首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The problem of transport of suspended sediment after the break of a dam on an inclined bed is considered. To that end we use the shallow‐water approximation for arbitrary, constant slopes of the bottom, taking into consideration the effect of friction. The numerical technique and the frictional model are validated by comparison with available experimental data and asymptotic analytical solutions, with special attention to the numerical solution near the wetting front. The transport of suspended sediment down the inclined bed is obtained and discussed as a function of the slope of the bed for different values of the parameters characterizing the sediment and its transport properties. For sufficiently large times we always find the formation of roll waves near the water front, which affects the transport of sediments significantly. These strong oscillations are accurately computed with the numerical method used. The relative importance of the bed load (to the suspended load) sediment transport is also discussed as a function of the size of the sediment particles and the slope of the bed for different models on the initiation of sediment suspension from bed load. We also check the dilute sediment approach and characterize the conditions for its failure. Finally, the results of the present simplified model are intended to be used as tests of more complex numerical models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
1 INTRODUCTION With advances in computer technology and numerical methods, three-dimensional (3D) mathematical models for sediment transport are gradually applied more often and for more practical projects of hydraulic engineering. Three-dimensional mathematical river models can describe not only the secondary flow, but also the transport, deposition, and erosion of sediment in the river channel and the flood plain. However, at present the theories of sediment transport are not as well de…  相似文献   

3.
L INTRODUCTIONSediment particles move either as bed load or as suspended load, depending on thecharacteristics of flow condition and on the properties of the sediment particlethemselves. Exchange between bed load and bed material takes place directly, while thesuspended load, under general conditions, can hardly interact with the stationary bedwithout the bed load as a medium. It is necessary to take into full account theinteractions of suspended load, bed load and bed material when bed d…  相似文献   

4.
Abstract

This paper aims at initiating a fundamental understanding of the suspended load transport of river sediment in unsteady flow. Laboratory erosion tests as well as artificial flood experiments are used to evaluate the influence of the transient regime on the transport efficiency of the flow. The erosion experiments reveal that the transport capacity is augmented when the unsteadiness of the flow increases. However, the influence of the transient regime is counteracted by the cohesive properties of the river bed. Field experiments with artificial floods released from a reservoir into a small canal confirm these findings and show a relationship between the friction velocity and the suspended load transport. An appropriate parameter β is proposed to evaluate the impact of the transient regime on the transport of suspended sediment.  相似文献   

5.
I INTRODUCTIONThe volume and regime of sediment load are the most important factors, which are responsible for theformation, direction and deformation rate of the river channels. Despite the long history of study anddevelopment of sediment load calculation methodology, there are still numerous problems that remain tobe solved such as river pattern and sediment movement and so on (Wang et al, 1997).In this respect, the comparative analysis of sediment load and river channel processes of la…  相似文献   

6.
In order to preserve the storage capacity of the Nanqin Reservoir for long-term service, several remedial measures have been worked out: (a) measures to control the upstream extension of backwater deposits and to prevent gravel bed load from entering into the reservoir, so that no armour layer will be formed; (b) sediment sluicing by density current to reduce deposits of suspended load; (c) periodical sediment flushing by emptying reservoir to restore the effective storage capacity. In addition, conceptions of flood plain elevation in reservoir, storage volume required in the routing of turbid flow (density flow), the storage capacity that can be restored after being lost by deposition, and the storage volume for sediment regulation are also discussed.  相似文献   

7.
Collection of samples of suspended sediment transported by streams and rivers is difficult and expensive. Emerging technologies, such as acoustic backscatter, have promise to decrease costs and allow more thorough sampling of transported sediment in streams and rivers. Acoustic backscatter information may be used to calculate the concentration of suspended sand-sized sediment given the vertical distribution of sediment size. Therefore, procedures to accurately compute suspended sediment size distributions from easily obtained river data are badly needed. In this study, techniques to predict the size of suspended sand are examined and their application to measuring concentrations using acoustic backscatter data are explored. Three methods to predict the size of sediment in suspension using bed sediment, flow criteria, and a modified form of the Rouse equation yielded mean suspended sediment sizes that differed from means of measured data by 7 to 50 percent. When one sample near the bed was used as a reference, mean error was reduced to about 5 percent. These errors in size determination translate into errors of 7 to 156 percent in the prediction of sediment concentration using backscatter data from 1 MHz single frequency acoustics.  相似文献   

8.
《水文科学杂志》2013,58(6):899-915
Abstract

The results are described of 16 years operation of a measuring station for the automatic recording of water discharge, bed load and suspended sediment transport in the Rio Cordon catchment, a small alpine basin (5 km2) located in northeastern Italy. Hillslope erosion processes were investigated by surveying individual sediment sources repeatedly. Annual and seasonal variations of suspended sediment load during the period 1986–2001 are analysed along with their contribution to the total sediment yield. The results show that suspended load accounted for 76% of total load and that most of the suspended sediment transport occurred during two flood events: an extreme summer flash flood in September 1994 (27% of the 16-years total suspended load) and a snowmelt-induced event in May 2001 accompanied by a mud flow which fed the stream with sediments. The role of active sediment source areas is discussed in relation to the changes in flood peak—suspended load trends which became apparent after both the 1994 and the 2001 events.  相似文献   

9.
Current metre deployments, suspended sediment measurements and surface sediment samples were collected from three locations within distributary channels of the tidally dominated Fly River delta in southern Papua New Guinea. Net bedload transport vectors and the occurrence of elongate tidal bars indicate that mutually evasive ebb- and flood-dominant transport zones occur in each of the distributary channels. Suspended sediment experiments at two locations show a phase relationship between tidal velocity and sediment concentration such that the net suspended sediment flux is directed seaward. Processes that control the export of fluid muds with concentrations up to 10 g l−1 from the distributary channels across the delta front and onto the pro-delta are assessed in relation to the available data. Peak spring tidal current speeds (measured at 100 cm above the bed) drop off from around 100 cm s−1 within the distributary channels to <50 cm s−1 on the delta front. Gravity-driven, 2-m thick, fluid mud layers generated in the distributary channels are estimated to require at least 35 h to traverse the 20-km-wide, low-gradient (2×10−3 degrees) delta front. The velocities of such currents are well below those required for autosuspension. A 1-month time series of suspended sediment concentration and current velocity from the delta front indicates that tidal currents alone are unable to cause significant cross-delta mud transport. Wave-induced resuspension together with tides, storm surge and barotropic return-flow may play a role in maintaining the transport of fine sediment across the delta front, but insufficient data are available at present to make any reliable estimates.  相似文献   

10.
1INTRODUCTIONInthevastareaoftheYangtzeestuary,underthecommonactionofvariousfactors:suchastheconfluenceoftheYangtzeRiverwithth...  相似文献   

11.
A large number of rivers are frozen annually, and the river ice cover has an influence on the geomorphological processes. These processes in cohesive sediment rivers are not fully understood. Therefore, this paper demonstrates the impact of river ice cover on sediment transport, i.e. turbidity, suspended sediment loads and erosion potential, compared with a river with ice‐free flow conditions. The present sediment transportation conditions during the annual cycle are analysed, and the implications of climate change on wintertime geomorphological processes are estimated. A one‐dimensional hydrodynamic model has been applied to the Kokemäenjoki River in Southwest Finland. The shear stress forces directed to the river bed are simulated with present and projected hydroclimatic conditions. The results of shear stress simulations indicate that a thermally formed smooth ice cover diminishes river bed erosion, compared with an ice‐free river with similar discharges. Based on long‐term field data, the river ice cover reduces turbidity statistically significantly. Furthermore, suspended sediment concentrations measured in ice‐free and ice‐covered river water reveal a diminishing effect of ice cover on riverine sediment load. The hydrodynamic simulations suggest that the influence of rippled ice cover on shear stress is varying. Climate change is projected to increase the winter discharges by 27–77% on average by 2070–2099. Thus, the increasing winter discharges and possible diminishing ice cover periods both increase the erosion potential of the river bed. Hence, the wintertime sediment load of the river is expected to become larger in the future. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A 2D depth‐averaged hydrodynamic, sediment transport and bed morphology model named STREMR HySeD is presented. The depth‐averaged sediment transport equations are derived from the 3D dilute, multiphase, flow equations and are incorporated into the hydrodynamic model STREMR. The hydrodynamic model includes a two‐equation turbulence model and a correction for the mean flow due to secondary flows. The suspended sediment load can be subdivided into different size classes using the continuum (two‐fluid) approach; however, only one bed sediment size is used herein. The validation of the model is presented by comparing the suspended sediment transport module against experimental measurements and analytical solutions for the case of equilibrium sediment‐laden in a transition from a rigid bed to a porous bed where re‐suspension of sediment is prevented. On the other hand, the bed‐load sediment transport and bed evolution numerical results are compared against bed equilibrium experimental results for the case of a meander bend. A sensitivity analysis based on the correction for secondary flow on the mean flow including the effect of secondary flow on bed shear stresses direction as well as the downward acceleration effect due to gravity on transverse bed slopes is performed and discussed. In general, acceptable agreement is found when comparing the numerical results obtained with STREMR HySeD against experimental measurements and analytical solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Most rivers in Taiwan are intermittent rivers with relatively steep slopes and carry rapid sediment‐laden flows during typhoon or monsoon seasons. A series of field experiments was conducted to collect suspended load data at the Tzu‐Chiang Bridge hydrological station of the lower Cho‐Shui River, which is a major river with the highest sediment yield in Taiwan. The river reach was aggrading with a high aspect ratio during the 1980s. Because of sand mining and extreme floods, it was incised and has had a relatively narrow main channel in recent years. The experimental results indicated that typical sediment transport equations can correctly predict the bed material load for low or medium sediment transport rates (e.g. less than about 1000 tons/day‐m). However, these equations far underestimate the bed material load for high sediment transport rates. The effects of cross‐sectional geometry change (i.e. river incision) and earthquakes on the sediment load were investigated in this study. An empirical sediment transport equation with consideration of the aspect ratio was also derived using the field data collected before and after river incision. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Sediment transport in ice-covered channels   总被引:1,自引:0,他引:1  
The existence of ice cover has important effects on sediment transport and channel morphology for rivers in areas with an annual occurrence of an ice season. The interaction of sediment transport and s...  相似文献   

15.
Although water and soil conservation activities reduce reservoir sedimentation, it is inevitable that reservoirs fed by rivers transporting high amounts of sediment will experience sedimentation. The Ghezel-Ozan and Shah-Roud rivers, which flow to the Sefld-Roud reservoir dam, are both highly sediment-laden and transport significant amounts of sediment in both bed load and suspended load forms to the reservoir. Hence, it seems that the only practical way to remove the sediment from the reservoir is to flush it out using the Chasse method. In the present paper, field measurements of Chasse operation characteristics taken in previous years are presented, and a numerical model that simulates this process is introduced. After calibrating the model using field measured data, the calculated results (for reservoir pressure flushing and released sediment volume) of the numerical model were compared with other measured data for the same Chasse operation and the results agree well. Finally, using the numerical simulation results, the best approaches to ensure highly effective flushing while conserving reservoir water are presented (at least for the Sefid-Roud dam). The operation of the bottom outlet gates, the shape of the output hydrograph, and the reservoir water level variation during flushing were optimized. In addition, the numerical model and related parameters, which need to be calibrated, are discussed.  相似文献   

16.
Suspended load transport can strongly impact ecosystems, dam filling and water resources. However, contrary to bedload, the use of physically based predicting equations is very challenging because of the complexity of interactions between suspended load and the river system. Through the analysis of extensive data sets, we investigated extent to which one or several river bed or flow parameters could be used as a proxy for quantifying suspended fluxes in gravel bed rivers. For this purpose, we gathered in the literature nearly 2400 instantaneous field measurements collected in 56 gravel bed rivers. Among all standard dimensionless parameters tested, the strongest correlation was observed between the suspended sediment concentration and the dimensionless bedload rate. An empirical relation between these two parameters was calibrated. Used with a reach average bedload transport formula, the approach allowed to successfully reproduce suspended fluxes measured during major flood events in seven gravel bed alpine rivers, morphodynamically active and distant from hillslope sources. These results are discussed in light of the complexity of the processes potentially influencing suspended load in a mountainous context. The approach proposed in this paper will never replace direct field measurements, which can be considered the only confident method to assess sediment fluxes in alpine streams; however, it can increment existing panel tools that help river managers to estimate even rough but not unrealistic suspended fluxes when measurements are totally absent. © 2019 John Wiley & Sons, Ltd.  相似文献   

17.
In laboratory experiments, the influence of inflow and outflow sequences on the behavior of fine sedi-ment was investigated. The experimental set-up consisted of two interconnected rectangular basins, between which water was moved back and forth. Suspended sediment concentration in the main basin as well as the sediment exchange rates were derived from turbidity measurements.The suspended sediment ratio, SSR, and sediment exchange rates (influx sediment rate, ISR, and evacuated sediment rate, ESR) were measured. In twenty test runs, a parametric study on the magnitude and frequency of inflow and outflow cycles, the relative duration between inflow and outflow sequences, the initial sediment concentration, and the intake position was done. An initial test with stagnant water described the set-tling behavior of fine sediment and served as a reference scenario.The test results show that settling of fine particles near the intake/outlet structure can be considerably reduced by the nature of the inflow and outflow sequences. High cycle magnitude and frequency lead to maximum suspended sediment ratio in the system. For low discharges, the evolution of suspended sediment concentration cannot be directly correlated to the inflow and outflow cycles. However, compared to"no operation"conditions, the suspended sediment ratio could be increased by 10%to 40%locally. For high discharge, the evolution of suspended sediment concentration correlated with discharge cycles and suspended sediment ratios between 50%and 80%higher than for stagnant water could be achieved. Similar ratios could be obtained when the intake is located closer to the bottom or to the free water surface.Meanwhile, the overall sediment balance remained in equilibrium over the test period, indicating that the influx and evacuated sediment rates are not significantly influenced by the inflow and outflow cycles.  相似文献   

18.
《国际泥沙研究》2020,35(3):256-268
A series of experimental observations are presented in the current study to discuss the effects of artificial bed roughness on the turbidity current flowing in a rectangular channel with an abrupt change in bed slope.For this purpose,two different types of elements,sinusoidal and trapezoidal,with various heights and arrangements are considered as artificial bed roughness.A Vectrino velocity meter was used to measure the velocity and sediment concentration profiles.The effects of inlet sediment concentration on front velocity,body velocity,unit discharge,sediment concentration,and suspended load transport rate also were investigated.Accurate equations were developed for estimation of the velocity of a turbidity current over smooth and rough beds.The unexpected experimental results showed that unlike the effect of roughness height,a change in the roughness arrangement has no significant influence on the velocity of a turbidity current.Also,the effect of bed roughness on the front velocity of a denser current is more significant.  相似文献   

19.
Field data from the Rio Paraná, Argentina, are used to examine patterns of suspended sediment transport over a sand dune. Measurements of three‐dimensional velocity are made with an acoustic Doppler current profiler whilst suspended sediment concentration and particle size have been quantified using a laser in situ sediment scattering transmissometer. Suspended sediment concentration and streamwise and vertical sediment flux are highest close to the bed, with an upward vertical flux over the stoss side of the dune and downward flux over the lee side. Suspended sediment concentrations are higher over the crest compared with the trough and suspended sediment is coarsest near the bed. About 17% of the suspended‐load transported over the crest is deposited in the lee side before it reaches the trough. Most of this deposited sand is coarser sediment that originates close to the bed over the crest, a result consistent with simulations based on the model of Mohrig and Smith (Water Resources Research 1996; 32: 3207–3217) for the excursion lengths of sediment dispersed in the lee side of a dune. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Every year the Ganges and Brahmaputra rivers in Bangladesh transport 316 and 721 million tonnes of sediment, respectively. These high loads of suspended sediment reflect the very high rate of denudation in their drainage basins. The average mechanical denudation rate for the Ganges and Brahmaputra basins together is 365 mm 103 yr−1. However, the rate is higher in the Brahmaputra Basin than that in the Ganges Basin. Several factors, including mean trunk channel gradient, relief ratio, runoff, basin lithology and recurring earthquakes are responsible for these high denudation rates. Of the total suspended sediment load (i.e. 1037 million tonnes) transported by these rivers, only 525 million tonnes (c. 51% of the total load) are delivered to the coastal area of Bangladesh and the remaining 512 million tonnes are deposited within the lower basin, offsetting the subsidence. Of the deposited load, about 289 million tonnes (about 28% of the total load) are deposited on the floodplains of these rivers. The remaining 223 million tonnes (about 21% of the total load) are deposited within the river channels, resulting in aggradation of the channel bed at an average rate of about 3·9 cm yr−1. Although the Brahmaputra transports a higher sediment load than the Ganges, the channel bed aggradation rate is much higher for the Ganges. This study also documents a wide range of interannual, seasonal and daily variation in suspended sediment transport and water discharge. Interannual variation in sediment deposition within the basin is also suggested. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号