首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT The Pan-African Gariep Belt in south-western Namibia and westernmost South Africa provides an excellent window into the interplay between tectonic and climatic changes during the Neoproterozoic era. Recently acquired chemostratigraphic data from cap carbonate sequences above glaciogenic diamictite horizons, together with U–Pb zircon and Pb–Pb carbonate ages, indicate sedimentation in the Gariep Basin from continental break-up around 770 Ma to basin closure and continent collision around 545 Ma. The basin is subdivided into an eastern failed rift graben and a western half graben that evolved into an oceanic basin between the Kalahari and the Rio de la Plata cratons. Three megasequences are distinguished in the external, para-autochthonous part of the belt (Port Nolloth Zone): an early continental, predominantly siliciclastic, sag rift megasequence (M1), a passive continental margin, carbonate-rich megasequence (M2), and a syn-orogenic carbonate and flysch megasequence (M3). Two glaciogenic diamictite horizons at the end of M1 and M2 are recognized and they are correlated with the global ∼750 Ma Sturtian and ∼580 Ma Marinoan glaciations, respectively. While the former is restricted to proximal continental rift shoulders, the latter extends into the oceanic realm which marks the internal part of the belt (Marmora Terrane). Only the younger diamictite is associated with iron formation. The sequence of regressive and transgressive stages recorded by the sediment fill does not reflect simply the tectonic evolution from rifting to drifting and eventual basin closure, but is strongly controlled by severe climatically induced sea-level changes that were either competing with or reinforcing tectonically induced sea-level changes.  相似文献   

2.
New seismic reflection profiles from the Tugrug basin in the Gobi‐Altai region of western Mongolia demonstrate the existence of preserved Mesozoic extensional basins by imaging listric normal faults, extensional growth strata, and partially inverted grabens. A core hole from this region recovered ca. 1600 continuous meters of Upper Jurassic – Lower Cretaceous (Kimmeridgian–Berriasian) strata overlying Late Triassic volcanic basement. The cored succession is dominated by lacustrine and marginal lacustrine deposits ranging from stratified lacustrine, to subaqueous fan and delta, to subaerial alluvial‐fluvial environments. Multiple unconformities are encountered, and these represent distinct phases in basin evolution including syn‐extensional deposition and basin inversion. Prospective petroleum source and reservoir intervals occur, and both fluid inclusions and oil staining in the core provide evidence of hydrocarbon migration. Ties to correlative outcrop sections underscore that, in general, this basin appears to share a similar tectono‐stratigraphic evolution with petroliferous rift basins in eastern Mongolia and China. Nevertheless, some interesting contrasts to these other basins are noted, including distinct sandstone provenance, less overburden, and younger (Neogene) inversion structures. The Tugrug basin occupies an important but perplexing paleogeographic position between late Mesozoic contractile and extensional provinces. Its formation may record a rapid temporal shift from orogenic crustal thickening to extensional collapse in the Late Jurassic, and/or an accommodation zone with a Mesozoic strike‐slip component.  相似文献   

3.
The Ulleung Basin, East Sea/Japan Sea, is a Neogene back-arc basin and occupies a tectonically crucial zone under the influence of relative motions between Eurasian, Pacific and Philippine Sea plates. However, the link between tectonics and sedimentation remains poorly understood in the back-arc Ulleung Basin, as it does in many other back-arc basins as well, because of a paucity of seismic data and controversy over the tectonic history of the basin. This paper presents an integrated tectonostratigraphic and sedimentary evolution in the deepwater Ulleung Basin using 2D multichannel seismic reflection data. The sedimentary succession within the deepwater Ulleung Basin is divided into four second-order seismic megasequences (MS1 to MS4). Detailed seismic stratigraphy interpretation of the four megasequences suggests the depositional history of the deepwater Ulleung Basin occurred in four stages, controlled by tectonic movement, volcanism, and sea-level fluctuations. In Stage 1 (late Oligocene through early Miocene), syn-rift sediment supplied to the basin was restricted to the southern base-of-slope, whereas the northern distal part of the basin was dominated by volcanic sills and lava flows derived from initial rifting-related volcanism. In Stage 2 (late early Miocene through middle Miocene), volcanic extrusion occurred through post-rift, chain volcanism in the earliest time, followed by hemipelagic and turbidite sedimentation in a quiescent open marine setting. In Stage 3 (late middle Miocene through late Miocene), compressional activity was predominant throughout the Ulleung Basin, resulting in regional uplift and sub-aerial erosion/denudation of the southern shelf of the basin, which provided enormous volumes of sediment into the basin through mass transport processes. In Stage 4 (early Pliocene through present), although the degree of tectonic stress decreased significantly, mass movement was still generated by sea-level fluctuations as well as compressional tectonic movement, resulting in stacked mass transport deposits along the southern basin margin. We propose a new depositional history model for the deepwater Ulleung Basin and provide a window into understanding how tectonic, volcanic and eustatic interactions control sedimentation in back-arc basins.  相似文献   

4.
ABSTRACT Magnetostratigraphic chronologies, together with sedimentological, petrological, seismic and borehole data derived from the Oligo/Miocene Lower Freshwater Molasse Group of the North Alpine foreland basin enable a detailed reconstruction of alluvial architecture in relation to Alpine orogenic events. Six depositional systems are recorded in the Lower Freshwater Molasse Group. The bajada depositional system comprises 200–400-m-thick successions of ribbon channel conglomerates and overbank fines including mud- and debris-flows which were derived from the Alpine border chain. The alluvial megafan depositional system is made up of massive pebble-to-cobble conglomerates up to 3 km thick which reveal a fan-shaped geometry. This depositional environment grades downcurrent into the conglomerate channel belt depositional system, which comprises an ≈2-km-thick alternation of channel conglomerates and overbank fines. The sandstone channel belt depositional system is bordered by the 100–400-m-thick overbank fines assigned to the floodplain depositional system. At the feather edge of the basin, 50–400-m-thick lacustrine sediments in both clastic and carbonate facies represent the lacustrine depositional system. The spatial and temporal arrangement of these depositional systems was controlled by the geometrical evolution of the Molasse Basin. During periods of enhanced sediment supply and during phases of stable sliding of the entire wedge, >2000-m-thick coarsening-and thickening-upward megasequences comprising the conglomerate channel belt, alluvial megafan and bajada depositional systems were deposited in a narrow wedge-shaped basin. In the distal reaches of the basin, however, no sedimentary trend developed, and the basin fill comprises a <500-m-thick series of sandstone meander belt, floodplain and lacustrine depositional systems. During phases of accretion at the toe of the wedge, the basin widened, and prograding systems of multistorey channel sandstones extended from the thrust front to the distal reaches of the basin. The rearrangement of the depositional systems as a function of changing orogenic conditions created discordances, which are expressed seismically by onlap and erosion of beds delimiting sedimentary sequences. Whereas stable sliding of the wedge succeeded by accretion at the toe of the wedge is recorded in the proximal Lower Freshwater Molasse by a coarsening-and thickening-upward megasequence followed by erosion, the opposite trend developed in the distal reaches of the Molasse. Here, fine-grained sandstones and mudstones were deposited during periods of stable sliding, whereas phases of accretion caused a coarsening- and thickening-up megasequence to form.  相似文献   

5.
Detailed structural cross‐sections, analysis of extensional structures and palaeotemperatures obtained from primary fluid inclusions in quartz and calcite veins from the extensional Cameros Basin (N Spain) allow an interpretation of its thermal evolution and its geometric reconstruction to be constrained. The Cameros Basin underwent an extensional stage during the Late Jurassic to Early Cretaceous, with a maximum preserved thickness of Mesozoic deposits of about 9000 m. During the Tertiary, the basin was inverted, allowing a large part of the sedimentary sequence to be exposed. Extensional deformation in individual beds created N120E‐striking tension gashes in the synrift sequence, parallel to the master normal faults limiting the basin and dipping perpendicular to bedding. The extensional strain calculated from tension gashes varies between 4 and 12%. The number and thickness of veins increases the lower their position in the stratigraphic section. Palaeotemperatures were obtained from samples along a stratigraphic section comprising a thickness of 4000 m synrift deposits. Homogenization temperatures range from 107 to 225 °C. Palaeothermometric data and geometric reconstruction give a geothermal gradient of 27–41 °C km?1 during the extensional stage and allow an eroded section of at least 1500 m to be inferred. Low‐grade metamorphic assemblages in lutitic rocks of the deepest part of the basin presently exposed at surface imply P–T conditions of 350–400 °C and less than 2 kbar, which implies a geothermal gradient of about 70 °C km?1. Since the metamorphic thermal peak is dated at 100 Ma, the P–T path indicates a heating event during the late Albian, probably linked to the reaching of thermal equilibrium of the continental crust after extension. The results obtained support the hypothesis of a synclinal basin geometry, with vertical superposition of Lower Cretaceous sedimentary units rather than a model of laterally juxtaposed bodies onlapping the prerift sequence.  相似文献   

6.
The Middle Devonian Kvamshesten Basin in western Norway is a late-orogenic basin situated in the hangingwall of the regional extensional Nordfjord–Sogn Detachment Zone. The basin is folded into a syncline with the axis subparallel to the ductile lineations in the detachment zone. The structural and stratigraphic development of the Kvamshesten Basin indicates that the basin history is more complex than hitherto recognized. The parallelism stated by previous workers between mylonitic lineation below the basin and intrabasinal fold axes is only partly reflected in the configuration of sedimentary units and in the time-relations between deposits on opposing basin margins. The basin shows a pronounced asymmetry in the organization and timing of sedimentary facies units. The present northern basin margin was characterized by bypass or erosion at the earliest stage of basin formation, but was subsequently onlapped and eventually overlain by fanglomerates and sandstones organized in well-defined coarsening-upwards successions. The oldest and thickest depositional units are situated along the present southern basin margin. This as well as onlap relations towards basement at low stratigraphic level indicates a significant component of southwards tilt of the basin floor during the earliest stages of deposition. The inferred south-eastwards tilt was most likely produced by north-westwards extension during early stages of basin formation. Synsedimentary intrabasinal faults show that at high stratigraphic levels, the basin was extending in an E–W as well as a N–S direction. Thus, the basin records an anticlockwise rotation of the syndepositional strain field. In addition, our observations indicate that shortening normal to the extension direction cannot have been both syndepositional and continuous, as suggested by previous authors. Through most of its history, the basin was controlled by a listric, ramp-flat low-angle fault that developed into a scoop shape or was flanked by transfer faults. The basin-controlling fault was rooted in the extensional mylonite zone. Sedimentation was accompanied by formation of a NE- to N-trending extensional rollover fold pair, evidenced by thickness variations in the marginal fan complexes, onlap relations towards basement and the fanning wedge geometry displayed by the Devonian strata. Further E–W extension was accompanied by N–S shortening, resulting in extension-parallel folds and thrusts that mainly post-date the preserved basin stratigraphy. During shortening, conjugate extensional faults were rotated to steeper dips on the flanks of a basin-wide syncline and re-activated as strike-slip faults. The present scoop-shaped, low-angle Dalsfjord fault cross-cut the folded basin and juxtaposed it against the extensional mylonites in the footwall of the Nordfjord–Sogn detachment. Much of this juxtaposition may post-date sedimentation in the preserved parts of the basin. Basinal asymmetry as well as variations in this asymmetry on a regional scale may be explained by the Kvamshesten and other Devonian basins in western Norway developing in a strain regime affected by large-scale sinistral strike-slip subparallel to the Caledonian orogen.  相似文献   

7.
Miocene strata of the Shadow Valley Basin rest unconformably on the upper plate of the Kingston Range - Halloran Hills detachment fault system in the eastern Mojave desert, California. Basin development occurred in two broad phases that we interpret as a response to changes in footwall geometry. In southern portions of the basin, south of the Kingston Range, phase one began with near synchronous initiation of detachment faulting, volcanism and basin sedimentation shortly after 13.4 Ma. Between c. 13.4 and c. 10 Ma, concordantly bedded phase one strata were deposited onto the subsiding hangingwall of the detachment fault as it was translated 5–9 km south-westward with only limited internal deformation. Phase two (c. 10 to 8–5 Ma) is marked by extensional dismemberment of the detachment fault's upper plate along predominantly west-dipping normal faults. Phase two sediments were deposited synchronously with upper-plate normal faulting and unconformably overlie phase one deposits, displaying progressive shallowing in dip and intraformational onlap. Northern portions of the basin, in the Kingston Range, experienced a similar two-phase development compressed into a shorter interval of time. Here, phase one occurred between c. 13.4 and 12.8–12.5 (?) Ma, whereas phase two probably lasted for no more than a few 100000 years immediately prior to c. 12.4 Ma. Differences in the duration of basin development in and south of the Kingston Range apparently relate to position with respect to the detachment fault's breakaway; northern basin exposures overlie the upper plate adjacent to the breakaway (0–15 km) whereas southern basin exposures occur far from the breakaway (20–40 km). We interpret the phase one to phase two transition as recording breakup of the detachment fault's hangingwall during footwall uplift. We propose a model for supradetachment basin evolution in which early, concordantly bedded basin strata are deposited on the hangingwall as it translates intact above a weakly deforming footwall. With continuing extension, tectonic denudation along the detachment fault leads to an increasing flexural isostatic footwall response. We suggest that isostatic footwall uplift may drive internal breakup of the upper plate as the detachment fault is rotated to a shallow dip, mechanically unfavourable for simple upper-plate translation. Additionally, we argue that continuing hangingwall thinning during phase two places geometrical constraints on the timing, amount and, thus, rate of footwall uplift. Kinematically determined footwall uplift rates (0.5–4.5 mm/yr) are comparable with rates determined independently by thermochronological and geobarometric methods.  相似文献   

8.
The Neoproterozoic basins of central Australia share many features of architecture and sedimentary fill, suggesting common large-scale extrinsic causal mechanisms. In an attempt to improve understanding of these mechanisms we have gathered and analysed new deep seismic reflection data and re-evaluated existing seismic and well-log data from the eastern Officer Basin, the largest and most poorly known of Australia's intracratonic basins. The Officer Basin is asymmetric and has a steep thrust-controlled northern margin paralleled by sub-basins as much as 10 km in depth. Further south the basin shallows gradually onto a broad platform. The basin rests on a thick crust (≈42 km) that is pervaded by a complex of northward-dipping surfaces most of which terminate erosionally against the sediments of the Officer Basin and are interpreted as prebasinal features, possibly faults. Some appear to have been zones of crustal weakness which were reactivated as thrust complexes and played a major role in basin evolution. The sedimentary succession can be subdivided into six megasequences separated by major tectonically and erosionally enhanced sequence boundaries. The megasequences have distinctive sequence stacking patterns suggesting that they were deposited in response to episodic subsidence induced by a major extrinsic tectonic event. The basin initially formed as part of a giant sag basin which incorporated all the present-day intracratonic basins (Amadeus, Georgina, Ngalia, Officer and Savory Basins) in a single large ‘superbasin’ perhaps as a response to mantle processes. Subsidence then ceased for ≈100 Myr producing a regional erosion surface. Beginning in the Torrensian or Sturtian five more major events of varying regional significance influenced the basin's evolution. Four were compressional events, the first of which activated major thrust complexes along the present basin margins, forming deep foreland sub-basins with elevated intervening basement blocks. Once activated, the thrust complexes and sub-basins persisted throughout the life of the intracratonic basins. From this epoch the intracratonic basins of central Australia were decoupled from the giant sag basin and became interrelated but independent features. Available information suggests that the Officer, Amadeus, Georgina, Ngalia and Savory Basins are related and are perhaps products of major tectonic events associated with the assembly and ultimate dispersal of the Proterozoic supercontinent. The closing phases of these basins were strongly influenced by events occurring along the newly created active eastern margin of the Australian continent in the Palaeozoic.  相似文献   

9.
Subsidence analyses from the Betic Cordillera, southeast Spain   总被引:1,自引:0,他引:1  
Fifty‐four Mesozoic–Cenozoic stratigraphic sections from the Betic Cordillera of southeast Spain have been analysed in order to estimate the timing and amount of lithospheric stretching that occurred at the western end of the Tethyan Ocean since the Hercynian Orogeny. The standard backstripping technique has been used in order to calculate the water‐loaded subsidence of basement for each section. Water‐loaded subsidence curves were then inverted in order to determine the variation of lithospheric strain rate as a function of time, which yields estimates of timing, magnitude and intensity of stretching. Rifting commenced during the Late Permian/Early Triassic times and continued intermittently throughout the Mesozoic in response to the opening of the Tethyan Ocean to the east and the opening of the Atlantic Ocean to the west. Two major events in the Permo‐Triassic/Early Jurassic and the Late Jurassic/Early Cretaceous can be clearly identified. Stretching factors are generally small (1.1–1.25) probably because the Betic Cordillera was located at the westernmost end of the Tethys. Peak strain rates of ~10?15 s?1 were obtained for Mesozoic rift events and these values are in broad agreement with those obtained throughout the Tethyan Realm. We have also analysed the Neogene extensional event, which played an important role in forming the existing Mediterranean Sea. A combination of well‐log information and calibrated seismic reflection data was modelled. Peak strain rates in these younger basins are almost one order of magnitude faster than those estimated for the Mesozoic basins. These higher values appear to be typical of back‐arc extensional basins elsewhere. To the west and north of the Betic Cordillera, the Guadalquivir foreland basin developed as extension took place further east. Backstripped sections from this basin clearly record the northward migration of foreland basin subsidence through time.  相似文献   

10.
The Cameros Basin (North Spain) is a Late Jurassic‐Early Cretaceous extensional basin, which was inverted during the Cenozoic. It underwent a remarkable thermal evolution, as indicated by the record of anomalous high temperatures in its deposits. In this study, the subsidence and thermal history of the basin is reconstructed, using subsidence analysis and 2D thermal modelling. Tectonic subsidence curves provide evidence of the occurrence of two rapid subsidence phases during the syn‐extensional stage. In the first phase (Tithonian‐Early Berriasian), the largest accommodation space was formed in the central sector of the basin, whereas in the second (Early Barremian‐Early Albian), it was formed in the northern sector. These rapid subsidence phases could correspond to relevant tectonic events affecting the Iberian Plate at that time. By distinguishing between the initial and thermal subsidence and defining their relative magnitudes, Royden's (1986) method was used to estimate the heat flow at the end of the extensional stage. A maximum heat flow of 60–65 mW/m2 is estimated, implying only a minor thermal disturbance associated with extension. In contrast with these data, very high vitrinite reflectance, anomalously distributed in some case with respect to the typical depth‐vitrinite reflectance relation, was measured in the central‐northern sector of the basin. Burial and thermal data are used to construct a 2D thermal basin model, to elucidate the role of the processes involved in sediment heating. Calibration of the thermal model with the vitrinite reflectance (%Ro) and fluid inclusion (FI) data indicates that in the central and northern sectors of the basin, an extra heat source, other than a typical rift, is required to explain the observed thermal anomalies. The distribution of the %Ro and FI values in these sectors suggests that the high temperatures and their distribution are related to the circulation of hot fluids. Hot fluids were attributed to the hydrothermal metamorphic events affecting the area during the early post‐extensional and inversion stages of the basin.  相似文献   

11.
Deposition of a 2700-m-thick clastic platform succession in a N-S striking basin in northern Chile began in the Early Devonian during a global sea-level rise. A transition to terrestrial facies took place at the Early-Late Carboniferous boundary when the Gondwana glaciation began and global sea-level dropped. On the platform, interbedded cross-bedded or bioturbated sandstones, offshore tidal dunes and sand waves, and mudstones and tempestites suggest switching intertidal and shallow or deep subtidal environments. However, evidence for subaerial erosion indicates a significant regression during the Early Devonian. In an adjacent and deeper N-S striking sub-basin to the W, up to 3600 m of turbidites were deposited from the Late Devonian to the Late Carboniferous by mainly southerly palaeocurrents. Turbidites accumulated in coarse-grained proximal sand lobes in the N, and in fine-grained lobe fringe and basin plain environments in the S, with alternating upward-thinning and upward-thickening cycles typical of tectonically controlled aggradational turbidite systems. The sedimentological data indicate that the deeper basin depositional system evolved to a large extent independently from the platform system. Sediment in the deeper basin is less mature and more poorly sorted than that on the platform, suggesting that detritus bypassed the platform and was shed directly from the source areas into the western basin. The only depositional link between the platform and deeper basin systems seems to be longshore platform currents which may have funnelled minor quantities of mature sand into the deeper basin via bypass canyons. Although platform and deeper basin evolved in a common extensional tectonic setting, the platform reflects eustatic changes of sea-level whereas deposition in the deeper basin records syndepositional tectonics.  相似文献   

12.
The Porcupine Basin is a Mesozoic failed rift located in the North Atlantic margin, SW of Ireland, in which a postrift phase of extensional faulting and reactivation of synrift faults occurred during the Mid–Late Eocene. Fault zones are known to act as either conduits or barriers for fluid flow and to contribute to overpressure. Yet, little is known about the distribution of fluids and their relation to the tectono‐stratigraphic architecture of the Porcupine Basin. One way to tackle this aspect is by assessing seismic (Vp) and petrophysical (e.g., porosity) properties of the basin stratigraphy. Here, we use for the first time in the Porcupine Basin 10‐km‐long‐streamer data to perform traveltime tomography of first arrivals and retrieve the 2D Vp structure of the postrift sequence along a ~130‐km‐long EW profile across the northern Porcupine Basin. A new Vp–density relationship is derived from the exploration wells tied to the seismic line to estimate density and bulk porosity of the Cenozoic postrift sequence from the tomographic result. The Vp model covers the shallowest 4 km of the basin and reveals a steeper vertical velocity gradient in the centre of the basin than in the flanks. This variation together with a relatively thick Neogene and Quaternary sediment accumulation in the centre of the basin suggests higher overburden pressure and compaction compared to the margins, implying fluid flow towards the edges of the basin driven by differential compaction. The Vp model also reveals two prominent subvertical low‐velocity bodies on the western margin of the basin. The tomographic model in combination with the time‐migrated seismic section shows that whereas the first anomaly spatially coincides with the western basin‐bounding fault, the second body occurs within the hangingwall of the fault, where no major faulting is observed. Porosity estimates suggest that this latter anomaly indicates pore overpressure of sandier Early–Mid Eocene units. Lithological well control together with fault displacement analysis suggests that the western basin‐bounding fault can act as a hydraulic barrier for fluids migrating from the centre of the basin towards its flanks, favouring fluid compartmentalization and overpressure of sandier units of its hangingwall.  相似文献   

13.
We describe the tectono‐sedimentary evolution of a Middle Jurassic, rift‐related supra‐detachment basin of the ancient Alpine Tethys margin exposed in the Central Alps (SE Switzerland). Based on pre‐Alpine restoration, we demonstrate that the rift basin developed over a detachment system that is traced over more than 40 km from thinned continental crust to exhumed mantle. The detachment faults are overlain by extensional allochthons consisting of upper crustal rocks and pre‐rift sediments up to several kilometres long and several hundreds of metres thick, compartmentalizing the distal margin into sub‐basins. We mapped and restored one of these sub‐basins, the Samedan Basin. It consists of a V‐shape geometry in map view, which is confined by extensional allochthons and floored by a detachment fault. It can be restored over a minimum distance of 11 km along and about 4 km perpendicular to the basin axis. Its sedimentary infill can be subdivided into basal (initial), intermediate (widening) and top (post‐tectonic) facies tracts. These tracts document (1) formation of the basin initially bounded by high‐angle faults and developing into low‐angle detachment faults, (2) widening of the basin and (3) migration of deformation further outboard. The basal facies tract is made of locally derived, poorly sorted gravity flow deposits that show a progressive change from hangingwall to footwall‐derived lithologies. Upsection the sediments develop into turbidity current deposits that show retrogradation (intermediate facies tract) and starvation of the sedimentary system (post‐tectonic facies tract). On the scale of the distal margin, the syn‐tectonic record documents a thinning‐ and fining‐upward sequence related to the back stepping of the tectonically derived sediment source, progressive starvation of the sedimentary system and migration of deformation resulting in exhumation and progressive delamination of the thinned crust during final rifting. This study provides valuable insights into the tectono‐sedimentary evolution and stratigraphic architecture of a supra‐detachment basin formed over hyper‐extended crust.  相似文献   

14.
Vertical trends in architecture and facies of delta systems are preserved in a clastic wedge of an expanding marine half-graben in which tectonics, eustatic sea-level change and climatic change are roughly known from independent evidence. The studied half-graben is situated on Crete (Greece) and part of a larger, E-W-trending extensional domain situated north of the Hellenic subduction zone. The extension seems to be related to the southward migration of the trench (roll-back) in early Late Miocene times. The infill pattern is discussed in the light of theoretical fault-growth models for expanding half-grabens. The geometry of the half-graben fill is typically wedge shaped, with a thickness of nearly 1000 m near the fault scarp thinning to c. 50 m about 20 km away from the scarp. The lower part of the wedge (Stratified Prina Series) contains coarsening-upward units representing progradational, shallow-marine deltas. At the base of the wedge these units are thin and retrogradationally stacked. Upwards in the succession, the units become composite (coarsening-upward subunits), thicker and finer grained. The composite structure, the thickening and the fining trend is related to progressive increase in accommodation space inherent in fault growth. Rapid deepening of the basin from the photic zone (evidenced by intercalated coral and stromatolite beds) up to a depth of 900 m started at the top of the Stratified Prina Series. The deepening continued over some tens of metres of marly sediments of the base of the Kalamavka Formation and may be related to structural collapse of the fault block. After the structural collapse, basin depth remained more or less constant and basin infilling occurred by progradation of deep-water delta systems. These systems are characterized by a muddy delta slope with channelized conglomerates, and by mainly aggradation of prodelta turbidites deposited in small lobes at the base of slope.  相似文献   

15.
Lake Ohrid, located on the Balkan Peninsula within the Dinaride–Albanide–Hellenide mountain belt, is a tectonically active graben within the South Balkan Extensional Regime (SBER). Interpretation of multichannel seismic cross sections and bathymetric data reveals that Lake Ohrid formed during two main phases of deformation: (1) a transtensional phase which opened a pull‐apart basin, and (2) an extensional phase which led to the present geometry of Lake Ohrid. After the initial opening, a symmetrical graben formed during the Late Miocene, bounded by major normal faults on each side in a pull‐apart type basin. The early‐stage geometry of the basin has a typical rhomboidal shape restricted by two sets of major normal faults. Thick undisturbed sediments are present today at the site where the acoustic basement is deepest, illustrating that Lake Ohrid is a potential target for drilling a long and continuous sediment core for studying environmental changes within the Mediterranean region. Neotectonic activity since the Pliocene takes place along the roughly N–S‐striking Eastern and Western Major Boundary Normal Faults that are partly exposed at the present lake floor. The tectono‐sedimentary structure of the basin is divided into three main seismic units overlying the acoustic basement associated with fluvial deposits and lacustrine sediments. A seismic facies analysis reveals a prominent cyclic pattern of high‐ and low‐amplitude reflectors. We correlate this facies cyclicity with vegetation changes within the surrounding area that are associated with glacial/interglacial cycles. A clear correlation is possible back to ca. 450 kyrs. Extrapolation of average sedimentation rates for the above mentioned period results in age estimate of ca. 2 Myrs for the oldest sediments in Lake Ohrid.  相似文献   

16.
The Dzereg Basin is an actively evolving intracontinental basin in the Altai region of western Mongolia. The basin is sandwiched between two transpressional ranges, which occur at the termination zones of two regional‐scale dextral strike‐slip fault systems. The basin contains distinct Upper Mesozoic and Cenozoic stratigraphic sequences that are separated by an angular unconformity, which represents a regionally correlative peneplanation surface. Mesozoic strata are characterized by northwest and south–southeast‐derived thick clast‐supported conglomerates (Jurassic) overlain by fine‐grained lacustrine and alluvial deposits containing few fluvial channels (Cretaceous). Cenozoic deposits consist of dominantly alluvial fan and fluvial sediments shed from adjacent mountain ranges during the Oligocene–Holocene. The basin is still receiving sediment today, but is actively deforming and closing. Outwardly propagating thrust faults bound the ranges, whereas within the basin, active folding and thrusting occurs within two marginal deforming belts. Consequently, active fan deposition has shifted towards the basin centre with time, and previously deposited sediment has been uplifted, eroded and redeposited, leading to complex facies architecture. The geometry of folds and faults within the basin and the distribution of Mesozoic sediments suggest that the basin formed as a series of extensional half‐grabens in the Jurassic–Cretaceous which have been transpressionally reactivated by normal fault inversion in the Tertiary. Other clastic basins in the region may therefore also be inherited Mesozoic depocentres. The Dzereg Basin is a world class laboratory for studying competing processes of uplift, deformation, erosion, sedimentation and depocentre migration in an actively forming intracontinental transpressional basin.  相似文献   

17.
The southern South African continental margin documents a complex margin system that has undergone both continental rifting and transform processes in a manner that its present‐day architecture and geodynamic evolution can only be better understood through the application of a multidisciplinary and multi‐scale geo‐modelling procedure. In this study, we focus on the proximal section of the larger Bredasdorp sub‐basin (the westernmost of the five southern South African offshore Mesozoic sub‐basins), which is hereto referred as the Western Bredasdorp Basin. Integration of 1200 km of 2D seismic‐reflection profiles, well‐logs and cores yields a consistent 3D structural model of the Upper Jurassic‐Cenozoic sedimentary megasequence comprising six stratigraphic layers that represent the syn‐rift to post‐rift successions with geometric information and lithology‐depth‐dependent properties (porosities and densities). We subsequently applied a combined approach based on Airy's isostatic concept and 3D gravity modelling to predict the depth to the crust‐mantle boundary (Moho) as well as the density structure of the deep crust. The best‐fit 3D model with the measured gravity field is only achievable by considering a heterogeneous deep crustal domain, consisting of an uppermost less dense prerift meta‐sedimentary layer [ρ = 2600 kg m?3] with a series of structural domains. To reproduce the observed density variations for the Upper Cenomanian–Cenozoic sequence, our model predicts a cumulative eroded thickness of ca. 800–1200 m of Tertiary sediments, which may be related to the Late Miocene margin uplift. Analyses of the key features of the first crust‐scale 3D model of the basin, ranging from thickness distribution pattern, Moho shallowing trend, sub‐crustal thinning to shallow and deep crustal extensional regimes, suggest that basin initiation is typical of a mantle involvement deep‐seated pull‐apart setting that is associated with the development of the Agulhas‐Falkland dextral shear zone, and that the system is not in isostatic equilibrium at present day due to a mass excess in the eastern domain of the basin that may be linked to a compensating rise of the asthenospheric mantle during crustal extension. Further corroborating the strike‐slip setting is the variations of sedimentation rates through time. The estimated syn‐rift sedimentation rates are three to four times higher than the post‐rift sedimentation, thereby indicating that a rather fast and short‐lived subsidence during the syn‐rift phase is succeeded by a significantly poor passive margin development in the post‐rift phase. Moreover, the derived lithospheric stretching factors [β = 1.5–1.75] for the main basin axis do not conform to the weak post‐rift subsidence. This therefore suggests that a differential thinning of the crust and the mantle‐lithosphere typical for strike‐slip basins, rather than the classical uniform stretching model, may be applicable to the Western Bredasdorp Basin.  相似文献   

18.
Abstract The Jurassic-Cretaceous subsidence history of the Eromanga Basin, a large intracratonic sedimentary basin in central eastern Australia, has been examined using standard backstripping techniques, allowing for porosity reduction by compaction and cementation. Interpretation of the results suggests that during the Jurassic the basin was subsiding in a manner consistent with the exponentially decreasing form predicted by simple thermally based tectonic models. By the Early Cretaceous, the rate of subsidence was considerably higher than that expected from such models and nearly half of the total sediment thickness was deposited over the final 20 Myr of the basin's 95 Myr Mesozoic depositional history. The Early Cretaceous also marks the first marine incursion into the basin, consistent with global sea-level curves. Subsequently, however, the sediments alternate between marine and non-marine, with up to 1200 m of fluvial sediments being deposited, and this was followed by a depositional hiatus of about 50 Myr in the Late Cretaceous. This occurred at a time when global sea-level was rising to its peak. A model is presented which is consistent with the rapid increase in tectonic subsidence rate and the transgressive-regressive nature of the sediments. The model incorporates a sediment influx which is greater than that predicted by the thermally based tectonic models implied by the Jurassic subsidence history. The excess sedimentation results in the basin region attaining an elevation which exceeds that of the contemporary sea-level, and thereby giving the appearance of a regression. The present day elevation of the region predicted by the model is about 100–200 m above that observed. This discrepancy may arise because the primary tectonic subsidence is better represented by a linear function of time rather than an exponentially decreasing form.  相似文献   

19.
Abstract The Amadeus Basin, a broad intracratonic depression (800 times 300 km) in central Australia, contains a complex Late Proterozoic to mid-Palaeozoic depositional succession which locally reaches 14 km in thickness. The application of sequence stratigraphy to this succession has provided an effective framework in which to evaluate its evolution. Analysis of major depositional sequences shows that the Amadeus Basin evolved in three stages. Stage 1 began at about 900 Myr with extensional thinning of the crust and formation of half-grabens. Thermal recovery following extension was well advanced when a second less intense crustal extension (stage 2) occurred towards the end of the Late Proterozoic. Stage 2 thermal recovery was followed by a major compressional event (stage 3) in which major southward-directed thrust sheets caused progressive downward flexing of the northern margin of the basin, and sediment was shed from the thrust sheets into the downwarps forming a foreland basin. This event shortened the basin by 50–100 km and effectively concluded sedimentation. The two stages of crustal extension and thermal recovery produced large-scale apparent sea-level effects upon which eustatic sea-level cycles are superimposed. Since the style of sedimentation and major sequence boundaries were controlled to a large degree by basin dynamics, depositional patterns within the Amadeus and associated basin are, to a large degree, predictable. This suggests that an understanding of major variables associated with basin dynamics and their relationship to depositional sequences may allow the development of generalized depositional models on a basinal scale. The Amadeus Basin is only one of a number of broad, shallow, intracratonic depressions that appeared on the Australian craton during the Late Proterozoic. The development of these basins almost certainly relates to the breakup of a Proterozoic supercontinent and in large part, basin dynamics appears to be tied to this global tectonic event. Onlap and apparent sea-level curves derived from the sequence analysis appear to be composite curves resulting from both basin dynamics and eustatic sea-level effects. It thus appears likely that sequence stratigraphy could be used as a basis for inter-regional correlation; a possibility that has considerable significance in Archaean and Proterozoic basins.  相似文献   

20.
The Celtic Sea basins lie on the continental shelf between Ireland and northwest France and consist of a series of ENE–WSW trending elongate basins that extend from St George’s Channel Basin in the east to the Fastnet Basin in the west. The basins, which contain Triassic to Neogene stratigraphic sequences, evolved through a complex geological history that includes multiple Mesozoic rift stages and later Cenozoic inversion. The Mizen Basin represents the NW termination of the Celtic Sea basins and consists of two NE–SW-trending half-grabens developed as a result of the reactivation of Palaeozoic (Caledonian, Lower Carboniferous and Variscan) faults. The faults bounding the Mizen Basin were active as normal faults from Early Triassic to Late Cretaceous times. Most of the fault displacement took place during Berriasian to Hauterivian (Early Cretaceous) times, with a NW–SE direction of extension. A later phase of Aptian to Cenomanian (Early to Late Cretaceous) N–S-oriented extension gave rise to E–W-striking minor normal faults and reactivation of the pre-existing basin bounding faults that propagated upwards as left-stepping arrays of segmented normal faults. In common with most of the Celtic Sea basins, the Mizen Basin experienced a period of major erosion, attributed to tectonic uplift, during the Paleocene. Approximately N–S Alpine regional compression-causing basin inversion is dated as Middle Eocene to Miocene by a well-preserved syn-inversion stratigraphy. Reverse reactivation of the basin bounding faults was broadly synchronous with the formation of a set of near-orthogonal NW–SE dextral strike-slip faults so that compression was partitioned onto two fault sets, the geometrical configuration of which is partly inherited from Palaeozoic basement structure. The segmented character of the fault forming the southern boundary of the Mizen Basin was preserved during Alpine inversion so that Cenozoic reverse displacement distribution on syn-inversion horizons mirrors the earlier extensional displacements. Segmentation of normal faults therefore controls the geometry and location of inversion structures, including inversion anticlines and the back rotation of earlier relay ramps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号