桥梁为背景,考虑碰撞能量耗散、桩土相互作用、桥台与台后填土相互作用以及支座和桥墩的非线性行为,采用CSIBridge建立桥台-引桥-刚构连续梁桥结构体系的有限元模型进行碰撞弹塑性动力分析。研究结果表明:不同主桥结构形式的主桥墩受力区别较大,相邻主桥墩高差较大时,选择连续梁桥结构体系更加合理。墩高增加使主引桥间动力差异增大,碰撞效应更加显著,仅对刚构墩受力影响较大。引桥跨数增多和伸缩缝间距增大分别使伸缩缝处碰撞效应增大和减小,碰撞抑制作用的增强和减弱也使得刚构墩内力和变形分别减小和增大,但对于其他桥墩基本无影响。  相似文献   

9.
地震作用下高烈度区连续刚构桥参数敏感性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
张玥  薛磊  陈帅  周敉 《地震工程学报》2020,42(2):311-317
大跨连续刚构桥的参数变化对其地震响应影响较大,为了进一步研究地震作用下刚构桥各参数变化对桥梁内力的影响,以一连续刚构桥为例,采用正交数值试验的方法,以主梁跨中横桥向弯矩、墩顶顺桥向弯矩、墩底顺桥向弯矩及墩底横桥向弯矩为考核指标,分析地震作用下结构参数(边中跨比、梁底幂次、墩高比)的变化对桥梁内力的影响规律及其参数敏感性。研究结果表明:对于跨中横桥向弯矩,墩高比对其影响较大,墩高比的增加可使弯矩值最大增加28%;对于墩顶顺桥向弯矩、墩底顺桥向弯矩以及墩底横桥向弯矩,边中跨比对其影响较大,边中跨比的增加可使弯矩值最大分别增加51%、55%和52%。高烈度区的桥梁设计应重视边中跨比及墩高比的选择。  相似文献   

10.
大跨度桥梁结构在地震发生时其支承点受到的地震动激励均不相同,使得在多级地震中其桥梁结构对于地震的响应程度也不同。通过分析多级地震作用下,水中结构的运动引起桥梁墩部周围水体辐射波浪运动对桥梁结构的影响,分析大跨度桥梁墩-水耦合边界。基于反应谱理论,计算大跨度桥梁结构承受的地震力最大值,得出多级地震响应曲线,以分析其多级地震响应;并以某地六跨桥为例,以多级地震下桥梁的位移、剪力、弯矩等响应时程为指标进行分析,得出有效结论。  相似文献   

11.
为进一步评估隔震曲线梁桥在地震激励下的抗震性能,从地震易损性角度出发并兼顾考虑地震激励方向对其易损性的影响。利用APDL建立采用板式橡胶支座的隔震曲线梁桥有限元模型,从PEER中选取同一地震事件中的近断层地震动,按规范规定比例输入水平双向地震动进行非线性动力时程分析,结合地震响应与损伤指标计算得到各构件地震易损性曲线;考虑地震激励方向的变化,通过MATLAB编程绘制得到桥梁结构构件(桥墩与支座)以及整体系统的地震易损性曲面,分析探讨地震激励方向对隔震曲线梁桥易损性的影响。结果表明:不同极限状态下各桥墩切向损伤条件概率明显大于其径向,各支座的切向与径向易损性相差不大,但仍是各支座的切向易损性略大于径向易损性;桥梁各构件(桥墩与支座)切向易损性对地震激励方向均表现出很强依赖性,而径向易损性对其的依赖性相对较弱,且伴随损伤等级的提高,构件易损性对地震激励方向更加敏感;桥梁整体系统易损性对地震激励方向的变化不太敏感,且因各构件响应之间的相关性较高,其系统易损性更接近于易损性最大的构件——易损性下限;当进行隔震曲线梁桥抗震性能评估时,应考虑不同地震激励方向对其地震易损性的影响,从而使得易损性分析...  相似文献   

12.
为研究曲率半径和近断层脉冲效应对大温差地区小半径曲线梁桥在地震作用下的动力响应和碰撞效应的影响规律,以某大温差地区曲线梁桥为研究对象,建立不同曲率半径的全桥非线性有限元模型,考虑温度变化对支座性能和伸缩缝间距的影响,开展桥梁地震响应分析.结果表明:随着主梁曲率半径增大,墩底内力响应逐渐增加,邻梁间碰撞效应逐渐增强;温度...  相似文献   

13.
为研究斜腿夹角对V形墩连续刚构桥地震响应的影响及合理斜腿夹角角度,以一座典型V形墩预应力混凝土连续刚构桥为研究对象,采用有限元分析方法研究了斜腿夹角θ对桥梁内力及位移的影响,得出了θ对结构地震响应的影响规律和变化曲线。研究结果表明:随着斜腿夹角的增加,在纵向地震力作用下,墩底纵向弯矩逐渐减小,墩顶和主梁墩顶支撑处纵向弯矩逐渐增大;在横向地震力作用下,跨中横向弯矩逐渐减小,墩底横向弯矩逐渐增大,墩顶横向弯矩基本不变;在竖向地震力作用下,墩底和墩顶竖向弯矩逐渐增大,主梁支撑处竖向弯矩逐渐减小;斜腿夹角对纵向或横向地震力作用下结构位移影响不大,对竖向地震力作用下的位移影响较大。在满足静力设计的前提下,当两斜腿夹角为90°时,结构地震响应相对较小,受力合理性最优。研究成果可为该类桥梁的抗震设计与斜腿夹角角度选取提供参考和依据。  相似文献   

14.
以一座典型山区非规则梁桥为研究对象,建立了该桥梁多维多点激励下的多自由度动力计算模型,研究了该桥梁在多维多点激励下考虑支座摩擦滑移及结构碰撞等非线性因素时的抗震性能。研究结果表明:相比一维地震输入,多维地震可使结构的动力响应增加,桥墩底部弯矩需求增大;相比一致激励,多点激励可使得支座的位移需求增大,且地震波最后到达的桥墩上方支座位移最大;同时考虑多点激励和碰撞效应可使桥墩的弯矩需求增加;水平地震作用下,矮墩上部的支座容易滑动,且双向地震较单向地震更明显,三向地震输入较双向有所增强。因此,对山区非规则梁桥进行抗震设计时应有针对性地进行多维多点地震输入计算,找出结构的最大地震需求,以期指导设计。  相似文献   

15.
为研究基础隔震体系对转体斜拉桥抗震性能的影响,以新建福厦客运专线太城溪特大桥为工程背景,建立全桥动力模型,进行非线性时程分析。选取7组地震波与5组曲面摩擦摆支座基础隔震方案,对比分析基础隔震转体斜拉桥的抗震性能。结果表明:采用基础隔震体系后,转体斜拉桥的自振周期增大,整体刚度与地震响应显著降低;曲面摩擦摆支座对结构变形的影响较小,但会使内力大幅降低,可作为该转体斜拉桥基础隔震体系的隔震支座;采用基础隔震体系后,主墩墩底弯矩减小44.83%~55.82%,剪力减小40.3%~63.09%,塔梁固结处产生最大位移65.53 mm。  相似文献   

16.
本文以一座三跨总长60 m的整体桥为案例桥,分别试设计了同跨径的半整体桥、延伸桥面板桥和常规连续梁桥。通过Midas/Civil软件建立四种桥型的有限元模型,并对其进行了E1和E2反应谱分析和时程分析,对比了四种桥型的结构反应峰值(墩顶位移、桥墩及桩基剪力与弯矩、台底位移、桥台桩基剪力与弯矩)。计算结果表明:当桥梁存在15°的斜交角,整体桥、半整体桥在地震动沿平行于桥台长边方向及其垂直方向输入时更不利,而延伸桥面板桥和常规连续梁桥在地震动沿顺桥向和横桥向输入时更不利。四种桥型在地震作用下:整体桥抗震性能最优异,但其台底位移、桥台桩基的剪力和弯矩最大;半整体桥台底位移、桥台桩基的剪力和弯矩最小,其墩顶位移、桥墩及桩基的剪力和弯矩仅比整体桥大;延伸桥面板桥和常规连续梁桥的墩-梁相对位移远大于整体桥和半整体桥,不适用于地震基本烈度高的区域。  相似文献   

17.
碰撞作用直接影响到桥梁不同构件的地震响应,是桥梁抗震研究中一直关注的问题。针对地震作用下曲线梁桥因主梁面内转动而发生主梁与切向桥台和径向挡块碰撞的现象,以1座3跨预应力混凝土连续梁桥为例,采用非线性时程分析方法,对曲线连续梁桥的双向碰撞作用影响进行研究,并分析了不同减撞措施的效果。结果表明:考虑双向碰撞作用后,下部结构响应有明显增加,主梁转动现象变得复杂,曲线梁桥地震响应分析中应通过建立精细化模型来考虑主梁双向碰撞作用的影响;在切向桥台处设置限位拉锁装置能起到较好的减轻双向碰撞作用的影响,以及采用减隔震设计后,减撞效果更明显,桥梁抗震性能明显改善,但合理减撞措施设计参数应结合曲线梁桥约束体系及结构设计参数进行体系分析确定。  相似文献   

18.
以某近海大桥引桥段连续梁桥为工程背景,建立考虑海底地震动特性和腐蚀效应的近海桥梁地震反应分析模型。采用增量动力分析方法分析腐蚀效应以及海底地震动作用对近海桥梁地震响应的影响。研究结果表明:腐蚀效应与海底地震动作用都会不同程度影响近海桥梁结构的抗震性能。其中:腐蚀效应会增大近海桥梁的破坏指标,降低最大墩底剪力和弯矩值,从而降低桥梁的抗震性能;海底地震动作用会增大近海桥梁的破坏指标及最大墩底剪力、弯矩值;在2种因素耦合作用下,桥梁的抗震性能将会进一步降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号