首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Tonalites from the island arc rock assemblage in the Zêtang segment of the Yarlung Zangbo suture zone were analyzed for major,trace elements (including REE) and Sr-Nd isotope. The experimental data demonstrate that the tonalites have the adakite-like characteristics,including high SiO2 (58%―63%),Al2O3 (18.4%―22.4%),Sr (810×10 6―940×10 6),Sr/Y (77―106),low HREE (Y=9×10 6―11×10 6,Yb= 1×10 6―1.3×10 6),with LREE enrichment and faint Eu positive anomaly. ISr (0.70421―0.70487) is rela-tively low whereas 143Nd/144Nd (0.512896―0.512929) and εNd(t) values ( 6.7― 7.3) are high. These fea-tures suggest that Zêtang tonalites were formed by the partial melting of subducted oceanic crust,with involvement of a small amount of oceanic sediments. The identification of Zêtang adakites,derived from slab melting,presents new evidence for the intra-Tethyan subduction and the previous sugges-tion about the existence of intra-oceanic island arc within Tethys.  相似文献   

2.
Chronology and geochemistry of the Shangyu gabbro-diorite in western Shandong were studied to understand their petrogenesis and the nature of the Mesozoic lithospheric mantle. The Shangyu intru-sion is mainly composed of a suite of gabbro-diorite. Zircons from the intrusion display eu-hedral-subhedral in shape and have high Th/U ratios (1.23―2.87), implying their magmatic origin. LA-ICP-MS zircon U-Pb dating results for two samples indicate that they were formed in the Early Cre-taceous, yielding weighted mean 206Pb/238U ages of 129±1Ma and 134±2Ma, respectively. Except for early cumulate such as sample QT-19, their SiO2 and MgO contents range from 50.12% to 56.37% and from 3.52% to 6.37%, respectively. Moreover, the gabbro-diorites are characterized by high Mg# (0.54―0.63), enrichment in Na (Na2O/K2O ratios more than 1), Cr (73×10-6―217×10-6) and Ni (34×10-6―241×10-6), and intensive enrichments in light rare earth elements (LREEs) and large ion lithophile elements (LILEs) and depletion in high field strength elements (HFSEs). Their initial 87Sr/86Sr ratios and ε Nd(t) values range from 0.70962 to 0.71081 and from-16.60 to-13.04, respectively. Taken together with the Early Creta-ceous high-Mg diorites and the mantle xenoliths from the Tietonggou and Jinling as well as basalts from the Fangcheng and Feixian, it is suggested that the primary magma for the Shangyu gab-bro-diorites should be derived from the enriched lithospheric mantle intensively modified by conti-nental crust. The Sr-Nd-Pb isotopic compositions for the Early Cretaceous high-Mg diorites in western Shandong display a trend of spatial variations, i.e., initial 87Sr/86Sr, 207Pb/204Pb and 208Pb/204Pb ratios de-creasing and ε Nd(t) values increasing from southeast to northwest in western Shandong, which is con-sistent with the tectonic model that the Yangtze Craton subducted beneath the North China Craton oriented in north-west direction in the Early Mesozoic.  相似文献   

3.
Santanghu area in northeastern Xinjiang region of Northwest China is an important component of the Central Asian Orogenic Belt(CAOB), in which the dynamic mechanism of Permian magmatism is controversial. In Santanghu area is exposed a thick succession of the Middle Permian basalts, including a small amount of picritic basalts and andesites, known as the Tiaohu Formation. The picritic basalts contain cumulate olivine, and have whole-rock Mg# up to 0.68–0.77; the basalts exhibit porphyritic or doleritic textures, and have relatively low Mg# of 0.41–0.54, typical of evolved magmas. The mafic-ultramafic rocks of the Tiaohu Formation are slightly enriched in Light Rare Earth Elements(LREEs), and exhibit negative Nb and Ti anomalies. They also have high Ti O2 content, and Nb/Y and Zr/Yb ratios greater than those of island arc volcanic rocks. Relatively low initial Sr isotopic ratios and high positive εNd(t) and εHf(t) values argue against contamination by ancient continental crust, and suggest formation of the Tiaohu Formation by partial melting of relatively refractory depleted lithospheric mantle that underwent metasomatism and extraction by fluid from the subducted slab. In addition, up to 38% olivine in picritic basalts indicates high-degree partial melting of lithospheric mantle, and the underlying Lucaogou Formation contains fragments of ultra-alkaline magmatic rocks that originated in the deep mantle. These observations imply wide-spread underplating in Santanghu area, which may have been associated with a mantle plume.  相似文献   

4.
Ten volcanic samples at Zhangwu,western Liaoning Province,North China were selected for a sys-tematic geochemical,mineralogical and geochronological study,which provides an opportunity to ex-plore the interaction between the continental crust and mantle beneath the north margin of the North China craton.Except one basalt sample(SiO2= 50.23%),the other nine samples are andesitic with SiO2 contents ranging from 53% to 59%.They have relatively high MgO(3.4%―6.1%,Mg#=50―64) and Ni and Cr contents(Ni 27×10?6―197×10?6,Cr 51×10?6―478×10?6).Other geochemical characteristics of Zhangwu high-Mg andesites(HMAs) include strong fractionation of light rare earth elements(LREE) from heavy rare earth elements(HREE),and Sr from Y,with La/Yb greater than 15,and high Sr/Y(34― 115).Zircons of andesite YX270 yield three age groups with no Precambrian age,which precludes ori-gin of the Zhangwu HMAs from the partial melting of the Precambrian crust.The oldest age group peaking at 253 Ma is interpreted to represent the collision of the Siberia block and the North China block,resulting in formation of the Central Asian orogenic belt by closure of the Mongol-Okhotsk Ocean.The intermediate age group corresponds to the basalt underplating which caused the wide-spread coeval granitoids in the North China craton with a peak 206Pb/238U age of 172 Ma.The youngest age group gives a 206Pb/238U age of 126±2 Ma,which is interpreted as the eruption age of the Zhangwu HMAs.The high 87Sr/86Sri(126 Ma)>0.706 and low εNd(t)= ?6.36―?13.99 of the Zhangwu HMAs are distinct from slab melts.The common presence of reversely zoned clinopyroxene phenocrysts in the Zhangwu HMAs argues against the origin of the Zhangwu HMAs either from melting of the water saturated mantle or melting of the lower crust.In light of the evidence mentioned above,the envisaged scenario for the formation of the Zhangwu HMAs is related to the basaltic underplating at the base of the crust,which led to the thickening of the lower crust and formation of lower crustal eclogite,followed by foundering of the eclogitic lower crust into the asthenosphere.The foundered eclogite then melted and the resul-tant melts interacted with surrounding peridotite during their upward transport,which finally produced the high-Mg andesites.This well explains the high-Mg adakitic characters and absence of ancient in-herited zircon in the Zhangwu lavas.  相似文献   

5.
Single zircon LA-ICP-MS U-Pb dating and lithogeochemical studies have been performed on the Xianggou monzonitic granitic porphyry outcropped in the Ma'anqiao gold deposit.A weighted average U-Pb age of 242.0±0.8 Ma for Xianggou monzonitic porphyry has been obtained.This corresponds with the conclusions of previous studies indicating a syn-orogenic age (242±21 Ma) of the Qinling Orogenic Belt,suggesting that the formation of the Xianggou granite should be associated with the collisional event of the North China Plate and the Yangtze Plate in the Indosinian period.The Xianggou granite is characterized by the high silicon and alkali of high K calc-alkaline series granites.It is rich in Al (Al2O3=14.49%-15.61%) and Sr (457.10-630.82 ppm),poor in Y (16 ppm) and HREE (Yb0.45 ppm),and exhibits high ratios of Sr/Y (76.24-97.34) and (La/Yb)N (29.65-46.10),as well as strongly fractionated REE patterns.These geochemical characteristics suggest the Xianggou granite can be classified as C-type adakitic rock.The initial Sr isotope ratios for the Xianggou granite vary from 0.70642 to 0.70668,εNd(t) values from -4.54 to -3.98,and TDM values from 1152 Ma to 1220 Ma.The low εNd(t) and ISr and high TDM values,as well as Na2O/K2O ratios of the Xianggou granite are close to 1 (Na2O/K2O=0.95-1.10),indicating that it is not an I-type adakite formed by partial melting of the subducting oceanic crust,nor adakitic rock formed by melting of the underplated basaltic lower crust,but the product of partial melting of the nonunderplated basaltic thickened lower crust.Zircons from the Xianggou pluton have a homogeneous Hf isotopic composition with negative εHf(t) values (between -9.7 and -5.9,with an average of -6.9),indicating that the rock-forming materials were mostly extracted from the ancient crust,not from the depleted mantle.The Xianggou monzonitic granitic porphyry is rich in LILE and LREE and depleted in HSFE,HREE and Y;the composition of trace element and REE are similar to those of the syn-collisional granites.The geological and geochemical characteristics of the Xianggou granite reveal that it was a product of partial melting of the basaltic rocks from the thickened lower crust,triggered by continental collision,which occurred in the geodynamic background of continental-continental collision and shearing within the crust.The Xianggou granite was intruded in the compressive orogenic environment 242 Ma ago,but the gold mineralization occurred in the transitional environment of compression to extension around 170 Ma ago,lagging behind the intrusive age of the Xianggou granite by about 70 Ma.Meanwhile,the distribution of trace elements and REEs of the Xianggou monzonitic granitic porphyry is distinct from that of ores,suggesting the absence of direct genetic relationship between the Xianggou granite and gold mineralization.In contrast,the relatively high ore-forming elemental content of the Xianggou monzonitic granitic porphyry is due to the rock having experienced Au-bearing hydrothermal alteration.From the view of gold mineralization,considering the intrusive age,structural deformation,as well as alteration of the granite,we can conclude that the Xianggou pluton was a pre-ore-intrusion,whose intrusive age of 242 Ma constrains the lower time limit of gold metallogenesis.Following the intrusive event of the syn-collisional granitic porphyry and the intensively brittle-ductile shear deformation,large-scale fluid activity and gold mineralization took place.  相似文献   

6.
Mafic intrusions and dykes are well preserved in the Yinmin and Lanniping districts,located within the western margin of the Yangtze Block,SW China.Although these mafic rocks from the two areas formed during different periods,they share similar ranges of PGE concentration.Most of the Yinmin gabbroic dykes contain relatively high PGE concentrations(PGEs = 13.9-87.0 ppb) and low S contents(0.003%-0.020%),higher than the maximum PGE concentrations of mafic magmas melting from the mantle.Two exceptional Yinmin samples are characterized by relatively low PGE(PGEs = 0.31-0.37 ppb) and high S(0.114%-0.257%) contents.In contrast,most samples from the Lanniping gabbroic intrusion have low PGE concentrations(PGEs — 0.12-1.02 ppb) and high S contents(0.130%-0.360%),except that the three samples exhibit relatively high PGE(PGEs = 16.3-34.8 ppb) and low S concentrations(0.014%-0.070%).All the Yinmin and Lanniping samples are characterized by the enrichment of PPGE relative to IPGE in the primitive-mantle normalized diagrams,and the high-PGE samples exhibit obvious Ru anomalies.This study suggests that during the ascent of the parental magma,removal of Os-Ir-Ru alloys and/or chromite/spinel leads to high Pd/Ir ratios and Ru anomalies for the Yinmin high-PGE samples and relatively lower Pd/Ir ratios and Ru anomalies for the Lanniping low-PGE samples.We propose that the magmas parental to the Yinmin gabbroic dykes are initially S-unsaturated,and subsequently,minor evolved magma reached sulfur saturation and led to sulfide segregation.Although the Lanniping parental magmas are originally not saturated in S,the high Cu/Pd ratios(3.8 × 10~4 to 3.2 ×10~6) for most of the Lanniping samples indicate the S-saturated state and sulfide segregation.A calculation shows that the PGE-poor magmas might have experienced 0.01%-0.1% sulfide segregation in the magma chamber.Therefore,our study provides a possible opportunity to discover PGE-enriched sulfide mineralization somewhere near or within the Lanniping mafic intrusion.  相似文献   

7.
Fogang granitic batholith, the largest Late Mesozoic batholith in the Nanling region, has an exposure area of ca. 6000 km2. Wushi diorite-hornblende gabbro body is situated at the northeast part of the ba- tholith. Both the granitic batholith main body and the diorite-hornblende gabbro body belong to high-K calc alkaline series. Compared with the granitic main body, the Wushi body has lower Si (49%―55%), higher Fe, Mg, Ca, lower REE, less depletion of Eu, Ba, P, Ti, and obvious depletion of Zr, Hf. Zircon LA-ICP-MS dating and the mineral-whole rock isochron dating reveal that Fogang granitic main body and Wushi body were generated simultaneously at ca. 160 Ma. The Fogang granitic main body has high (87Sr/86Sr)i ratios (0.70871―0.71570) and low εNd(t) values (?5.11―?8.93), suggesting the origins of the granitic rocks from crustal materials. Their Nd two-stage model ages range from 1.37―1.68 Ga. The Sr and Nd isotopic compositions and the Nd model ages of the granitic rocks may suggest that the giant Fogang granitic main body was generated from a heterogeneous source, with participation of mantle component. Wushi diorite-hornblende gabbro is an unusual intermediate-basic magmatic rock series, with high (87Sr/86Sr)i ratios (0.71256―0.71318) and low εNd(t) values (?7.32―?7.92), which was possibly formed through mixing between the mantle-derived juvenile basaltic magma and the magma produced by the dehydration melting of lower crustal basaltic rocks.  相似文献   

8.
SHRIMPP U-Pb zircon age and geochemical and Nd isotopic data are reported for the Aoyitake plagiogranite in western Tarim Block, NW China. The plagiogranite intruded the Middle Pro- terozoic and Lower Carboniferous with an exposure area of ca. 60 km2 and crystallized at 330.7±4.8 Ma. Rock types mainly include tonalite, trondhjemite and minor amounts of diorite and quartz-diorite. Feldspars in the rocks are dominated by oligoclase-andesine, and minor perthite observed locally. The granites are sodic with Na/K ratios (molar) between 4 and 87. Total REE (50-220 ppm) show a clear positive correlation with SiO2. There is no LRRE/HREE fractionation (LaN/YbN=0.5-1.5), me- dium negative Eu anomalies (δ Eu=0.3-0.6), high Y content and low Sr/Y ratio (~1.0). These granites exhibit relatively juvenile Nd T2DM model ages of 470 to 580 Ma and positive εNd(331 Ma) values of 6.23 to 7.65. The aforementioned characteristics are similar to those of ocean island or ocean ridge plagiogranites. However, the regional geology, especially its scale, precludes that the plagiogranite pluton was derived directly from fractionational crystallization of mantle-derived basaltic magma. We interpreted that the primary magma of the pluton might be tonalitic in composition generated by ca. 50% partial melting of the juvenile basaltic crust. The primary magma experienced intensive frac- tionational crystallization, and intruded into the middle to upper crusts to form the granite pluton. In combination with the previous regional geological data, it is concluded that the plagiogranite pluton was emplaced within the Tarim Block in respond to the Carboniferous continental rifting along the Tianshan orogenic belt.  相似文献   

9.
We present zircon ages and geochemical data for the Hongshishan Carboniferous Alaskan-type mafic–ultramafic complex exposed in the Beishan area along the Sino–Mongolian boundary, southern margin of the Central Asian Orogenic Belt. This complex mainly consists of dunite,harzburgite, lherzolite, wehrlite, and gabbro, which intrudes Early Carboniferous volcanic rocks and reveals a zoned structure. Zircons of a gabbro sample yielded a 206Pb/238 U age of 357 ± 4 Ma, reflecting the time of Early Carboniferous magmatism. Zircon ages were also obtained for an andesite(322 ± 3 Ma) and a basaltic andesite(304 ± 2 Ma).High initial Nd isotope whole-rock values suggest that the Hongshishan gabbro [e_(Nd(t))= +9.6-+10.2] and basalt[eNd(t)= +10.0-+10.8] were derived from a depleted mantle source. Slightly lower eNd(t)values for the ultramafic rocks [eNd(t)= +8.5-+8.7] suggest some interaction of the parental magma with the continental crust. In contrast, the Late Carboniferous Quershan samples in this area represent subduction-related arc volcanic rocks with Adakite-like compositions. The early Carboniferous Hongshishan Alaskan-type complex was interpreted to represent the remnants of a magma chamber that crystallized at the base of a mature island arc, whereas the Quershan island arc volcanic rockssuggest the resurrection of the subduction process after arccontinent collision and uplift of the roots of the arc.  相似文献   

10.
This paper reports geochemical and Pb-Sr-Nd isotopic compositions of the Indosinian Yangba (215 Ma),Nanyili (225 Ma) and Mopi granitoids from the Bikou block of the northwestern margin of the Yangtze plate. These granitoids are enriched in Al (Al2O3:14.56%―16.48%) and Sr (352 μg/g―1047 μg/g),and depleted in Y (<16 μg/g) and HREE (e.g. Yb<1.61 μg/g),resulting in high Sr/Y (36.3―150) and (La/Yb)N (7.8―36.3) ratios and strongly fractionationed REE patterns. The Indosinian granotoids show initial Sr isotopic ratios (ISr) from 0.70419 to 70752,εNd(t) values from-3.1 to -8.5,and initial Pb isotopic ratios 206Pb/204Pb=17.891-18.250,207Pb/204Pb=15.494-15.575,and 208Pb/204Pb=37.788-38.335. Their geochemi-cal signatures indicate that the granitoids are adakitic. However,they are distinct from some adakites,generated by partial melting of subducted oceanic slab and/or underplated basaltic lower crust,be-cause they have high K (K2O: 1.49%―3.84%) and evolved Nd isotopic compositions,with older Nd iso-topic model ages (TDM=1.06―1.83 Ga). Geochemical and Sr-Nd isotopic compositions suggest that the magmas of the Insoninian adakitic rocks in the Bikou block were derived from partial melting of thick-ened basaltic lower crust. Combined with regional analyses,a lithospheric delamination model after collision between the North China and South China plates can account for the Indosinian adakitic magma generation. On the other hand,based on the Pb-Sr-Nd isotopic probing to the magma sources of the adakitic rocks,it is suggested that there is an unexposed continent-type basement under the exposed Bikou Group volcanic rocks. This can constrain on the Bikou Group volcanic rocks not to be MORB-or OIB-type.  相似文献   

11.
The Tiefosi granitic pluton is located 5 km northwest of Xinyang City,northern Dabie Orogen,and was emplaced in the Proterozoic Qinling Group. SHRIMP zircon U-Pb dating suggests its crystallization at 436 ± 11 Ma. It is composed of monzogranite and syenogranite containing some amounts of muscovite and few mafic minerals. The rocks are characterized by high and restricted SiO2 content,low FeO,Fe2O3 and MgO contents,high K2O/Na2O ratio,and display high-K calc-alkaline and peraluminous (ACNK>1.1) characteristics. They are generally enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE). They can be divided into three groups in light of rare earth elements (REE) and trace elements. Group I is moderate in ΣREE and characterized by the absence of Eu anom-aly,high (La/Yb)N ratio,and moderate Rb/Sr and Rb/Ba ratios. Group Ⅱ has moderately negative Eu anomaly,low (La/Yb)N ratio and high ΣREE contents,Rb/Sr and Rb/Ba ratios. Group Ⅲ displays positive Eu anomaly,moderate (La/Yb)N ratio,and low ΣREE,Rb/Sr and Rb/Ba ratios. The calculated εNd(440Ma) values of the rocks vary from 8.8 to 9.9 and Nd depleted mantle model ages are about 2.0 Ga,which resemble those of the paragneisses from the Qinling Group. The results indicate that the Tiefosi granite is crust-derived,syn-collisional S-type granite. Generation of Group I was related to low degree melting of the Qinling Group,while Group Ⅱ was formed by fractionational crystallization of plagioclase from Group I magmas,and Group Ⅲ resulted possibly from magma mingling with plagioclase cumulates. The Tiefosi granite was formed within crustal level related to the collision between the North China and South China blocks in the Early Paleozoic time.  相似文献   

12.
The main rock types of the Boluonuo and Daguangding plutons are diorite, quartz diorite, tonalite, granodiorite, and subordinate plagioclase-bearing hornblendite and hornblende gabbro. Zircon SHRIMP U-Pb dating for a quartz diorite of the Boluonuo pluton suggests that the pluton was emplaced at about 296±4 Ma. Plagioclase-bearing hornblendites show typical cumulative textures, which, in combination with their convex-upward REE patterns and the large variation of compatible elements such as Co, V and Sc, suggests that these hornblendites formed through accumulation of hornblende during magma evolution. Microgranular mafic enclaves (MMEs) are common in the Boluonuo and Daguangding intermediate to felsic plutons. Many plagioclase grains show compositional and textural disequilibrium, with calcium-rich cores (An 46-50 ) mantled abruptly by sodium-rich plagioclase (An 26-33 ). Whole-rock samples of the plutons are characterized by quite negative ε Nd (t) values (-16.5 to -11.8) and ε Hf (t) values (-22.5 to-16.8), and the ε Nd (t) values are negatively correlated with silica contents. All these features suggest that the intermediate to felsic plutons formed through magma mixing of enriched mantle-derived, evolved basaltic magma with granitic, crustal melts, followed by fractional crystallization of mainly hornblende and small amounts of pyroxene, apatite and zircon. The hornblende-dominated fractionation contributed significantly to the adakite-like features of the intermediate to felsic plutons, like the high Sr and Sr/Y ratios and low Yb abundance. In addition, the Boluonuo and Daguang- ding plutons are highly enriched in LILEs (e.g., Ba and Sr), but depleted in HFSEs (e.g., Nb, Zr and Ti), which is typical of arc magmas. Therefore, the formation of Boluonuo and Daguangding plutons was probably related to the subduction of the Paleo-Asian oceanic slab beneath the North China Craton in the Paleozoic.  相似文献   

13.
The mineralogical,elemental,and isotopic characteristics of a hydrothermal sulfide sample from one dredge station (12°42.30'N,103°54.48'W,water depth 2655 m) on the East Pacific Rise near 13°N were analyzed.The hydrothermal sulfide was composed mainly of sphalerite,chalcopyrite,and pyrite and was a Zn-rich sulfide;in layer ep-s-1,goethite formed by secondary oxidation was found.The concentrations of rare elements,such as Li (0.15×10-6-0.30×10-6),Be (0.01×10-6-0.05×10-6),Zr (73.8×10-9-1344×10-9),Nb (8.14×10-9-64.7×10-9),Hf (2.54×10-9-28.0×10-9),and Ta (0.203×10-9-1.21×10-9),were far lower in the hydrothermal sulfide than in the ocean crust,whereas the content of Au was higher and the contents of Co,Ni,Sr,Cs,Ba,Bi,and U were low.The correlations between Zn and Cr,Cd and Ga,Cu and P,P and In (R2 0.8) were positive,whereas those between Zn and Fe,Cu,and Ba (R2 0.8) were distinctly negative.From low-temperature mineral assemblages to high-temperature mineral assemblages,the spatial distributions of dispersive and rare elements (e.g.In,Li,Cs) in the hydrothermal sulfide displayed corresponding variations.The variations observed in some elements (e.g.,Cd,Cs,P) are controlled by Zn,Fe,and Cu sulfides,respectively.Seafloor weathering accounts for the enrichment of V,Mn,and rare earth elements (REE) in the henna sulfide-oxidation layer that bears the secondary oxide mineral,leading to identical REE patterns for this layer (ep-s-1) and seawater.Seafloor weathering also distinctly affects the correlations between the element ratios of the hydrothermal sulfide.From high-temperature mineral assemblages to low-temperature mineral assemblages,Fe content and δ 34S value of the hydrothermal sulfide increase gradually,and Zn content and lead isotopic ratios decrease gradually on the contrary,which indicate the influences of seawater on elements and the sulfur and lead isotopic compositions enhance gradually during the formation of hydrothermal sulfides.  相似文献   

14.
Zhang  Xiaodong  Xie  Rui  Fan  Daidu  Yang  Zuosheng  Wang  Hongmin  Wu  Chuang  Yao  Yuhan 《中国科学:地球科学(英文版)》2021,64(10):1687-1697
The evolution of the Changjiang Delta is obviously affected by current rapidly rising sea level and drastically declining river discharge, and it is also vital for the sustainable development of Shanghai and the Changjiang River Economic Belt, which represent China's economic development leader and major national strategic area, respectively. In this paper, the growth pattern of Jiuduansha Island, the largest uninhabited alluvial island in the Changjiang Estuary, is studied in terms of the change in elevation, position and area over the past 50 years through using satellite-derived instantaneous shoreline positions and high/low tide exposure areas based on 497 satellite images from 1974 to 2020; and the influencing factors and future development patterns are further discussed by comparison with other alluvial islands or sandbars in the estuary. The results show that Jiuduansha Island has maintained a rapid or even accelerated area growth rate, although the sediment discharge of the Changjiang River has sharply decreased in recent decades. This sustained growth is mainly attributed to the existence of the estuarine turbidity maximum zone, coarsening fluvial sediment, onshore sediment replenishment by tide, cone-like geomorphology of Jiuduansha Island, and siltation promotion effect of vegetation. The growth rate of the low tide exposure area of Jiuduansha Island increased from 1.9 km~2 a~(-1) in 1974–1990 to 3.0 km~2 a~(-1) in 1990–2020, and the growth rate of the high tide exposure area reached as high as 3.7 km~2 a~(-1) in 1994–2020. The implementation of the Deep-Water Channel Project has significantly affected the evolution of Jiuduansha Island, including shifting the heads of Shangsha and Zhongxiasha from severe retreat to rapid accretion, and promoting tidal flat progradation seaward of the Jiangyanansha and Zhongxiasha, but restricting the growth of the low tide exposure area of Jiuduansha Island.  相似文献   

15.
A comparative analysis of the geochemical characteristics of sediments from the Oligocene Zhuhai Formation(32-23.8 Ma),the Miocene Zhujiang Formation(23.8-16.5 Ma),and the Hanjiang Formation(16.5—10.5 Ma) and a comprehensive analysis of the geochemical characteristics of rocks surrounding the paleo-Pearl River drainage contribute to understanding the influences of the Tibetan Plateau uplift on provenance evolution of the paleo-Pearl River.The results show that the geochemical characteristics of sediments from the Oligocene Zhuhai Formation are very different from the geochemical characteristics of sediments from the Miocene Zhujiang and Hanjiang Formations.The ∑ rare earth elements(REE) of mudstone is relatively high in the Zhuhai Formation,204.07-293.88 ppm(average 240.46 ppm),and low in the Zhujiang and Hanjiang Formations,181.32-236.73 ppm(average 203.83 ppm) and 166.84-236.65 ppm(average199.04 ppm),respectively.The chemical index of alteration(CIA) for these samples has a similar trend to the∑ REE:the CIA of the Zhuhai Formation is relatively high and the CIA of the Zhujiang and Hanjiang Formations is relatively low.The uplift of the Tibetan Plateau is crucial to the westward expansion of the paleo-Pearl River drainage.  相似文献   

16.
Sr isotope geochemical studies (the 87Sr/86Sr and ?18O-87Sr/86Sr systems) on the wall rocks and ores from the Lemachang independent Ag deposit in northeastern Yunnan provide strong evidence that the ore-forming fluids had flown through radiogenetically Sr-enriched rocks or strata prior to their entry into the locus of ore precipitation, and water-rock interaction is the main mechanism of Ag ore precipitation. The radiogenetically Sr-enriched source region may be the Proterozoic basement (the Kunyang and Hekou groups). Moreover, the theoretical modeling of the Sr isotopic system indicates that the ore-forming fluids contain as much as 3×10?6 Sr with isotopic composition of Sr being 0.750 and that of oxygen 7.0‰. The ore-forming temperatures were estimated at 150-250℃ for the carbonate rock-type ores and at 200-260℃ for the clastic rock-type.  相似文献   

17.
This study determines the pollution, fractionation, and ecological risks of sediment-bound heavy metals from coastal ecosystems off the Equatorial Atlantic Ocean. Contamination Factor(CF), pollution load index(PLI), and geoaccumulation index(Igeo) were used to assess the extent of the heavy metal pollution, while the potential ecological risk was evaluated using the risks assessment code(RAC) and Hkanson potential ecological risk. The analysis revealed concentrations(mg/g, dw) of the cadmium(Cd),chromium(Cr), copper(Cu), nickel(Ni), and lead(Pb) in sediments for wet and dry seasons vary from 4.40-5.08, 14.80-21.09. 35.03-44.8, 2.14-2.28, and 172.24-196.39, respectively. The results also showed that the metal fractionation percentages in the residual, oxidizable, and reducible fractions are the most significant, while the exchangeable and carbonate bound trace metals are relatively low. The RAC values indicate no risk for Cd and Ni and low risk for other metals at all the studied sites during both seasons.Potential ecological risk analysis of the heavy metal concentrations indicates that Cd had high individual potential ecological risk, while the other metals have low risk at all investigated sites. The multi-elemental potential ecological risk indices(R_1) indicate high ecological risk in all the ecosystems.  相似文献   

18.
The Mugouriwang Cenozoic volcanic rocks exposed in the north Qiangtang Block of Tibetan Plateau are mainly composed of basalt and andesitic-basalt,both characterized by the lower SiO2 (51%―54%),high refractory elements (i.e. Mg,Cr,Ni) as well as the moderate enrichment in light rare earth elements (LREE) relative to a slight depleted in Eu and high strength field elements (HFSE,i.e. Nb,Ta,Ti). Be-sides,the fairly low Sm/Yb value (3.07―4.35) could signify that the rocks should be derived directly from partial melting of the spinel lherzolite at the upper part of the asthenosphere. These rocks have radiogenic Sr and Pb (87Sr/86Sr = 0.705339 to 0.705667; 208Pb/204Pb = 38.8192 to 38.8937; 207Pb/204Pb = 15.6093 to 15.6245; 206Pb/204Pb = 18.6246 to 18.6383),and non-radiogenic Nd (143Nd/144Nd = 0.512604 to 0.512639; εNd = 0.02 to -0.66) in agreement with those values of the BSE mantle reservoir. The DUPAL anomaly of the rocks can be evidently attested by the △8/4Pb = 66.82 to 74.53 ,△7/4Pb = 9.88 to 11.42,△Sr>50,implying that the Mugouriwang volcanic rock is likely to be generated by partial melting of a Gondwana-bearing asthenospheric mantle ever matasomatised by the fluid from subduction zone. Depending on the previous study on the high-K calc-alkaline intermediate-felsic volcanics in the study area,this paper proposed that the fluids derived from the subducted Lhasa Block metasomatised the asthenosphere beneath the Qiangtang Block,and induced its partial melting,and then the melt under-plated the thickened Qiangtang lithosphere and caused the generation of the Cenozoic adakite-like felsic magmas in the Qiangtang region.  相似文献   

19.
Many orogenic belts in the world exhibit accretionary and collisional orogenic phases to varying extents. How accretion evolves into collision of the Central Asian Orogenic Belt(CAOB), the largest Phanerozoic accretionary orogenic belt,is an intriguing question. In this paper, we present new U-Pb age, geochemical and isotopic data for Permian-Triassic granitoids from middle Inner Mongolia, Northern China in the southeastern CAOB, and delineate the magmatic transition from subduction to(soft) collision. The magmatic record of soft collision is identified and characterized by thickened lower crust-derived high Sr/Y granitoids with a sub-linear distribution along the Solonker suture zone. Granitoids from Early Permian to Late Permian became more enriched in whole-rock Nd and zircon Hf isotopic compositions(ε_(Nd)(t) values from 2.4 to-19.5, ε_(Hf)(t) values from 11.6 to-33.7), indicating increasing incorporation of old crust. The change in peak timing of magmatism from west(ca. 264 Ma)to east(ca. 251 Ma) along the Solonker suture zone implies "scissor-like" closure of the Paleo-Asian Ocean. Integrated with previous studies, a three-stage tectonic model from the Permian to Triassic by accretion leading to collision on the south-eastern margin of CAOB is proposed.(1) Early Permian( ca. 285 Ma): Juvenile magmatism on an active continental margin with double-sided subduction of the Paleo-Asian Ocean;(2) Middle Permian to Middle Triassic(ca. 285–235 Ma): Magma source transition from juvenile to old crust induced by a tectonic switch from arc to "scissor-like" closure and subsequent intracontinental orogenic contraction;(3) Late Triassic( ca. 235 Ma): A-type and alkaline magmatism in response to post-collisional extension.  相似文献   

20.
Systematic analyses were conducted including the petrographic features, major and trace elements, Sr and Nd isotopic compositions, and mineral structure and compositions of whole rocks. Mid-Pacific Mountain volcanic rocks are mainly phonotephrite with a porphyritic texture. Phenocrysts are mainly composed of Ca-rich plagioclase, clinopyroxene and nepheline.These volcanic rocks are significantly rich in large-ion lithophile and light rare earth elements, without obvious Eu anomalies(δEu=0.99–1.03), and with relatively enriched~(87) Sr/~(86) Sr(0.703829–0.704313) and~(143) Nd/~(144) Nd isotopic ratios(0.512857–0.512871), suggesting that they have similar but more enriched features than the OIB magmatic source. These volcanic rocks may originate from relatively deep magma source with the existence of spinel-garnet Iherzolites, and have undergone partial melting at a low degree of 1–3%. In addition, The residual Nb-Ta minerals(such as sphene, rutile, perovskite) may remain in the mantle source, and the magma components have undergone metasomatism by carbonate melt/fluid or alkali-rich fluid, causing high contents of incompatible elements and significant loss of Nb, Ta and Ti in these volcanic rocks. There are many similarities between the phonotephrites in the Mid-Pacific Mountain and the volcanic rocks in the Line Islands based on the tectonic settings and the geochemical characteristics. We thus speculate that Site 313 volcanic rocks in the Mid-Pacific Mountain is most likely to be a continuation of the Line Islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号