首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We present a new method for fast numerical integration of close binaries inN-body systems. The basic idea is to slow down the motion of the binary artificially, which makes a faster numerical integration possible but still maintains correct treatment of secular and long-period effects on the motion. We discuss the general principle, with application to close binaries inN-body codes and in the chain regularization.  相似文献   

2.
An appropriate generalization of the Jacobi equation of motion for the polar moment of inertia I is considered in order to study the N-body problem with variable masses. Two coupled ordinary differential equations governing the evolution of I and the total energy E are obtained. A regularization scheme for this system of differential equations is provided. We compute some illustrative numerical examples, and discuss an average method for obtaining approximate analytical solutions to this pair of equations. For a particular law of mass loss we also obtain exact analytical solutions. The application of these ideas to other kind of perturbed gravitational N-body systems involving drag forces or a different type of mass variation is also considered. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The sets of L-matrices of the second, fourth and eighth orders are constructed axiomatically. The defining relations are taken from the regularization of motion equations for Keplerian problem. In particular, the Levi-Civita matrix and KS-matrix are L-matrices of second and fourth order, respectively. A theorem on the ranks of L-transformations of different orders is proved. The notion of L-similarity transformation is introduced, certain sets of L-matrices are constructed, and their classification is given. An application of fourth order L-matrices for N-body problem regularization is given. A method of correction for regular coordinates in the Runge–Kutta–Fehlberg integration method for regular motion equations of a perturbed two-body problem is suggested. Comparison is given for the results of numerical integration in the problem of defining the orbit of a satellite, with and without the above correction method. The comparison is carried out with respect to the number of calls to the subroutine evaluating the perturbational accelerations vector. The results of integration using the correction turn out to be in a favorable position.  相似文献   

4.
A regularization method for integrating the equations of motion of small N-body systems is discussed. We select a chain of interparticle vectors in such a way that the critical interactions requiring regularization are included in the chain. The equations of motion for the chain vectors are subsequently regularized using the KS-variables and a time transformation. The method has been formulated for any number of bodies, but the most important application appears to be in the four-body problem which is therefore discussed in detail.  相似文献   

5.
The work of Aarseth and Zare (1974) is extended to provide aglobal regularisation of the classical gravitational three-body problem: by transformation of the variables in a way that does not depend on the particular configuration, we obtain equations of motion which are regular with respect to collisions between any pair of particles. The only cases excepted are those in which collisions between more than one pair occur simultaneously and those in which at least one of the masses vanishes. However, by means of the same principles the restricted problem is regularised globally if collisions between the two primaries are excluded. Results of numerical tests are summarised, and the theory is generalised to provide global regularisations, first, for perturbed three-body motion and, second, for theN-body problem. A way of increasing the number of degrees of freedom of a dynamical system is central to the method, and is the subject of an Appendix.  相似文献   

6.
A new algorithm is developed for long-term integrations of the N-body problem. The method uses symplectic integrations of the Hamiltonian equations of motion for each body. This allows one to employ individual adaptive time-steps in computations. The efficiency of this technique is demonstrated by several tests performed for typical problems of Solar System dynamics.  相似文献   

7.
One of the main difficulties encountered in the numerical integration of the gravitationaln-body problem is associated with close approaches. The singularities of the differential equations of motion result in losses of accuracy and in considerable increase in computer time when any of the distances between the participating bodies decreases below a certain value. This value is larger than the distance when tidal effects become important, consequently,numerical problems are encounteredbefore the physical picture is changed. Elimination of these singularities by transformations is known as the process of regularization. This paper discusses such transformations and describes in considerable detail the numerical approaches to more accurate and faster integration. The basic ideas of smoothing and regularization are explained and applications are given.  相似文献   

8.
9.
This paper deals with a method of regularization and linearization of the equations of motion in the central force-field, when the potential is given.This method of regularization of the equations of motion is known (Sundman, 1913), and is based on the transformation of time by means of introducing a new independent variable.In this article a condition has been obtained for the regularizing function when the potential is given.Some examples of the perturbed Keplerian motions are discussed.  相似文献   

10.
E. Bois  N. Rambaux   《Icarus》2007,192(2):308-317
Mercury's capture into the 3:2 spin–orbit resonance can be explained as a result of its chaotic orbital dynamics. One major objective of MESSENGER and BepiColombo spatial missions is to accurately measure Mercury's rotation and its obliquity in order to obtain constraints on internal structure of the planet. Analytical approaches at the first-order level using the Cassini state assumptions give the obliquity constant or quasi-constant. Which is the obliquity's dynamical behavior deriving from a complete spin–orbit motion of Mercury simultaneously integrated with planetary interactions? We have used our SONYR model (acronym of Spin–Orbit N-bodY Relativistic model) integrating the spin–orbit N-body problem applied to the Solar System (Sun and planets). For lack of current accurate observations or ephemerides of Mercury's rotation, and therefore for lack of valid initial conditions for a numerical integration, we have built an original method for finding the libration center of the spin–orbit system and, as a consequence, for avoiding arbitrary amplitudes in librations of the spin–orbit motion as well as in Mercury's obliquity. The method has been carried out in two cases: (1) the spin–orbit motion of Mercury in the 2-body problem case (Sun–Mercury) where an uniform precession of the Keplerian orbital plane is kinematically added at a fixed inclination (S2K case), (2) the spin–orbit motion of Mercury in the N-body problem case (Sun and planets) (Sn case). We find that the remaining amplitude of the oscillations in the Sn case is one order of magnitude larger than in the S2K case, namely 4 versus 0.4 arcseconds (peak-to-peak). The mean obliquity is also larger, namely 1.98 versus 1.80 arcminutes, for a difference of 10.8 arcseconds. These theoretical results are in a good agreement with recent radar observations but it is not excluded that it should be possible to push farther the convergence process by drawing nearer still more precisely to the libration center. We note that the dynamically driven spin precession, which occurs when the planetary interactions are included, is more complex than the purely kinematic case. Nevertheless, in such a N-body problem, we find that the 3:2 spin–orbit resonance is really combined to a synchronism where the spin and orbit poles on average precess at the same rate while the orbit inclination and the spin axis orientation on average decrease at the same rate. As a consequence and whether it would turn out that there exists an irreducible minimum of the oscillation amplitude, quasi-periodic oscillations found in Mercury's obliquity should be to geometrically understood as librations related to these synchronisms that both follow a Cassini state. Whatever the open question on the minimal amplitude in the obliquity's oscillations and in spite of the planetary interactions indirectly acting by the solar torque on Mercury's rotation, Mercury remains therefore in a stable equilibrium state that proceeds from a 2-body Cassini state.  相似文献   

11.
The aim of this article is to present a method for the integration of the equations of motion of the N-body ring problem by means of recurrent power series. We prove that the solution is convergent for any set of initial conditions, excluding those corresponding to binary collisions.  相似文献   

12.
In this paper we give the Hamiltonian function for aN-body system up to the 2-P.N.A. Then as an example, from the LagrangianL m of a test particle we derive the equations of its motion up to the 2-P.N.A. in the field of a heavy bodym 2at rest.  相似文献   

13.
The regularization of a new problem, namely the three-body problem, using ‘similar’ coordinate system is proposed. For this purpose we use the relation of ‘similarity’, which has been introduced as an equivalence relation in a previous paper (see Roman in Astrophys. Space Sci. doi:, 2011). First we write the Hamiltonian function, the equations of motion in canonical form, and then using a generating function, we obtain the transformed equations of motion. After the coordinates transformations, we introduce the fictitious time, to regularize the equations of motion. Explicit formulas are given for the regularization in the coordinate systems centered in the more massive and the less massive star of the binary system. The ‘similar’ polar angle’s definition is introduced, in order to analyze the regularization’s geometrical transformation. The effect of Levi-Civita’s transformation is described in a geometrical manner. Using the resulted regularized equations, we analyze and compare these canonical equations numerically, for the Earth-Moon binary system.  相似文献   

14.
We present a time-transformed leapfrog scheme combined with the extrapolation method to construct an integrator for orbits in N-body systems with large mass ratios. The basic idea can be used to transform any second-order differential equation into a form which may allow more efficient numerical integration. When applied to gravitating few-body systems this formulation permits extremely close two-body encounters to be considered without significant loss of accuracy. The new scheme has been implemented in a direct N-body code for simulations of super-massive binaries in galactic nuclei. In this context relativistic effects may also be included.  相似文献   

15.
A fourth-order polynomial method for the integration ofN-body systems is described in detail together with the computational algorithm. Most particles are treated efficiently by an individual time-step scheme but the calculation of close encounters and persistent binary orbits is rather time-consuming and is best performed by special techniques. A discussion is given of the Kustaanheimo-Stiefel regularization procedure which is used to integrate dominant two-body encounters as well as close binaries. Suitable decision-making parameters are introduced and a simple method is developed for regularizing an arbitrary number of simultaneous two-body encounters.  相似文献   

16.
Letn2 mass points with arbitrary masses move circularly on a rotating straight-line central-configuration; i.e. on a particular solution of relative equilibrium of then-body problem. Replacing one of the mass points by a close pair of mass points (with mass conservation) we show that the resultingN-body problem (N=n+1) has solutions, which are periodic in a rotating coordinate system and describe precessing nearlyelliptic motion of the binary and nearlycircular collinear motion of its center of mass and the other bodies; assuming that also the mass ratio of the binary is small.  相似文献   

17.
18.
It is proved that monoparametric families of periodic orbits of theN-body problem in the plane, for fixed values of all masses, exist in a rotating frame of reference whosex axis contains always two of the bodiesP 1 andP 2. A periodic motion of theN-body problem is obtained as a continuation ofN–2 symmetric periodic orbits of the circular restricted three-body problem whose periods are in integer dependence, by increasing the masses of the originallyN–2 massless bodiesP 3, ...,P k. The analytic continuation, for sufficiently small values of theN–2 bodiesP 3 ...P k and finite values for the masses ofP 1 andP 2 has been proved by the continuation method and the solution itself has been found explicitly to a linear approximation in the small masses. Also, the possible application of the above periodic orbits to the study of the Solar system and of stellar systems is mentioned.  相似文献   

19.
《New Astronomy》2007,12(2):124-133
The method of choice for integrating the equations of motion of the general N-body problem has been to use an individual time step scheme. For the sake of efficiency, block time steps have been the most popular, where all time step sizes are smaller than a maximum time step size by an integer power of two. We present the first successful attempt to construct a time-symmetric integration scheme, based on block time steps. We demonstrate how our scheme shows a vastly better long-time behavior of energy errors, in the form of a random walk rather than a linear drift. Increasing the number of particles makes the improvement even more pronounced.  相似文献   

20.
The integration of the equations of motion in gravitational dynamical systems—either in our Solar System or for extra-solar planetary systems—being non integrable in the global case, is usually performed by means of numerical integration. Among the different numerical techniques available for solving ordinary differential equations, the numerical integration using Lie series has shown some advantages. In its original form (Hanslmeier and Dvorak, Astron Astrophys 132, 203 1984), it was limited to the N-body problem where only gravitational interactions are taken into account. We present in this paper a generalisation of the method by deriving an expression of the Lie terms when other major forces are considered. As a matter of fact, previous studies have been done but only for objects moving under gravitational attraction. If other perturbations are added, the Lie integrator has to be re-built. In the present work we consider two cases involving position and position-velocity dependent perturbations: relativistic acceleration in the framework of General Relativity and a simplified force for the Yarkovsky effect. A general iteration procedure is applied to derive the Lie series to any order and precision. We then give an application to the integration of the equation of motions for typical Near-Earth objects and planet Mercury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号