首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The soil water index (SWI) from satellite remote sensing and the observational soil moisture from agricultural meteorological stations in eastern China are used to retrieve soil moisture. The analysis of correlation coefficient (CORR), root-mean-square-error (RMSE) and bias (BIAS) shows that the retrieved soil moisture is convincible and close to the observation. The method can overcome the difficulties in soil moisture observation on a large scale and the retrieved soil moisture may reflect the distribution of the real soil moisture objectively. The retrieved soil moisture is used as an initial scheme to replace initial conditions of soil moisture (NCEP) in the model MM5V3 to simulate the heavy rainfall in 1998. Three heavy rainfall processes during 13–14 June, 18–22 June, and 21–26 July 1998 in the Yangtze River valley are analyzed. The first two processes show that the intensity and location of simulated precipitation from SWI are better than those from NCEP and closer to the observed values. The simulated heavy rainfall for 21–26 July shows that the update of soil moisture initial conditions can improve the model’s performance. The relationship between soil moisture and rainfall may explain that the stronger rainfall intensity for SWI in the Yangtze River valley is the result of the greater simulated soil moisture from SWI prior to the heavy rainfall date than that from NCEP, and leads to the decline of temperature in the corresponding area in the heavy rainfall days. Detailed analysis of the heavy rainfall on 13–14 June shows that both land-atmosphere interactions and atmospheric circulation were responsible for the heavy rainfall, and it shows how the SWI simulation improves the simulation. The development of mesoscale systems plays an important role in the simulation regarding the change of initial soil moisture for SWI.  相似文献   

2.
利用经济省时的降维投影四维变分同化方法(DRP-4DVar),在2009年7月22~23日江淮流域的一次大暴雨过程中同化晴空条件下高光谱大气红外探测仪(AIRS)反演温度、湿度廓线,改进此次强降水过程的模拟。试验结果分析显示,同化AIRS反演的温度及湿度场后,基于四维变分同化系统的模式约束,能够改进湿度场、高度场、高低层散度场。从累积降水量偏差图及同化试验增量图可以看到,正降水量偏差对应于正湿度增量、负位势高度增量及低层负散度高层正散度增量,负降水量偏差则与之相反。同化试验较参照试验可更好地模拟出暴雨的天气形势、对暴雨的落区及强度有更好的反映。此外,从单次同化与连续同化的试验对比结果看出,连续同化试验结果较单次同化结果有进一步的改进,说明不断加入新的观测资料可以更好地模拟强降水过程。  相似文献   

3.
土壤湿度异常对区域短期气候影响的数值模拟试验   总被引:15,自引:3,他引:15       下载免费PDF全文
用区域气候模式 (RegCM_NCC) 对江淮流域地区春季初始土壤湿度异常导致的区域气候效应进行了数值模拟分析, 结果表明:土壤湿度异常变化对区域降水的影响非常显著, 土壤湿度的正异常使得异常区域内降水增大, 地面空气增湿、蒸发加大, 与此相应, 地表气温迅速降低, 土壤湿度的负异常有与之相反的结果, 这种区域气候响应是通过改变地表辐射平衡及地-气系统能通量而实现的; 区域土壤湿度异常对短期气候的影响在一个月之内较明显, 它的影响可持续至以后的几个月, 但强度逐渐减弱; 区域土壤湿度异常的气候响应不仅仅局限于异常区域内部, 而且可以通过次级环流影响到其他区域的降水、温度等变化。  相似文献   

4.
Ensembles of boreal summer atmospheric simulations, spanning a 15-year period (1979–1993), are performed with the ARPEGE climate model to investigate the influence of soil moisture on climate variability and potential predictability. All experiments are forced with observed monthly mean sea surface temperatures. In addition to a control experiment with interactive soil moisture boundary conditions, two sensitivity experiments are performed. In the first, the interannual variability of the deep soil moisture is removed during the whole season, through a relaxation toward the monthly mean model climatology. In the second, only the variability of the initial soil moisture conditions is suppressed. While it is shown that soil moisture strongly contributes to the climate variability simulated in the control experiment, an analysis of variance indicates that soil moisture does not represent a significant source of predictability in most continental areas. The main exception is the North American continent, where climate predictability is clearly reduced through the use of climatological initial conditions. Using climatological soil moisture boundary conditions does not lead to strong and homogeneous impacts on potential predictability, thereby suggesting that the climate signals driven by the sea surface temperature variability are not generally amplified by interactive soil moisture and that the relevance of soil moisture for seasonal forecasting is mainly an initial value problem.  相似文献   

5.
本研究利用WRF模式及其三维变分同化系统实现了对NOAA-16 AMSU-A微波资料的直接同化,针对2010年6月19日江西地区的一次强降水过程开展模拟与同化试验,并利用中国区域土壤湿度同化系统(CLSMDAS—China Land Soil Moisture Data Assimilation System)输出的土壤湿度值替换NCEP(National Centers for Environmental Prediction)资料中的土壤湿度,研究土壤湿度初值对辐射率资料直接同化中观测场与背景场偏差调整的影响。结果表明:采用CLSMDAS输出土壤湿度初值条件下模拟的亮温值与实际观测值更为接近,经过质量控制和偏差订正后更多的观测资料能够进入到同化系统中,说明改进的土壤湿度初值条件下观测算子的计算值得到正的调整,对低层地表通道的改进效果明显,尤其以50.3 GHz的窗区通道3的结果最为理想;针对此次强降水过程中24 h累积降水分布的模拟结果,CLSMDAS输出土壤湿度初值条件下同化AMSU-A资料,能够较为准确的把握整个雨带的走向、大雨以上级别降水的落区范围、降水中心落区及强度等。说明准确的土壤湿度初值能够改进卫星辐射率资料的同化结果,进而提高数值模式的模拟预报能力。  相似文献   

6.
It is important for predictions of heavy rainfall to include radar data to provide better reflection of moisture. Numerical experiments were carried out with real cases of heavy rains in the Changjiang (Yangtze)-Huaihe River Basin using a PSU/NCAR mesoscale model that incorporated radar data. Processed radar data were added to the model to change the analysis of initial humidity field before 24-h numerical simulations were made and the results compared with a control experiment. It is suggested that the radar-data-incorporated numerical predictions could produce locations of precipitation areas and maximum rainfall that are closer to reality than the control, due to the fact that moisture and converging updraft are strengthened in the middle and lower levels of the troposphere in the area of heavy rains and areas nearby. The work is expected to improve numerical modeling and forecasts of heavy rains in middle and lower latitudes of China.  相似文献   

7.
This study uses experiments with an atmospheric general circulation model (AGCM) to address the role of the oceans and the effect of land–atmosphere coupling on the predictability of summertime rainfall over northern Argentina focusing on interdecadal time scales during 1901–2006. Ensembles of experiments where the AGCM is forced with historical sea surface temperature (SST) in the global, Pacific and tropical-North Atlantic domains are used. The role of land–atmosphere interaction is assessed comparing the output of simulations with active and climatological soil moisture. A maximum covariance analysis between precipitation and SST reveals the impact of the Pacific Decadal Oscillation, the Atlantic Multidecadal Oscillation and the equatorial–tropical South Atlantic on rainfall over northern Argentina. Model simulations further show that while the dominant influence comes from the Pacific basin, the Atlantic influence can explain a large transition from dry to wet decades over northern Argentina during the beginning of the 1970s. Analysis of anomalies before and after the transition reveals an upper level anticyclonic circulation off the Patagonian coast with barotropic structure. This circulation enhances the moisture transport and convergence in northern Argentina and, together with enhanced evaporation, increased the rainfall after 1970. The SST pattern is dominated by cold conditions in the equatorial Atlantic and warm eastern Pacific and South Atlantic. We also found that land–atmosphere interaction leads to a representation of the long term rainfall evolution over northern Argentina that is closer to the observed one. Moreover, it leads to a smaller dispersion among ensemble members, thus resulting in a larger signal-to-noise ratio.  相似文献   

8.
Summary Hindcasts for the Indian summer monsoons (ISMs) of 2002 and 2003 have been produced from an ensemble of numerical simulations performed with a global model by changing SST. Two sets of ensemble simulations have been produced without vegetation: (i) by prescribing the weekly observed SST from ECMWF (European Centre for Medium Range Weather Forecasting) analyses, and (ii) by adding weekly SST anomalies (SSTA) of April to the climatological SST during the simulation period from May to August. For each ensemble, 10 simulations have been realized with different initial conditions that are prepared from ECMWF data with five each from April and May analyses of both the years. The predicted June–July monsoon rainfall over the Indian region shows good agreement with the GPCP (observed) pentad rainfall distribution when 5 member ensemble is taken from May initial conditions. The All-India June–July simulated rainfall time series matches favourably with the observed time series in both the years for the five member ensemble from May initial condition but drifts away from observation with April initial conditions. This underscores the role of initial conditions in the seasonal forecasting. But the model has failed to capture the strong intra-seasonal oscillation in July 2002. Heating over equatorial Indian Ocean for June 2002 in a particular experiment using 29th May 12 GMT as initial conditions shows some intra-seasonal oscillation in July 2002 rainfall, as in observation. Further evaluation of the seasonal simulations from this model is done by calculating the empirical orthogonal functions (EOFs) of the GPCP rainfall over India. The first four EOFs explain more than 80% of the total variance of the observed rainfall. The time series of expansion coefficients (principal components), obtained by projecting on the observed EOFs, provide a better framework for inter-comparing model simulations and their evaluation with observed data. The main finding of this study is that the All-India rainfall from various experiments with prescribed SST is better predicted on seasonal scale as compares to prescribed SST anomalies. This is indicative of a possible useful seasonal forecasts from a GCM at least for the case when monsoon is going to be good. The model responses do not differ much for 2002 and 2003 since the evolution of SST during these years was very similar, hence July rainfall seems to be largely modulated by the other feedbacks on the overall circulation.  相似文献   

9.
Influence of soil moisture on the Sahelian climate prediction II   总被引:1,自引:0,他引:1  
Summary The sensitivity of short-term climate to soil moisture parameterization has been investigated using the Florida State University Global Spectral Model. This is done through the implementation of a simple and realistic soil moisture availability in a prognostic equation for the surface temperature.The results from two seasonal simulations between 11 May and 31 August 1979 are discussed with an emphasis on the Sahelian regions. These experiments indicated that most of the significant changes that resulted from the new parameterization occurred at and near the surface. Above the surface, land surface effects were strongly diffused and for most of the cases were not conclusively discernible. At the surface, however, soil moisture appeared to be a parameter of large influence. Important modulations in the surface temperature were obtained. The time dependence of the soil moisture availability has led to an evolution of the surface heat sources in the model resulting in an apparent northward propagation of the centers of maximum temperature as the rainfall season progressed over the north African continent from May to August. This has had an important effect on the distribution of the primary variables and showed significant departures from the control.The interaction introduced by the new scheme between the physical processes parameterized in the model, has resulted in a differential modification of the rainfall distribution, and the changes in the hydrological cycle have remarkably affected the summer Sahelian rainfall.With 20 Figures  相似文献   

10.
We summarize the recent progress in regional climate modeling in South America with the Rossby Centre regional atmospheric climate model (RCA3-E), with emphasis on soil moisture processes. A series of climatological integrations using a continental scale domain nested in reanalysis data were carried out for the initial and mature stages of the South American Monsoon System (SAMS) of 1993–92 and were analyzed on seasonal and monthly timescales. The role of including a spatially varying soil depth, which extends to 8 m in tropical forest, was evaluated against the standard constant soil depth of the model of about 2 m, through two five member ensemble simulations. The influence of the soil depth was relatively weak, with both beneficial and detrimental effects on the simulation of the seasonal mean rainfall. Secondly, two ensembles that differ in their initial state of soil moisture were prepared to study the influence of anomalously dry and wet soil moisture initial conditions on the intraseasonal development of the SAMS. In these simulations the austral winter soil moisture initial condition has a strong influence on wet season rainfall over feed back upon the monsoon, not only over the Amazon region but in subtropical South America as well. Finally, we calculated the soil moisture–precipitation coupling strength through comparing a ten member ensemble forced by the same space–time series of soil moisture fields with an ensemble with interactive soil moisture. Coupling strength is defined as the degree to which the prescribed boundary conditions affect some atmospheric quantity in a climate model, in this context a quantification of the fraction of atmospheric variability that can be ascribed to soil moisture anomalies. La Plata Basin appears as a region where the precipitation is partly controlled by soil moisture, especially in November and January. The continental convective monsoon regions and subtropical South America appears as a region with relatively high coupling strength during the mature phase of monsoon development.  相似文献   

11.
In this paper, a comparison study of three cumulus parameterization schemes (CPSs), Kain-Fritsch2 (KF2), Grell (GR) and Anthes-Kuo (AK), is carried out using the Pennsylvania State University-National Center for Atmospheric Research mesoscale model (i.e., MM5). The performances of three CPSs are examined in simulations of the long-term heavy Meiyu-frontal rainfall events over the middle to lower reaches of the Yangtze River Basin (YRB-ML) during the summer of 1998. The initial and lateral boundary atmosphere conditions are taken from the National Centers for Environmental Prediction/Department of Energy Reanalysis-2 (R-2) data. The experiment with KF2 scheme (EX_KF2) reproduces reasonably well the major rainfall events, especially the heavy rainfall over YRB-ML during the later stage, and the middle and lower troposphere circulation patterns. In contrast, the experiments with both GR and AK schemes (EX_GR and EX_AK) only simulate the heavy rainfall during the first Meiyu rainy phase with weak intensity, and almost miss the rainfall along YRB-ML during the second phase. The analyses show that the location of 500?hPa western Pacific subtropical high during the first rainy phase, the northward advance during the transition period and the retreat during the second rainy phase, observed from the R-2 data, are successfully captured by EX_KF2, compared to the poor performance of EX_GR and EX_AK. A reasonable proportion of the subgrid-scale rainfall and smaller biases of temperature and moisture from lower to middle troposphere in EX_KF2 decide its good rainfall simulations, in contrast with the absolutely high proportions and the cold and dry biases caused by the decreased vertically convective transportation and the weak southwesterly wind in EX_GR and EX_AK. Overall, the three CPSs show substantial intersimulation differences in rainfall as well as in three-dimensional atmospheric structures, and KF2 shows superior performances. The results suggest that the realistic subgrid-scale CPS is still highly required for the high-resolution regional climate models to simulate the heavy rainfall events.  相似文献   

12.
土壤湿度是影响天气和气候非常重要的因子之一,但目前针对土壤湿度可预报性的研究报道相对较少。该文在对BCC_CSM模式进行了适合的陆面初始化的条件下,设计了两组在中国东部地区采用不同土壤湿度初值的回报试验研究该地区土壤湿度的可预报性及初值对其可预报性影响问题。试验结果表明:BCC_CSM模式在真实的外场强迫下可以模拟出相对合理的土壤湿度;土壤湿度的可预报性在表层约为3候,随着深度的增加,土壤湿度的可预报性持续时间增加,在中层预报性甚至能达到月尺度以上;初值对于土壤湿度的预报存在影响,在表层影响时间约为2~3候,影响时间随着深度增加;浅层土壤湿度受降水的影响较大,浅层土壤湿度变化滞后降水变化约1~2 d,中层土壤湿度变化与降水变化存在5 d左右的滞后关系。  相似文献   

13.
This study investigates the influence of Simplified Arakawa Schubert (SAS) and Relax Arakawa Schubert (RAS) cumulus parameterization schemes on coupled Climate Forecast System version.1 (CFS-1, T62L64) retrospective forecasts over Indian monsoon region from an extended range forecast perspective. The forecast data sets comprise 45 days of model integrations based on 31 different initial conditions at pentad intervals starting from 1 May to 28 September for the years 2001 to 2007. It is found that mean climatological features of Indian summer monsoon months (JJAS) are reasonably simulated by both the versions (i.e. SAS and RAS) of the model; however strong cross equatorial flow and excess stratiform rainfall are noted in RAS compared to SAS. Both the versions of the model overestimated apparent heat source and moisture sink compared to NCEP/NCAR reanalysis. The prognosis evaluation of daily forecast climatology reveals robust systematic warming (moistening) in RAS and cooling (drying) biases in SAS particularly at the middle and upper troposphere of the model respectively. Using error energy/variance and root mean square error methodology it is also established that major contribution to the model total error is coming from the systematic component of the model error. It is also found that the forecast error growth of temperature in RAS is less than that of SAS; however, the scenario is reversed for moisture errors, although the difference of moisture errors between these two forecasts is not very large compared to that of temperature errors. Broadly, it is found that both the versions of the model are underestimating (overestimating) the rainfall area and amount over the Indian land region (and neighborhood oceanic region). The rainfall forecast results at pentad interval exhibited that, SAS and RAS have good prediction skills over the Indian monsoon core zone and Arabian Sea. There is less excess rainfall particularly over oceanic region in RAS up to 30 days of forecast duration compared to SAS. It is also evident that systematic errors in the coverage area of excess rainfall over the eastern foothills of the Himalayas remains unchanged irrespective of cumulus parameterization and initial conditions. It is revealed that due to stronger moisture transport in RAS there is a robust amplification of moist static energy facilitating intense convective instability within the model and boosting the moisture supply from surface to the upper levels through convergence. Concurrently, moisture detrainment from cloud to environment at multiple levels from the spectrum of clouds in the RAS, leads to a large accumulation of moisture in the middle and upper troposphere of the model. This abundant moisture leads to large scale condensational heating through a simple cloud microphysics scheme. This intense upper level heating contributes to the warm bias and considerably increases in stratiform rainfall in RAS compared to SAS. In a nutshell, concerted and sustained support of moisture supply from the bottom as well as from the top in RAS is the crucial factor for having a warm temperature bias in RAS.  相似文献   

14.
Land Data Assimilation Systems have been developed to generate the surface initial conditions such as soil moisture and temperature for better prediction of weather and climate. We have constructed Korea Land Data Assimilation System (KLDAS) based on an uncoupled land surface modeling framework that integrates high-resolution in-situ observation, satellite data, land surface information from the WRF Preprocessing System (WPS) and the MODIS land products over the East Asia. To present better surface conditions, the KLDAS is driven by atmospheric forcing data from the in-situ rainfall gauges and satellite. In this study, we 1) briefly introduce the KLDAS, 2) evaluate the meteorological states near the surface and the surface fluxes reproduced by the KLDAS against the in-situ observation, and then 3) examine the performance of the mesoscale model initialized by the KLDAS. We have generated a 5-year, 10 km, hourly atmospheric forcing dataset for use in KLDAS operating across East Asia. The KLDAS has effectively reproduced the observed patterns of soil moisture, soil temperature, and surface fluxes. Further scrutiny reveals that the numerical simulations incorporating the KLDAS outputs show better agreement in both the simulated near-surface conditions and rainfall distribution over the Korean Peninsula, compared to those without the KLDAS.  相似文献   

15.
The sensitivity of climate to orbitally-related changes in solar radiation at 9000 yr BP (before present) is examined using fixed and interactive soil moisture versions of a low resolution general circulation model. In both versions of the model increased solar radiation for June–August at 9000 yr BP (compared to present) produced enhanced northern monsoons and warmer continental interiors in comparison to present whereas decreased solar radiation at 9000 yr BP in December–February produced weaker southern monsoons. The increased rainfall in the northern tropics in summer increased soil moisture and runoff at 9000 yr BP in the interactive model; in the southern hemisphere decreased rainfall in summer led to decreased soil moisture and runoff. Conditions in summer became drier (decreased soil moisture and runoff) at 9000 yr BP in the northern extratropics.The experiments showed that the magnitude (but not the sign) of model sensitivity to 9000 yr BP radiation is altered by the effects of interactive soil moisture. Decreased soil moisture (about 20%) over northern Eurasia in the interactive model led to smaller evaporative increases, greater temperature increases and greater reduction of precipitation than for the model with fixed soil moisture. Over northern tropical lands, slightly smaller temperature increases and greater evaporation and precipitation increases in the interactive model are linked to the simulation of increased soil moisture at 9000 yr BP. The differences in sensitivity between the two versions of the model over northern Eurasia are statistically significant at the 95% level whereas those for the tropics are not.Overall, the results of the simulations are generally supported by the geologic evidence for 9000 yr BP; however, the evidence lacks sufficient precision and the model resolution is too coarse for detailed model/data comparisons and for assessment of the relative accuracy of the two 9000 yr BP experiments.The computed sensitivities of temperature and soil moisture to 9000 yr BP radiation differ from those simulated under equilibrium conditions in the various general circulation model experiments for increased atmospheric concentration of CO2. In contrast to the effects of the enhanced seasonal cycle of solar radiation at 9000 yr BP, a CO2 increase causes a broad warming of both the ocean and land with little modification of land/ocean temperature difference. The experiments for 9000 yr BP indicate a clearer signal for summer drying than is obtained in the experiments for increased CO2. The results suggest that the 9000 yr BP climate may be of limited utility as an analog to future warm climates.  相似文献   

16.
The influence of surface roughness of deserts on the July circulation   总被引:2,自引:0,他引:2  
The influence of low surface roughness of deserts on the July circulation is examined by employing numerical simulations with a GLAS GCM. Two identical sets of simulations were made with the model starting from the initial state of the atmosphere based on the NMC analysis of observations for June 15, at OOZ for the years 1979 and 1980. The first set, called the Control, had land surface roughness set to 45 cm, everywhere. The second set called the Experiment, had surface roughness set to 0.02 cm for deserts, but 45 cm everywhere else on land. All other prescribed boundary conditions were the same in both runs.A comparative analysis of these simulations showed that the rainfall in the Sahara desert was reduced significantly in both Experiments as compared to the corresponding Controls; the ITCZ (inter-tropical convergence zone) moved southward, to about 14° N, which is close to its observed location at about 10° N. This was primarily caused by the relative moisture divergence from the smoother Sahara. In other deserts, which anyway had little rainfall in the July simulation of the Control run, there was virtually no change. The differences in regional heat and moisture budgets, particularly for the Sahara desert, are significant as compared to the sample standard deviation for a set of three July simulations (i.e., Control runs for three different initial conditions). In a third simulation, in which the surface roughness was changed over all land, similar results were obtained in the Sahara desert region.The study reveals the influence of low surface-roughness of deserts on the July rainfall. For the Sahara desert, this influence is comparable to that of an increase in surface albedo. In nature, formation of deserts leads to reduction of surface roughness as the vegetation perishes and soil erosion ensues. It is inferred that the smoothness of land then causes reduction in rainfall and further promotes desertification.Sigma Data Services through contract # NASA 25900.  相似文献   

17.
This study investigates aerosol indirect effects on the development of heavy rainfall near Seoul, South Korea, on 12 July 2006, focusing on precipitation amount. The impact of the aerosol concentration on simulated precipitation is evaluated by varying the initial cloud condensation nuclei (CCN) number concentration in the Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) microphysics scheme. The simulations are performed under clean, semi-polluted, and polluted conditions. Detailed analysis of the physical processes that are responsible for surface precipitation, including moisture and cloud microphysical budgets shows enhanced ice-phase processes to be the primary driver of increased surface precipitation under the semi-polluted condition. Under the polluted condition, suppressed auto-conversion and the enhanced evaporation of rain cause surface precipitation to decrease. To investigate the role of environmental conditions on precipitation response under different aerosol number concentrations, a set of sensitivity experiments are conducted with a 5?% decrease in relative humidity at the initial time, relative to the base simulations. Results show ice-phase processes having small sensitivity to CCN number concentration, compared with the base simulations. Surface precipitation responds differently to CCN number concentration under the lower humidity initial condition, being greatest under the clean condition, followed by the semi-polluted and polluted conditions.  相似文献   

18.
A low pressure system that formed on 21 September 2006 over eastern India/Bay of Bengal intensified into a monsoon depression resulting in copious rainfall over north-eastern and central parts of India. Four numerical experiments are performed to examine the performance of assimilation schemes in simulating this monsoon depression using the Fifth Generation Mesoscale Model (MM5). Forecasts from a base simulation (with no data assimilation), a four-dimensional data assimilation (FDDA) system, a simple surface data assimilation (SDA) system coupled with FDDA, and a flux-adjusting SDA system (FASDAS) coupled with FDDA are compared with each other and with observations. The model is initialized with Global Forecast System (GFS) forecast fields starting from 19 September 2006, with assimilation being done for the first 24 hours using conventional observations, sounding and surface data of temperature and moisture from Advanced TIROS Operational Vertical Sounder satellite and surface wind data over the ocean from QuikSCAT. Forecasts are then made from these assimilated states. In general, results indicate that the FASDAS forecast provides more realistic prognostic fields as compared to the other three forecasts. When compared with other forecasts, results indicate that the FASDAS forecast yielded lower root-mean-square (r.m.s.) errors for the pressure field and improved simulations of surface/near-surface temperature, moisture, sensible and latent heat fluxes, and potential vorticity. Heat and moisture budget analyses to assess the simulation of convection revealed that the two forecasts with the surface data assimilation (SDA and FASDAS) are superior to the base and FDDA forecasts. An important conclusion is that, even though monsoon depressions are large synoptic systems, mesoscale features including rainfall are affected by surface processes. Enhanced representation of land-surface processes provides a significant improvement in the model performance even under active monsoon conditions where the synoptic forcings are expected to be dominant.  相似文献   

19.
对流天气系统自动站雨量资料同化对降雨预报的影响   总被引:14,自引:7,他引:7  
利用GRAPES(Global and Regional Assimilation and Prediction Enhanced System,全球/区域同化预报系统)三维变分同化系统,针对对流天气系统特点,用改进的郭晓岚对流参数化方案作为观测算子,同化广东省自动站记录的对流天气系统的雨量资料,并且与同化探空资料进行了比较.在雨带有明显改进的区域,分别同化这两种资料都可以调整大气低层水汽辐合增加(或辐散),对流层中下层增暖增湿(或变冷变干),从而增加(或减少)降水,表明降水的同化方案对初始场的调整在一定  相似文献   

20.
In a changing climate, changes in rainfall variability and, in particular, extreme rainfall events are likely to be highly significant for environmentally vulnerable regions such as southern Africa. It is generally accepted that sea-surface temperatures play an important role in modulating rainfall variability, thus the majority work to date has focused on these mechanisms. However past research suggests that land surface processes are also critical for rainfall variability. In particular, work has suggested that the atmosphere-land surface feedback has been important for past abrupt climate changes, such as those which occurred over the Sahara during the mid-Holocene or, more recently, the prolonged Sahelian drought. Therefore the primary aim of this work is to undertake idealised experiments using both a regional and global climate model, to test the sensitivity of rainfall variability to land surface changes over a location where such abrupt climate changes are projected to occur in the future, namely southern Africa. In one experiment, the desert conditions currently observed over southwestern Africa were extended to cover the entire subcontinent. This is based on past research which suggests a remobilisation of sand dune activity and spatial extent under various scenarios of future anthropogenic global warming. In the second experiment, savanna conditions were imposed over all of southern Africa, representing an increase in vegetation for most areas except the equatorial regions. The results suggest that a decrease in rainfall occurs in the desert run, up to 27% of total rainfall in the regional model (relative to the control), due to a reduction in available moisture, less evaporation, less vertical uplift and therefore higher near surface pressure. This result is consistent across both the regional and global model experiments. Conversely an increase in rainfall occurs in the savanna run, because of an increase in available moisture giving an increase in latent heat and therefore surface temperature, increasing vertical uplift and lowering near surface pressure. These experiments, however, are only preliminary, and form the first stage of a wider study into how the atmosphere-land surface feedback influences rainfall extremes over southern Africa in the past (when surface i.e. vegetation conditions were very different) and in the future under various scenarios of future climate change. Future work will examine how other climate models simulate the atmosphere-land surface feedback, using more realistic vegetation types based on past and future surface conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号