首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Heeremans  & Wijbrans 《地学学报》1999,11(5):216-222
The post-Svecofennian tectonic development of southern Finland is controlled by intrusion of rapakivi granites (and associated rocks), reactivation of Svecofennian wrench zones, formation of sedimentary basins and successive intrusion of olivine dolerite dykes and sills. Relative age determinations have revealed that fault reactivation acted before, simultaneously and after intrusion of the rapakivi granites. Results of 40Ar/39Ar geochronometry of the Porkkala–Mäntsälä fault (30 km west of Helsinki) reveal ages predominantly in the range 950–1300 Myr. These ages are all significantly younger than the intrusion age of the rapakivi granites. It is suggested that these ages represent tectonic events related to the intrusion of olivine dolerite dykes and sills in SW Finland and the Sveconorwegian Orogeny active further west. 40Ar/39Ar ages of a sample taken from the Obbnäs granite (U–Pb zircon ages of 1645 ± 5 Myr) show ages predom-inantly in the range of 1400–1550 Myr. These ages are suggested to represent either cooling ages of the granite or ages associated with the formation of the sedimentary grabens.  相似文献   

2.
Determinations of the absolute age of cleavage formation can provide fundamental information about the evolution of orogenic belts. However, when applied to cleavages in slates and phyllites, conventional dating methods are complicated by problems related to mineral separation and the presence of multiple cleavage generations. In situ high-spatial-resolution 40Ar/39Ar laser microprobe geochronology and microstructural observations indicate that the age of cleavage formation in slates and phyllites can be constrained by analysing zones of tightly packed cleavage domains. Three regionally developed cleavages (S2, S3, and S4) are present in the northern Taconic Allochthon of Vermont and New York. Representative samples were studied from a variety of localities where these cleavages, which are defined by white micas, are well developed. In the suite of samples, only S3 and S4 are expressed as domains that are sufficiently wide and spatially isolated in thin section to permit quantitative 40Ar/39Ar geochronology. Mean 40Ar/39Ar laser microprobe ages for these domains are 370.7 ± 1.0 Myr for S3 and 345.5 ± 1.7 Myr for S4. Because estimates of the Ar closure temperature for white micas are substantially higher than the inferred growth temperatures of the micas defining S3 and S4, these values are interpreted as periods since cleavage formation. This interpretation is consistent with independent geochronological constraints on the age of the Acadian orogeny in the region.  相似文献   

3.
New 40Ar/39Ar ages are presented from the giant Sulu ultrahigh-pressure (UHP) terrane and surrounding areas. Combined with U-Pb ages, Sm-Nd ages, Rb-Sr ages, inclusion relationships, and geological relationships, they help define the orogenic events before, during and after the Triassic collision between the Sino–Korean and Yangtze Cratons. In the Qinling microcontinent, tectonism occurred between 2.0 and 1.4 Ga. The UHP metamorphism occurred in the Yangtze Craton between 240 and 222 Ma; its thermal effect on the Qinling microcontinent was limited to partial resetting of K-feldspar 40Ar/39Ar ages. Subsequent unroofing at rates of 5–25 km Myr−1 brought the UHP terrane to crustal levels where it underwent a relatively short amphibolite facies metamorphism. The end of that metamorphism is marked by 40Ar/39Ar ages in the 219–210 Ma range, implying cooling at crustal depths at rates of 50–200 °C Myr−1. Ages in the 210–170 Ma range may reflect protracted cooling or partial resetting by Jurassic or Cretaceous magmatism. Jurassic 166–149 Ma plutonism was followed by cooling at rates of c. 15 °C Myr−1, suggesting relatively deep crustal conditions, whereas Cretaceous 129–118 Ma plutonism was succeeded by cooling at rates of c. 50 C Myr−1, suggesting relatively shallow crustal depths.  相似文献   

4.
The Mersin ophiolite, which is a relic of the late Cretaceous Neotethyan ocean domain in the eastern Mediterranean, is situated on the southern flank of the central Tauride belt. The ophiolite body is cross-cut at all structural levels by numerous mafic dyke intrusions. The dykes do not intrude the underlying melange of platform carbonates. Therefore, dyke emplacement post-dates the formation of the opholite and metamorphic sole but pre-dates the final obduction onto the Tauride platform. The post-metamorphic dyke swarms suggest the geochemical characteristics of Island Arc Tholeiites (IAT). 40Ar/39Ar geochronology of the post-metamorphic microgabbroic-diabasic dykes cutting both mantle tectonites and metamorphic sole revealed ages ranging from 89.6 ± 0.7–63.8 ± 0.9 Myr old, respectively, indicating widespread magmatic activity during the Late Cretaceous-early Palaeocene in the Neotethyan ocean. These data suggest that island arc development in the Neotethyan ocean in southern Turkey was as early as Late Cretaceous.  相似文献   

5.
Direct absolute dating of the Penninic Frontal Thrust tectonic motion is achieved using the 40Ar/39Ar technique in the Pelvoux Crystalline Massif (Western Alps). The dated phengites were formed syn-kinematically in shear zones. They underline the brittle-ductile stretching lineation, pressure-shadow fibres and slickensides consistent with underthrusting of the European continental slab below the propagating Penninic Thrust. Chlorite–phengite thermobarometry yields 10–15 km and T ∼280 °C, while 40Ar/39Ar phengite ages mainly range between 34 and 30 Ma, with one younger age at 27 Ma. This Early Oligocene age range matches a major tectonic rearrangement of the Alpine chain. Preservation of prograde 40Ar/39Ar ages is ascribed to passive exhumation of the Pelvoux shear zone network, sandwiched between more external thrusts and the Penninic Front reactivated as an E-dipping detachment fault. Partial resetting in the Low Temperature part of argon spectra below 24 Ma is ascribed to brittle deformation and alteration of phengites.  相似文献   

6.
New U–Pb detrital zircon ages from Triassic metasandstones of the Torlesse Terrane in New Zealand are compared with 40Ar/39Ar muscovite data and together, reveal four main source components: (i) major, Triassic–Permian (210–270 Myr old) and (ii) minor, Permian–Carboniferous (280–350 Myr old) granitoids (recorded in zircon and muscovite data); (iii) minor, early middle Palaeozoic, metamorphic rocks, recorded mainly by muscovite, 420–460 Myr old, and (iv) minor, Late Precambrian–Cambrian igneous and metamorphic complexes, 480–570 Myr old, recorded by zircon only. There are also Proterozoic zircon ages with no clear grouping (580–1270 Myr). The relative absence of late Palaeozoic (350–420 Myr old) components excludes granitoid terranes in the southern Lachlan Fold Belt (Australia) and its continuation into North Victoria Land (East Antarctica) and Marie Byrd Land (West Antarctica) as a potential source for the Torlesse. The age data are compatible with derivation from granitoid terranes of the northern New England Orogen (and hinterland) in NE Australia. This confirms that the Torlesse Terrane of New Zealand is a suspect terrane, that probably originated at the NE Australian, Permian–Triassic, Gondwanaland margin and then (200–120 Ma) moved 2500 km southwards to its present New Zealand position by the Late Cretaceous (90 Ma). This sense of movement is analogous to that suggested for Palaeozoic Mesozoic terranes at the North American Pacific margin.  相似文献   

7.
Abstract Five whole-rock 40Ar/39Ar plateau ages from low-grade sectors of the Sambagawa belt (Besshi nappe complex) range between 87 and 97 Ma. Two whole-rock phyllite samples from the Mikabu greenstone belt record well-defined 40Ar/39Ar plateau ages of 96 and 98 Ma. Together these ages suggest that a high-pressure metamorphism occurred in both the Sambagawa and Mikabu belts at c. 90–100 Ma. The northern Chichibu sub-belt may consist of several distinct geochronological units because metamorphic ages increase systematically from north ( c. 110 Ma) to south ( c. 215 Ma). The northern Chichibu sub-belt is correlated with the Kuma nappe complex (Sambagawa belt). Two whole-rock phyllite samples from the Kurosegawa terrane display markedly older metamorphic ages than either the Sambagawa or the Chichibu belts.
Accretion of Sambagawa-Chichibu protoliths began prior to the middle Jurrasic. Depositional ages decrease from middle Jurassic (Kuma-Chichibu nappe complex) to c. 100 Ma (Oboke nappe complex) toward lower tectonostratigraphic units. The ages of metamorphic culmination also decrease from upper to lower tectonostratigraphic units. The Kurosegawa belt and the geological units to the south belong to distinctly different terrances than the Sambagawa-Chichibu belts. These have been juxtaposed as a result of transcurrent faulting during the Cretaceous.  相似文献   

8.
Abstract 40Ar/39Ar step-heating and single-grain laser fusion ages from phengites from the polydeformed and polymetamorphosed blueschist-greenschist facies Nome Group fall into two groups. Samples from the upper part of the structural section that have experienced a relatively weak metamorphic and deformational post-blueschist facies overprint and one sample from the Cape Nome orthogneiss yield plateau ages of 116-125 Ma. More intensely overprinted samples yield hump-shaped spectra with minimum ages of 123 Ma and maximum ages of 334 Ma. Samples with hump-shaped spectra are derived from a greater structural depth than most samples with plateau ages. Unreasonably old maximum ages from some of the disturbed spectra suggest that the hump-shaped spectra result from the incorporation of excess 40Ar. This interpretation conflicts with previous interpretations of similarly disturbed spectra from the Brooks Range, which have been argued to provide minimum ages for blueschist facies metamorphism. Since the maximum temperatures achieved by all samples were probably above the blocking temperature of Ar in phengite, the 116-125 Ma plateau ages are a minimum age for blueschist facies metamorphism on the Seward Peninsula, Alaska.  相似文献   

9.
The alkalic Scituate Granite was emplaced into crystalline sequences within the New England Esmond–Dedham terrane in the Late Devonian ( c. 370 Ma). Variably recrystallized amphibole (iron-rich, hastingsite–hastingsitic hornblende) from four variably deformed samples of the pluton record south-westerly younging 40Ar/39Ar plateau ages ranging between 276 and 263 Ma. These are interpreted to date diachronous cooling through temperatures appropriate for intracrystalline retention of argon following late Palaeozoic orogenic activity. Iron-rich biotite concentrates from the samples record only slightly younger ages, and therefore suggest relatively rapid post-metamorphic cooling. The 40Ar/39Ar ages indicate that the late Palaeozoic tectonothermal overprint was much more regionally pervasive than was previously considered. The apparent timing of this activity is similar to previous estimates for the chronology of high-grade metamorphism throughout the adjacent Hope Valley terrane and for phases of ductile movement on the intervening Lake Char–Honey Hill fault system.  相似文献   

10.
In the Western French Massif Central, the Argentat fault is a major structure through which As–Au fluids percolated in the Late Carboniferous along brittle fractures. New petrostructural investigations show that an early ductile normal-dextral faulting, coeval to leucogranite emplacement took place during the Late Visean syncollisional extension of the belt and was accompanied by a hydrothermal event marked by the growth of muscovites whose 40Ar/39Ar ages cluster around 335 Ma. This early fluid channelling is associated with brittle deformation only in the hangingwall of the Argentat fault, whereas ductile deformation is restricted to the footwall. These results provide new evidence for the upper crust implication during the syncollisional extension in the French Massif Central. This study stresses the interest of a detailed multimethod analysis to characterize hydrothermal processes, especially in basement areas where the tectonic, plutonic and metamorphic evolution is polyphased.  相似文献   

11.
Abstract. 40Ar-39Ar analyses of two alunite samples from phreatic craters in the Pliocene Muine volcano in southwest Hokkaido, Japan, were carried out. The alunite with 17.4 permil δ34SV_CDT value in hydrothermal breccia from the Nagaoyama crater and that with 14.3 permil δ34SV_CDT value in silicified andesite from the Konuma crater give total fusion ages of 1.40 ± 0.04 Ma (la uncertainty) and 1.24 ± 0.08 Ma, respectively. However, the spectra of these samples indicate they have been effected by thermal overprinting and/or the existence of excess argon. These preliminary 40Ar-39A analyses suggest that the alunite underwent multiple hydrothermal activity by magmatic gas and vapor subsequent to the main hydrothermal activity.  相似文献   

12.
Abstract 40Ar/39Ar ages from white mica in rocks of the internal zone of the Brooks Range contractional orogen indicate that the Nanielik antiformal duplex developed at about 120 Ma and was remobilized on its southern boundary at c . 108 Ma. Blueschist facies metamorphism accompanied development of the antiform. The timing of the blueschist facies event and creation of the antiform overlap the period of shallow-seated deformation in the foreland fold and thrust belt and sedimentation in the foreland basin of the Brooks Range. Blueschist facies P-T conditions may therefore characterize the thicker parts of orogenic wedges in some orogenic systems; ancient blueschists need not necessarily be interpreted as indicators of active subduction or continent-continent collision.
Microprobe analysis using quantitative wavelength-dispersive and electron backscattered electron imaging methods was used to characterize the composition of white micas in the dated samples. None of the samples was compositionally homogeneous; many contained 2-3 populations of white mica, including both potassic and sodic varieties. Samples which had undergone (in sequence) amphibolite, albite-epidote amphibolite and blueschist facies metamorphic events retained muscovites relict of the amphibolite facies event. Samples that had undergone only the blueschist facies event also contained multiple populations of mica, some probably from detrital sources.  相似文献   

13.
We present the first trace element and age data combined with new Sr, Nd, and Pb isotope ratios on lavas from San Felix Island in the Southeast Pacific. A 40Ar/39Ar plateau age of 421 ± 18 ka implies young intraplate volcanic activity in this region relative to the ∼22 Ma old volcanism on the neighbouring Easter seamount chain (ESC). The incompatible element compositions of the San Felix magmas are similar to those of EM1-type basalts from Gough, although the isotopic compositions differ. San Felix formed some 20 Ma after the ESC plume affected the plate in this region but no chemical signature of the ESC material is observed in the young volcanic rocks. The composition of the San Felix basalts indicates a mantle source containing old continental lithospheric material from either metasomatized mantle or recycled sediments, which ascends in a weak mantle plume.  相似文献   

14.
Abstract Existing geochronological data are reviewed and new Rb-Sr, K-Ar and 39Ar–40Ar ages are presented, including a suite of 33 mica ages from a 20 km north–south tunnel section. These data are discussed in relation to the thermal history from the overthrusting of the Autroalpine nappes c. 65 Myr ago to the present. The earliest phase of metamorphism, involving lawsonite crystallization, is associated with emplacement of these nappes. Subsequently, temperatures in the rocks beneath rose, at a mean rate of 3–6°C/Myr, until the climax of metamorphism.
At high structural levels, published data indicate an age > 35 Myr for the metamorphic climax. In contrast, a new 39Ar–40Ar step-heating age of 23.8 ± 0.8 Myr on amphibole, from near the base of Peripheral Schieferhülle, closely approximates the age of metamorphism and provides the first clear indication that the climax of metamorphism occurred later at deeper structure levels. Following the climax, near-isothermal uplift and erosion reduced pressure to c. 1 kbar before white mica closure at 19 Myr; this implies uplift at >3 mm/yr.
Along the tunnel section, white mica K-Ar ages vary systematically from 24 Myr to 16.5 Myr with position relative to a late 4 km amplitude dome whereas biotite Rb-Sr ages are uniform at 16.5 Myr across the whole profile; doming is thus dated at 16.5 Myr with transient uplift rates >5 mm/yr. At other times uplift rates were <1 mm/yr.  相似文献   

15.
R. L. Romer 《地学学报》2001,13(4):258-263
The isotopic composition of lead available for incorporation during metamorphic reactions is heterogeneous, depends on the reaction history of the metamorphic rock, and is commonly not accessible for measurement as the precursor minerals have been consumed during the growth of the metamorphic phases. The initial lead composition has a significant effect on the age of low-238U/204Pb metamorphic phases (e.g. garnet, rutile, titanite, staurolite, vesuvianite and ilmenite). Using a distinct value (e.g. leached K-feldspar Pb, model Pb) rather than a geologically reasonably constrained range may result in apparently precise, yet inaccurate ages. Since age data from metamorphic minerals are widely used to unravel the P–T–t–d evolution of orogens, inaccurate ages result in: (1) incorrect timing (duration) of P–T loops and associated with it the heat budget and mass transfer in orogens; (2) arbitrary rates (based on the age difference between core and rim) for mineral growth, P–T evolution and deformation; and (3) apparent sequences of isotopic closure for the U–Pb system of contrasting minerals.  相似文献   

16.
Apatite fission track dating from a central transect in the Argentera massif (southernmost External Crystalline Massif = ECM) yielded ages between 8.05 ± 0.6 and 2.4 ± 0.2 Myr, with a positive age/altitude correlation above 3 Ma, 1200 m. Recognising a thermal peak at c . 250°C, 33 Ma, based on stratigraphic, metamorphic and 39Ar/40Ar data, the present results suggest a slow cooling rate (8–5°C) for the Argentera massif during the Oligocene–early Pliocene. This rate compares with that from the Pelvoux massif, but contrasts with those observed in the northern ECM (Mont-Blanc and Aar: up to 14°C Myr−1) for the same time interval. This can be related to the different location of the ECM within the collided European margin. At about 3–4 Ma, the denudation rate would have increased up to c . 1 mm yr−1 in the Argentera massif, reaching the same value as in the Belledonne and northern ECM, likely a consequence of Penninic thrust inversion.  相似文献   

17.
New analyses have been performed in order to enhance the data-set on the independent ages of four glasses that have been proposed as reference materials for fission-track dating. The results are as follows. Moldavite - repeated 40Ar/39Ar age determinations on samples from deposits from Bohemia and Moravia yielded an average of 14.34 ± 0.08 Ma. This datum agrees with other recent determinations and is significantly younger than the 40Ar/39Ar age of 15.21 ± 0.15 Ma determined in the early 1980s. Macusanite (Peru) -four K-Ar ages ranging from 5.44 ± 0.06 to 5.72 ± 0.12 Ma have been published previously. New 40Ar/39Ar ages gave an average of 5.12 ± 0.04 Ma. Plateau fission-track ages determined using the IRMM-540 certified glass and U and Th thin films for neutron fluence measurements agree better with these new 40Ar/39Ar ages than the previously published ages. Roccastrada glass (Italy) - a new 40Ar/39Ar age, 2.45 ± 0.04 Ma, is consistent with previous determinations. The Quiron obsidian (Argentina) is a recently discovered glass that has been proposed as an additional reference material for its high spontaneous track density (around 100 000 cm-2). Defects that might produce "spurious" tracks are virtually absent. An independent 40Ar/39Ar age of 8.77 ± 0.09 Ma was determined and is recommended for this glass. We believe that these materials, which will be distributed upon request to fission-track groups, will be very useful for testing system calibrations and experimental procedures.  相似文献   

18.
Eclogite-grade metamorphism of the Seve Nappe Complex (SNC) in Norrbotten, Sweden, records the attempted subduction of the Baltic continental margin during the early Palaeozoic evolution of the Iapetus Ocean. Metamorphic titanite sampled from several calcsilicate gneisses of the SNC in Norrbotten occurs as part of a prograde, eclogite facies metamorphic mineral assemblage and yields concordant to nearly concordant U/Pb ages of 500–475  Ma. Later structural disruption of these rocks occurred during the Siluro-Devonian Scandian phase of the Caledonide orogeny, but the U/Pb systematics show no evidence of a second generation (metamorphic or recrystallized) of titanite, or of post-Early Ordovician disturbance through Pb loss. Hence the U/Pb ages are believed to record the time of prograde mineral growth during eclogite facies metamorphism of the SNC.
These results support earlier Sm/Nd and 40Ar/39Ar studies indicating an Early Ordovician metamorphic age for the eclogitic Norrbotten SNC, and confirm the Early Ordovician destruction of at least this segment of the Palaeozoic passive margin of Baltica. These results indicate that the SNC in the northern Scandinavian Caledonides was subducted and metamorphosed to high grade some 50–70  Myr prior to the high-grade metamorphism of the SNC in the central Scandinavian Caledonides. This result requires significantly different early Palaeozoic tectonic histories for rocks mapped as SNC in the northern Caledonides and those in the central Caledonides, despite a seemingly similar tectonostratigraphic position and broadly similar high-grade metamorphism.  相似文献   

19.
A well-preserved moraine on the northern coast of County Donegal, Ireland, has played a critical role in our understanding of the glacial history of this sector of the Irish Ice Sheet (IIS). Because of a lack of numerical dating of the moraine, however, previous interpretations of its age and significance to the glacial history of this region have varied widely. Here we report eight in situ cosmogenic 10Be ages on boulders sampled from the moraine. Two of these ages are outliers, with the remaining six ranging from 18.8±1.0 10Be kyr to 20.9±1.3 10Be kyr, with an uncertainty-weighted mean age of 19.4±0.3 10Be kyr (19.4±1.2 kyr accounting for production rate uncertainty). Our results confirm one previous 10Be age obtained from the moraine, with the combined data ( n =7) constraining the age of initial deglaciation of the IIS from its LGM position on the continental shelf to be 19.3±0.3 10Be kyr (19.3±1.2 kyr accounting for production rate uncertainty). These ages are in excellent agreement with calibrated 14C ages that constrain retreat of the IIS margin from the continental shelf elsewhere in northwestern and western Ireland and the Irish Sea Basin associated with the start of the Cooley Point Interstadial (≥20–≤18.2 cal. kyr BP), suggesting widespread deglaciation of the IIS ∼19.5–20 kyr ago.  相似文献   

20.
Abstract CO2-bearing fluid inclusions in strongly lineated but weakly foliated late Precambrian gneisses within the Hope Valley Shear zone of Connecticut and Rhode Island are of mixed composition ( X co2± 0.1; 7 wt% NaCl equivalent) and variable density (0.59–0.86 g/ml) and occur mainly as isolated inclusions. Also present are dilute (3 wt% NaCl equivalent) aqueous inclusions which occur on healed fractures related to greenschist facies retrograde metamorphism. Isochores for dense isolated CO2-bearing inclusions indicate pressures of 7.5–9 kbar at 500–600° C, the estimated temperature conditions of peak metamorphism. Published 40Ar/39Ar hornblende plateau age spectra indicate cooling through about 500° C at 265 ± 5 Ma. Isochores for low-density CO2-bearing inclusions and aqueous inclusions intersect at the conditions of retrograde metamorphism (325–400° C) and indicate pressures of 3–4 kbar. Published 40Ar/39Ar biotite plateau ages indicate cooling through about 300° C at 250 ± 5 Ma. These data define a P–T uplift curve for the region which is convex towards the temperature axis and indicate uplift rates between 0.4 and 3.3 mm/year in Permian time. Exhumation of basement gneisses was coeval with normal (west-down) motion along the regional basement–cover contact (Honey Hill–Lake Char–Willimantic fault system), and is interpreted as due to post-orogenic extensional collapse of the Alleghanian orogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号