首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Variability of Northeastward Current Southeast of Northern Ryukyu Islands   总被引:8,自引:4,他引:8  
To better understand the mechanism underlying the variation of the Kuroshio south of central Japan, we have examined the variability of current structure in its upstream region, southeast of Amami-Ohshima Island in the northern Ryukyu Islands. By combined use of ship-mounted Acoustic Doppler Current Profiler (ADCP) and the TOPEX/POSEIDON satellite altimeter data on Path 214, the sea surface absolute geostrophic currents were estimated every ten days from January 1998 to July 2002. The 4.5-year mean surface current was found to flow northeastward north of 26.8°N with a maximum speed of 14 cm s−1 over the shelf slope at 3000 m depth. The moored current-meter observations at three or four mooring stations from Dec. 1998 to Oct. 2002 suggested the existence of a northeastward undercurrent with a maximum core velocity of 23 cm s−1 at 600 m depth over the shelf slope at 1600 m depth. The mean volume transport in the top 1500 m between 27.9°N and 26.7°N is estimated to be 16 × 106 m3s−1 northeastward, including the subsurface core current related component of 4 × 106 m3s−1. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Hydrology and circulation in central and southern Cook Strait,New Zealand   总被引:2,自引:2,他引:0  
The circulation and hydrology of Cook Strait are defined using both the geostrophic method and the hydrologiieal characteristics of the different water masses. Cool, low salinity water in a branch of the Southland Current, which extends along the east coast of the South Island into Cook Strait, mixes above the depth of the continental shelf with warmer, more saline Subtropical Water from both the D'UrVille Current and the East Cape Current. Subtropical Water derived from the East Cape Current occupies the Cook Strait Canyon; below 100 m this water meets the Subtropical Water of the southwest‐flowing D'Urville Current in a convergence situated in the Oook Strait Narrows. Mixed water derived from all three currents passes eastwards across Cook Strait and up the east coast of the North Island.  相似文献   

3.
The distribution of 376 salmon caught at sea between 41 °S and 46 °S up to 48 km off the east coast of the South Island between 1925 and 1978 is discussed. The distribution appears to be related to strong currents in Cook and Foveaux Straits, and to the Southland Current off the east coast of the South Island. Samples from the sea at Moeraki Peninsula had a higher incidence of stream‐reared fish and a lower mean fork length than samples from the Waitaki or Rakaia Rivers at spawning.  相似文献   

4.
In 2005, 2006, 2007 and 2011, distinct Oegopsida squid egg masses were observed by scuba divers on the narrow southern KwaZulu-Natal (KZN) shelf in depths of 35–50 m off the coastal resorts of Park Rynie, Pumula and Port Edward, South Africa. In 2006, larvae in the egg balloons were sampled. DNA barcoding (i.e. cytochrome c oxidase subunit 1 sequencing) linked the larvae to the genus Lycoteuthis, a group commonly found on the continental slope of the Agulhas Bank and the west coast of South Africa. In all cases, the sightings were concomitant with low water temperatures of 14–18 °C, indicative of shelf edge upwelling. Historical ship-collected CTD data show these cooler waters to originate from a depth of 100–180 m on the KZN continental slope. Complementary satellite imagery revealed the cooler water and discoveries of the egg balloons to be coincident with cold core cyclonic eddies embedded in the shoreward boundary of the Agulhas Current. The temperature data suggest that these egg balloons, in the absence of cyclonic eddy activity, would normally be found in the current on a density surface at a depth of ~130 m where velocities are typically around 100 cm s–1.  相似文献   

5.
《Coastal Engineering》2005,52(1):93-102
A simplified analytical model for continental shelf wind-driven currents is adopted. The calculated results compare favorably with extensive field measurements from two separate sources. The model is used to hindcast the current climatology on the Israeli continental shelf. The maximum northward/southward alongshore currents at 10-m water depth, with a return period of 100 years, are found to be 1.28 and 0.53 m/s, respectively.  相似文献   

6.
The Current Structure of the Tsushima Warm Current along the Japanese Coast   总被引:4,自引:0,他引:4  
The branching of the Tsushima Warm Current (TWC) along the Japanese coast is studied based upon intensive ADCP and CTD measurements conducted off the Wakasa Bay in every early summer of 1995–1998, the analysis of the temperature distribution at 100 m depth and the tracks of the surface drifters (Ishii and Michida, 1996; Lee et al., 1997). The first branch of TWC (FBTWC) exists throughout the year. It starts from the eastern channel of the Tsushima Straits, flows along the isobath shallower than 200 m along the Japanese coast and flows out through the Tsugaru Strait. The current flowing through the western channel of the Tsushima Straits feeds the second branch of TWC (SBTWC) which develops from spring to fall. The development of SBTWC propagates from the Tsushima Straits to Noto Peninsula at a speed of about 7 cm sec−1 following the continental shelf break with a strong baroclinicity. However, SBTWC cannot be always found around the shelf break because its path is influenced by the development of eddies. It is concluded that SBTWC is a topographically steered current; a current steered by the continental shelf break. Salient features at intermediate depth are the southwestward subsurface counter current (SWSCC) between 150 m and 300 m depths over the shelf region in 1995–1998 with the velocity exceeding about 5 cm sec−1, although discrepancies of the velocity and its location are observed between the ADCP data and the geostrophic currents. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
In order to clarify detailed current structures over the continental shelf margin in the East China Sea, ADCP measurements were carried out in summers in 1991 and 1994 by the quadrireciprocal method (Katoh, 1988) for removing diurnal and semidiurnal tidal flows from observed flows, together with CTD measurements. We discussed the process of the Tsushima Current formation in the East China Sea. The Tsushima Current with a volume transport of 2 Sv (1 Sv=106 m3s–1) was found north of 31°N. A current with a volume transport of 0.4 Sv was clearly found along the 100 m isobath. Between the Kuroshio and the current along the 100 m isobath, southeastward component of velocity was dominant compared to northwestward one. Four eastward to southeastward currents were found over the sea bed shallower than 90 m depth. Total volume transport of these four currents was 1 Sv, and they seemed to be originated from the Taiwan Strait. Intrusion of offshore water into the inner shelf northwest of Amami Oshima was estimated to have a volume transport of 0.6 Sv. It is concluded that the Tsushima Current is the confluence of these currents over the continental shelf margin with the offshore water intruding northwest of Amami Oshima.  相似文献   

8.
一个典型南海北部第二模态内孤立波的观测分析   总被引:1,自引:0,他引:1  
第二模态内孤立波在海洋中极少被观测到。本文基于潜标高时空分辨率观测数据,对南海北部陆架区的一个典型第二模态内孤立波进行了分析。结果表明,该第二模态内孤立波的流核出现在135 m深度处,其最大水平流速为0.66 m/s,传播方向为西偏北58°。沿传播方向的内孤立波流速分布在80~170 m的深度范围内,而与传播方向相反的逆流出现在海表和海底附近。垂向模态分析表明,该第二模态内孤立波水平流速的垂向结构与理论结果吻合良好。能量计算结果显示其动能密度的垂向积分可达14 kJ/m2,而波峰线方向单位长度上的动能估算值为5.98 MJ/m。尽管该第二模态内孤立波的动能比陆架区第一模态内孤立波小1个量级,但其高达0.045 s-1的流速垂向剪切约为典型第一模态内孤立波的2倍,表明其导致的混合可能更强。  相似文献   

9.
Abstract

Semidiurnal variations in the depth of the thermocline observed near the shelf edge north‐west of Cape Egmont are probably caused bv an internal tide generated at around 200 m depth over the continental slope. The observations suggest that in this region an internal tide, with amplitude of about 20 m, propagates onto the shelf with a speed of approximately 0.5 m·s?1 and a wavelength of about 22 km.  相似文献   

10.
Based on the surface drifters that moved out from the Sea of Okhotsk to the Pacific, the surface velocity fields of mean, eddy, and tidal components in the Oyashio region are examined for the period September 1999 to August 2000. Along the southern Kuril Island Chain, the Oyashio Current, having a width of ∼100 km, exists with velocities of 0.2–0.4 m s−1. From 40°N to 43°N, the Subarctic Current flows east- or northeastward with velocities of 0.1–0.3 m s−1, accompanied by a meandering Oyashio or Subarctic front. Between the Oyashio and Subarctic current regions, an eddy-dominant region exists with both cyclonic and anticyclonic eddies. The existence of an eastward flow just south of Bussol' Strait is suggested. The 2000 anticyclonic warmcore ring located south of Hokkaido was found to have a nearly symmetric velocity structure with a maximum velocity of ∼0.7 m s−1 at 70 km from the eddy center. Diurnal tidal currents with a clockwise tidal ellipse are amplified over the shelf and slope off Urup and Iturup Islands, suggesting the presence of diurnal shelf waves. From Lagrangian statistics, the single-particle diffusivity is estimated to be ∼10 × 107 cm2s−1.  相似文献   

11.
The input of river-borne sediments to the New Zealand continental shelf has been calculated for all the major rivers and basins in New Zealand. South Island yields 284 ± 40 × 106 tonnes per year of sediment from a land area of 152 977 km2 and North Island yields 105 ± 9·4 × 106 tonnes per year from a land area of 114 621 km2. Particularly high discharges are noted off the west coast of South Island and east coast of North Island and result in higher offshore sedimentation there. The data are compatible with measured sedimentation rates on the New Zealand continental shelf. The specific sediment yield from South Island is amongst the highest previously recorded.  相似文献   

12.
Results are presented here of measurements of current velocity, temperature and salinity made at seven positions in McMurdo Sound (77° 50’ S, 166° 30’ E): four near the seasonal ice/fast ice boundary, two along the seasonal ice/sea boundary, and one in a channel in the sea ice. Current velocities were strongly influenced by tides with speeds greatest during periods of high tidal range. Current velocities changed rapidly in the upper 100 m and current speeds generally increased with depth to within 200 m of the bottom. In the lower 200 m current speed decreased towards the bottom. The mean circulation near the seasonal ice/fast ice boundary, found by eliminating the tidal variation, appears to consist of an inflow of water towards the fast ice at positions further than a mile (1.3 km) from Ross Island and a nett outflow from under the fast ice at positions closer than a mile (1.3 km) from Ross Island.  相似文献   

13.
Data on ocean temperature, currents, salinity and nutrients were obtained in an area off Algoa Bay on the south-east coast of South Africa during a ship's cruise in early November 1986. Satellite imagery provided information on the position of the Agulhas Current during the cruise period, while wind data were available from weather stations on the eastern and western sides of Algoa Bay. It is surmised that wind-forcing plays a major role in water circulation in the Bay and over the inshore continental shelf remote from the influence of the open ocean. The predominantly barotropic current flow, of the order of 0,5 m·s?1, was downwind and influenced by topographic features and coastline shape. The Agulhas Current influences the ocean structures by long-term (large episodic meanders) and short-term (upwelling forced by the Current, core upwelling in frontal eddies and warm frontal plumes at the surface) fluctuations. Temperature structures showed well mixed water in Algoa Bay and a strong thermocline over the continental shelf, and were typical of a western boundary current in the Agulhas Current itself. The presence of a thermocline at 30–50 m over the shelf prevented upward mixing of nutrients. The Current exerted a dominant effect on shelf waters north of Algoa Bay.  相似文献   

14.
The distribution of nepheloid layers across the outer shelf and upper continental slope off Namibia was studied during a cruise with R.V. Meteor in late austral summer 2003. Optical measurements, carried out with a transmissometer and a backscattering fluorometer, are correlated with suspended particulate matter (SPM) and particulate organic carbon (POC) values from water sample filtration. Conductivity-temperature-depth and oxygen data are used to relate the nepheloid layers to hydrographic structures. The particle content of surface water at the continental slope is controlled primarily by the offshore extension of highly productive upwelling filaments. A pronounced bottom nepheloid layer (BNL) covers the entire area of study with maximum intensity above the outer shelf and at the shelf break—an area where erosional forces dominate. The detachment of this BNL at the shelf break feeds a major intermediate nepheloid layer (INL) at 25.5°S. This INL is positioned at 250–400 m depth, at the lower boundary of an oxygen minimum zone, and is likely connected to the poleward flow of South Atlantic Central Water (SACW) across the shelf break. Together, these strong subsurface nepheloid layers are indicators of intensive lateral particle transport from the outer shelf towards a depocenter of organic matter on the upper continental slope.  相似文献   

15.
Near bottom water samples and sediments were taken during five cruises to 6 stations forming a transect across the N.W. European Continental Margin at Goban Spur. Flow velocity spot measurements in the benthic boundary layer (BBL) always increased from the shelf to the upper slope (1470 m) from 5 to 9 cm s−1 in spring/summer and from 15 to 37 cm s−1 in autumn/winter. Decreasing values were detected at the lower slope (2000 m) and the lowest values of ca. 2 cm s−1 at the continental rise at 4500 m water depth. Long term measurements with a benthic lander at 1470 m show that currents have a tidal component and reach maximum velocities up to 20 cm s−1, sufficiently high periodically to resuspend and transport phytodetritus. During these long-term observations, currents were always weaker in spring/summer than in autumn/winter. Critical shear velocities of shelf/slope sediments increased with depth from 0.5 to 1.7 cm s−1 and major resuspension events and Intermediate Nepheloid Layers (INLs) should occur around 1000 m. Chloroplastic Pigment Equivalents (CPE) ranged from 0.0 to 0.21 μg dm−3, Particulate Organic Carbon (POC) from 12 to 141 μg dm−3 and Total Particulate Matter (TPM) from 0.2 to 10.0 mg dm−3. Aggregates in the BBL occurred with a median diameter of 152 to 468 μm. Data on suspended particulate matter in the near-bottom waters showed that hydrodynamic sorting within the particulate organic fraction occurred. Phytodetritus was packaged in relatively large aggregates and contributed little to the total organic carbon pool in nearbottom waters (CPE/POC ca.0.2%). The main organic fraction has low settling velocities and high residence times within the benthic boundary layer. As POC was not concentrated in the near bed region the degree to which carbon is accessible to the benthic community depends on aggregate formation, subsequent settling and/or biodeposition of the POC. Close to the sea bed downslope transport may dominate. Under flow conditions high enough to resuspend fresh phythodetritus from sediments at the productive shelf edge, this could be transported to 1500 m (Goban Spur) or abyssal depth (Canyon site between Meriadzek and Goban Spur) within 21 days.  相似文献   

16.
Polychaete assemblages are described from replicate box‐core samples collected in summer 1983 at 18 stations on the continental shelf and upper slope (28–943 m) off the west coast of the South Island, New Zealand, south‐eastern Tasman Sea (c. 41–43°S, 169–172°E). Three main station groupings were identified by multivariate analysis: (1) inner shelf sandy stations characterised by Prionospio australiensis, Aricidea (Acesta) sp., Magelona cf. dakini, Paraprionospio aff. pinnata, Aglaophamus sp., Heteromastus filiformis, and Magelona sp.; (2) middle to outer shelf muddy stations characterised by Levinsenia cf. gracilis, Prionospio australiensis, Paraprionospio coora, Aglaophamus verrilli, and Auchenoplax mesos; and (3) upper slope sandy mud or mud stations characterised by Prionospio ehlersi. A combination of water depth and sediment clay content provided the best correlation with the biotic pattern. Spionidae was the most abundant family (49% of polychaete individuals), which may reflect the scope for opportunistic species in a shelf environment characterised by a high input of terrigenous sediment and episodic upwelling.  相似文献   

17.
Current meter data collected over the last 20 years are presented and used to describe the residual currents on the Celtic and Armorican slope and shelf regions. On the slopes, a poleward current of about 6cm s−1 exists at the 500m depth contour. At mid depths, these currents are directed onslope, whereas near the bottom the flow in markedly downslope, reaching mean speeds of about 15cm s−1 near 6°40′W. The downslope currents are thought to be largely tidally induced and balanced by Stokes transports. The total slope transport near 48°N is about 4Sv. On the upper slopes (<1000m depth) the transport increases poleward. On the outer Celtic shelf, a weak (2 cm s−1) counter-current flowing southeastwards was observed. On the Armorican shelf, the residual flow is again nothwestwards and this coastal flow appears to continue northwards across the mouth of the English Chanel and past the Isles of Scilly with typical mean upper layer speeds of about 2cm s−1. Southwest of Ireland the flow is again northwesterly. Numerical model simulations show that the eastern slope boundary current of the NE Atlantic can be driven by realistic distributions of seawater density. The simulations also show only a small wind driven barotropic response on the Celtic and Armorican shelf region and that a component of the residual shelf flows, like the slope current, may be driven by pressure distributions arising from regional differences in the distribution of seawater density, or from non local wind stress.  相似文献   

18.
海南岛东部陆架海底地貌   总被引:4,自引:0,他引:4  
通过二十多条测线的测深、旁测声纳和浅地层连续测量的调查以及底质等资料,概述了海南岛东部陆架海底堆积平原地貌及其上的地貌类型,其中海底沟,坎、岗阜等地貌类型的线性排列和古海岸线的位置相应。  相似文献   

19.
Circulation in Tasman Bay   总被引:4,自引:4,他引:0  
Direct current measurements at four locations in Tasman Bay and numerical model results are used to analyse the mean flow in Tasman Bay. The mean circulation conforms to that previously found from drift card experiments: a clockwise circulation in Golden Bay, and an anti‐clockwise flow in Tasman Bay, with a return south‐westerly flow on the coast near Nelson. Typical mean speeds are 0.02–0.05 m.s‐1. The circular flow appears asymmetrical in both bays, with a stronger outflow along Farewell Spit in Golden Bay and near D'Urville Island in Tasman Bay.

An analytical tidal solution is used to exhibit the influence of Cook Strait in producing smaller tidal amplitudes in eastern Tasman Bay. Tidal speeds of 0.15–0.30 nus‐1 are typical, with tidal ellipses having degenerated into north‐east, south‐west lines.  相似文献   

20.
The bottom currents in the Challenger Deep, the deepest in the world, were measured with super-deep current meters moored at 11°22′ N and 142°35′ E, where the depth is 10915 m. Three current meters were set at 9687 m, 10489 m and 10890 m at the station in the center of the Challenger Deep for 442 days from 1 August 1995 to 16 October 1996. Although rotor revolutions in 60 minutes of recording interval were zero for 37.5% of the time, the maximum current at the deepest layer of 10890 m was 8.1 cm s−1, being composed of tidal currents, inertia motion and long period variations. Two current meters were set at 6608 m and 7009 m at a station 24.9 km north of the center for 443 days from 31 July 1995 to 16 October 1996, and two current meters at 6214 m and 6615 m at a station 40.9 km south of the center for 441 days from 2 August 1995 to 16 October 1996. The mean flow at 7009 m depth at the northern station was 0.7 cm s−1 to 240°T, and that at 6615 m depth at the southern station was 0.5 cm s−1 to 267°T. A westward mean flow prevailed at the stations, and no cyclonic circulation with mean flows of the opposite directions was observed in the Mariana Trench at a longitude of 142°35′ E. Power spectra of daily mean currents showed three spectral peaks at periods of 100 days, 28–32 days and 14–15 days. The peak at 100 day period was common to the power spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号