首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mercury contamination in aquatic environments is of worldwide concern because of its high biomagnification factor in food chains and long-range transport. The rivers, estuary and the bay along the northwestern Bohai Sea coast, northeastern China have been heavily contaminated by Hg due to long-term Zn smelting and chlor-alkali production. This work investigated the distributions of total Hg (THg) and monomethylmercury (MMHg) in the water, sediment and hydrophytes from this area. Concentrations of THg in sediment (0.5–64 mg kg−1) and water (39–2700 ng L−1) were elevated by 1–3 orders of magnitude compared to background concentrations, which induced high concentrations of MMHg in these media. The highest concentration of MMHg in sediment reached 35 μg kg−1, which was comparable to that in the Hg mining area, Wanshan, China, and the highest MMHg concentration of 3.0 ng L−1 in the water sample exceeded the MMHg Chinese drinking water guideline of 1.0 ng L−1. Concentrations of THg in a sediment profile from Jinzhou Bay were found to be consistent with annual Hg emission flux from a local Zn smelter (r = 0.74, p < 0.01), indicating that Hg contamination was mainly caused by Zn smelting locally. For some freshwater hydrophytes, concentrations of THg and MMHg ranged from 5.2 to 100 μg kg−1 and 0.15 to 12 μg kg−1, respectively. Compared to sediment, concentrations of THg in hydrophytes were 2–3 orders of magnitude lower but MMHg was comparable or higher, indicating that the bioaccumulation in plants was distinct for the two Hg species studied. The data suggest that a significant load of Hg has been released into the northwestern coastal region of the Bohai Sea.  相似文献   

2.
The River Nura in Central Kazakhstan has been heavily polluted by Hg originating from an acetaldehyde plant. A number of studies were undertaken to investigate the transport, fate and bioavailability of Hg in this river system. The sediments within a 20 km section of the river downstream of the effluent outfall canal are highly polluted and are acting as a strong source of surface water contamination. Mercury transport in the river is dominated by the remobilization of contaminated bed sediments and river bank erosion during the annual spring flood. Peak Hg concentrations in unfiltered surface water samples during a larger than usual flood event in 2004 were in the order of 1600–4300 ng L−1. The majority of the particulate-bound Hg appears to be sedimented in the shallow Intumak reservoir 75 km downstream of the source of the pollution, leading to a drop in aqueous Hg concentrations by an order of magnitude. Nevertheless, background concentrations of Hg in surface water are not reached until at least 200 km downstream, and during the flood period Hg is also detected in the terminal wetlands of the river.Mercury concentrations in sediment cores taken from the river bed in the most contaminated section of the Nura ranged from 9.95 to 306 mg kg−1. Methylmercury (MeHg) levels in shallow sediment cores were highest in surface sediments and ranged between 4.9 and 39 μg kg−1, but were generally less than 0.1% of total Hg (THg). A significant inverse relationship was found between THg concentrations and the percentage of MeHg formed in the sediments, irrespective of the sampling depth. The observed relationship was confirmed by comparison with results from a different river system, indicating that it may be true also for other highly contaminated aquatic systems. It is hypothesized that at high THg levels in severely contaminated sediments, the accumulation of MeHg may be limited by increasingly efficient demethylation processes, and that this underlying trend in sediments is the reason why MeHg levels in surface water are often found to be higher at less contaminated sites compared to upstream sites.Mercury concentrations in biota in the most contaminated section of the river were 15–20 times higher than background levels. Fish were found to be impacted for more than 125 km downstream from the source, indicating significant transport of dissolved MeHg to downstream areas and/or in-situ MeHg production in less contaminated downstream reaches. There were also indications that impoundments may increase the bioavailability of Hg.  相似文献   

3.
《Applied Geochemistry》2005,20(3):627-638
Concentrations of total Hg and methylmercury (MMHg) in riparian soil, mine-waste calcine, sediment, and moss samples collected from abandoned Hg mines in Wanshan district, Guizhou province, China, were measured to show regional dispersion of Hg-contamination. High total Hg and MMHg concentrations obtained in riparian soils from mined areas, ranged from 5.1 to 790 mg kg−1 and 0.13 to 15 ng g−1, respectively. However, total Hg and MMHg concentrations in the soils collected from control sites were significantly lower varying from 0.1 to 1.2 mg kg−1 and 0.10 to 1.6 ng g−1, respectively. Total Hg and MMHg concentrations in sediments varied from 90 to 930 mg kg−1 and 3.0 to 20 ng g−1, respectively. Total Hg concentrations in mine-waste calcines were highly elevated ranging from 5.7 to 4400 mg kg−1, but MMHg concentrations were generally low ranging from 0.17 to 1.1 ng g−1. Similar to the high Hg concentrations in soil and sediments, moss samples collected from rocks ranged from 1.0 to 95 mg kg−1 in total Hg and from 0.21 to 20 ng g−1 in MMHg. Elevated Hg concentrations in mosses suggest that atmospheric deposition might be an important pathway of Hg to the local terrestrial system. Moreover, the spatial distribution patterns of Hg contamination in the local environment suggest derivation from historic Hg mining sites in the Wanshan area.  相似文献   

4.
The Xunyang Hg mine (XMM) situated in Shaanxi Province is an active Hg mine in China. Gaseous elemental Hg (GEM) concentrations in ambient air were determined to evaluate its distribution pattern as a consequence of the active mining and retorting in the region. Total Hg (HgT) and methylmercury (MeHg) concentrations in riparian soil, sediment and rice grain samples (polished) as well as Hg speciation in surface water samples were measured to show local dispersion of Hg contamination. As expected, elevated concentrations of GEM were found, ranging from 7.4 to 410 ng m−3. High concentrations of HgT and MeHg were also obtained in riparian soils, ranged from 5.4 to 120 mg kg−1 and 1.2 to 11 μg kg−1, respectively. Concentrations of HgT and MeHg in sediment samples varied widely from 0.048 to 1600 mg kg−1 and 1.0 to 39 μg kg−1, respectively. Surface water samples showed elevated HgT concentrations, ranging from 6.2 to 23,500 ng L−1, but low MeHg concentrations, ranging from 0.022 to 3.7 ng L−1. Rice samples exhibited high concentrations of 50–200 μg kg−1 in HgT and of 8.2–80 μg kg−1 in MeHg. The spatial distribution patterns of Hg speciation in the local environmental compartments suggest that the XMM is the source of Hg contaminations in the study area.  相似文献   

5.
The Alaknanda and Bhagirathi Rivers originate in the mountainous regions of the Himalayas (Garhwal) and result in high sediment yields causing flood hazards downstream of the Ganga River and high sediment flux to the Bay of Bengal. The rivers are perennial, since runoff in these rivers is controlled by both precipitation and glacial melt. In the present study, three locations in the upper reaches of the Ganga River were monitored for 1 yr (daily observations of, more than >1000 samples) for suspended sediment concentrations. In addition, more than one hundred samples were collected from various locations of the Alaknanda and Bhagirathi Rivers at different periods to observe spatial and temporal variations in river suspensions. Further, multi-annual data (up to 40 yrs) of water flow and sediment concentrations were used for inferring the variations in water flow and sediment loads on longer time scales. In most previous studies of Himalayan Rivers, there has been a general lack of long term water flow and sediment load data. In the present study, we carried out high frequency sampling, considered long term discharge data and based on these information, discussed the temporal and spatial variations in water discharge and sediment loads in the rivers in the Himalayan region. The results show that, >75% of annual sediment loads are transported during the monsoon season (June through September). The annual physical weathering rates in the Alaknanda and Bhagirathi River basins at Devprayag are estimated to be 863 tons km−2 yr−1 (3.25 mm yr−1) and 907 tons km−2 yr−1 (3.42 mm yr−1) respectively, which are far in excess of the global average of 156 tons km−2 yr−1 (0.58 mm yr−1).  相似文献   

6.
Mercury (Hg) is one of the elements with increasing environmental significance. A total of 22 samples (soils, rocks and gels) were collected along a 6 km transect around the Valdeazogues River valley in the southwest of the Iberian Peninsula (Almadén, Spain). Samples were characterized by different soil types of depositional sequences associated with mining tailings, type and system tracts: 15 surface soil samples included in the transect; 3 of a Haploxerept soil profile developed on slates; 2 of quartzite and slates rocks (reference rocks in the area). Moreover, two of a gel substance (in the lower tract of the river). Soil samples were analyzed for Hg, Cu, Ni, Cr, V, Pb, Cd and As, as well as for organic matter, pH abrasion and calcium carbonate content. All samples were collected from the Almadén mining district. The level of occurrence of the elements (especially Hg) and the effect of some properties on its concentration distributions were investigated. The total mercury contents varied in the range 7,315–3.44 mg kg−1. The mean concentration of total mercury in soils and rocks was 477.03 mg kg−1dry mass. This value is very high compared to the regional background value of other areas. Only rarely is it higher than 1%: in one sample (7,315 mg kg−1) it was almost eight times in comparison with the affected zones, with a high value of 1,000 mg kg−1. Significant differences between samples were found in the total content of mercury. A large percentage of the samples registered detectable levels of V, Cr, Ni, Pb, As and Cu. Cd readings were below the detectable range for all samples tested. Cr mean concentration was 216.95 mg kg−1 (minimun concentration 86, maximun 358); V mean concentration was 119.09 mg kg−1 (minimun concentration 69, maximun 1,209); As mean concentration was 51.24 mg kg−1 (minimun 13.3 and maximun 319.4); Ni mean concentration was 45.64 mg kg−1 (minimun concentration 21.2 and maximun 125.6); Cu mean concentration was 33.25 mg kg−1 (minimun concentration 19.3 and maximun 135); Pb mean concentration was 15.19 mg kg−1 (minimun 1.12 and maximun 1013). Metal distribution generally showed spatial variability ascribed to significant anthropogenic perturbation by mining tailing type. Hg showed vertical profile characterized by surface enrichment, with concentrations in the upper layer (93.7–82.2 mg kg−1 in front of 3.4 of the rock value) exceeding, in several occasions, the background value. The results obtained denote a potential toxicity of some heavy metals in some of the studied samples. Water-soluble mercury could enter the aquatic system and accumulate in sediments. Mercury and other heavy metals contamination depended on the duration and intensity of mining activities.  相似文献   

7.
《Applied Geochemistry》2006,21(11):1955-1968
Elemental Hg–Au amalgamation mining practices are used widely in many developing countries resulting in significant Hg contamination of surrounding ecosystems. The authors examined for the first time Hg contamination in air, water, sediment, soil and crops in the Tongguan Au mining area, China, where elemental Hg has been used to extract Au for many years. Total gaseous Hg (TGM) concentrations in ambient air in the Tongguan area were significantly elevated compared to regional background concentrations. The average TGM concentrations in ambient air in a Au mill reached 18,000 ng m−3, which exceeds the maximum allowable occupational standard for TGM of 10,000 ng m−3 in China. Both total and methyl-Hg concentrations in stream water, stream sediment, and soil samples collected in the Tongguan area were elevated compared to methyl-Hg reported in artisanal Au mining areas in Suriname and the Amazon River basin. Total Hg concentrations in vegetable and wheat samples ranged from 42 to 640 μg kg−1, all of which significantly exceed the Chinese guidance limit for vegetables (10 μg kg−1) and foodstuffs other than fish (20 μg kg−1). Fortunately, methyl-Hg was not significantly accumulated in the crops sampled in this study, where concentrations varied from 0.2 to 7.7 μg kg−1.  相似文献   

8.
Xiamen Bay (XMB) has received substantial loadings of pollutants from industrial and municipal wastewater discharged since the 1980s. To assess ecological risks and the current spatial changes of metal contaminants in bottom surface sediments, 12 samples were collected. Samples were subjected to a total digestion technique and analyzed by ICP–OES for Cu, Pb, Zn, Cr, and Cd, and by AFS for Hg and As. Among these metals, Zn had the highest values (68–268 mg kg−1), followed by Pb (27–71 mg kg−1), and lower concentrations were found for Cd (42–1,913 μg kg−1) and Hg (0–442 μg kg−1). In comparison with the average crustal abundance values, the results indicated that nearly half of the sediment samples of XMB and its adjacent areas were contaminated by Cd, Pb, Zn, and As. Furthermore, based on the modified BCR sequential extraction procedure, the chemical speciation of heavy metals (Cd, Cr, Cu, Pb, Zn, Hg, and As) in selected sediment samples were evaluated in this study. Data from BCR sequential extractions indicated that Cd posed a medium ecological risk, whereas, Cr posed low risk since its exchangeable and carbonate fractions were below 4%, and the mobility of heavy metals in XMB decreased in the order Cd > Pb > Cu > Zn > Hg > As > Cr. By applying mean effects range median quotients (mERMQ), the results showed that Yuandang Lagoon with mERMQ value >0.5 would be expected to have the greatest potential toxic risk in amphipod within XMB and its adjacent areas.  相似文献   

9.
In a typical modern agricultural Zone of southeastern China, Haining City, 224 topsoil samples were collected from paddy fields to measure the total concentrations of copper (Cu), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr), mercury (Hg), arsenic (As) and cobalt (Co). The total concentrations ranged from 15.30 to 78.40 mg kg−1 for Cu, 20.10 to 41.40 mg kg−1 for Pb, 54.98 to 224.4 mg kg−1 for Zn, 0.04 to 0.24 mg kg−1 for Cd, 54.90 to 197.1 mg kg−1 for Cr, 0.03 to 0.61 mg kg−1 for Hg, 3.44 to 15.28 mg kg−1 for As, and 7.17 to 19.00 mg kg−1 for Co. Chemometric techniques and geostatistics were utilized to quantify their spatial characteristics and define their possible sources. All eight metals had a moderate spatial dependency except that Pb had a strong spatial dependency. Both factor analysis and cluster analysis successfully classified the eight metals into three groups or subgroups, the first group included Cu, Zn and Cr, the second group included Cd, As and Co, and the last group included Pb and Hg. The Cu, Zn and Cr concentrations in majority samples were higher than their local background concentrations and they were highly correlated (r > 0.80), indicating that they had similar pollution source and anthropic factor controlled their spatial distribution; the Cd, As and Co concentrations in majority samples were lower than their local background concentrations, indicating that the source of these elements was mainly controlled by natural factors; the mean concentration of Pb exhibited generally low level, close to its local background concentration, the Hg concentration in about half of samples was higher than its local background concentration, and they were poor correlated with the other metals, indicating that the source of Pb and Hg was common controlled by natural factor and anthropic factor.  相似文献   

10.
Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (60 wt%) and quartz polymorphs (35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10−16 to 10−17 mol s−1 kg tuff−1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10−15 to 10−16 mol s−1 kg tuff−1 for percolation fluxes of 15 mm a−1 and 1 mm a−1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a−1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (50 mg L−1) may inhibit feldspar dissolution.  相似文献   

11.
The Cu–Co–Ni Texeo mine has been the most important source of Cu in NW Spain since Roman times and now, approximately 40,000 m3 of wastes from mine and metallurgical operations, containing average concentrations of 9,263 mg kg−1 Cu, 1,100 mg kg−1 As, 549 mg kg−1 Co, and 840 mg kg−1 Ni, remain on-site. Since the cessation of the activity, the abandoned works, facilities and waste piles have been posing a threat to the environment, derived from the release of toxic elements. In order to assess the potential environmental pollution caused by the mining operations, a sequential sampling strategy was undertaken in wastes, soil, surface and groundwater, and sediments. First, screening field tools were used to identify hotspots, before defining formal sampling strategies; so, in the areas where anomalies were detected in a first sampling stage, a second detailed sampling campaign was undertaken. Metal concentrations in the soils are highly above the local background, reaching up to 9,921 mg kg−1 Cu, 1,373 mg kg−1 As, 685 mg kg−1 Co, and 1,040 mg kg−1 Ni, among others. Copper concentrations downstream of the mine works reach values up to 1,869 μg l−1 and 240 mg kg−1 in surface water and stream sediments, respectively. Computer-based risk assessment for the site gives a carcinogenic risk associated with the presence of As in surface waters and soils, and a health risk for long exposures; so, trigger levels of these elements are high enough to warrant further investigation.  相似文献   

12.
Vertical profiles of trace metal (Cd, Pb, Zn, Cu, Ni) concentrations, organic matter content, carbonate content and granulometric composition were determined in two sediment cores from the submarine pit Dragon Ear (Middle Adriatic). Concentrations of the analyzed metals (Cd: 0.06–0.12 mg kg−1, Pb: 28.5–67.3 mg kg−1, Zn: 17.0-65.4 mg kg−1, Cu: 21.1–51.9 mg kg−1, Ni: 27.8–40.2 mg kg−1) were in usual range for Adriatic carbonate marine sediments. Nevertheless, concentrations of Cu, Zn, and especially Pb in the upper layer of sediments (top 12 cm) were higher than in bottom layer, while Cd and Ni concentration profiles were uniform. Regression analysis and principal component analysis were used to interpret distribution of trace metals, organic matter and carbonate content in sediment cores. Results of both analysis showed that concentrations of all trace metals in the core below the entrance to the pit were significantly positively correlated with organic matter and negatively correlated with carbonate, while in the core more distant from the entrance only Pb showed significant positive correlation with organic matter. Obtained results indicated that, except for lead which was enriched in surface sediment, in the time of sampling (before the building of the nautical marina) investigated area belonged to unpolluted areas.  相似文献   

13.
Historically, a significant level of mining activity has taken place in the batholite-related metalogenic enclave of Linares (Jaén province, Spain), associated with Pb–Ag, Cu, Zn and Fe sulphides and Ba sulphate mineralization, though mining here has now been abandoned. Additionally, the area features a significant amount of urban, industrial and agricultural activities. These considerations, taken together, explain the need to assess the levels of concentration of trace elements and to determine their relationship with geogenic and anthropogenic factors. For geochemical characterisation of the soil, the region has been divided into 126 grid squares with an area of 1 km2. For each grid square, 32 trace elements have been analysed. Elemental concentrations of Cu, Pb, Zn, As and Mn have been included in statistical analyses. According to the reference levels established by the Regional Government (Junta de Andalucía), soils in a large part of the study area require amendment applications. The comparison of the mean content for each grid square with the reference levels reveals a significant degree of contamination of the soil by Cu (719 mg kg−1), Pb (22,964 mg kg−1) and As (100 mg kg−1) in those grid squares affected by metallurgic activities. By means of factor analysis, four scores have been identified which together account for 80% of the variance observed. The first score is highly correlated with the logarithms of the variables Fe, Th, La, Ti, Al, Na, K, Zr, Y, Nb, Be and Sc. It is a “natural” factor that indicates the type of soil matrix (fundamentally granites and, to a lesser degree, Triassic materials). The second score shows high correlation with the logarithms of the variables Mo, Cu, Pb, Zn, Ag, Co, Mn, As, Cd, Sb, Ba, W and Sn, and is the “metallization” factor related to the mineralization that has been exploited. The third score is mainly determined by the logarithms of the variables Sr, Ca and Mg. This is a “natural” factor that indicates a type of carbonate soil matrix (Miocene). Finally, the fourth factor groups the logarithms of the variables Ni, V and Cr, elements that are associated with the combustion of fossil fuels. Analysis of the patterns of each of the factors identified enabled achieving a global characterisation of the study area. Cluster analysis of the observations showed there to be five clusters relating to the grid squares, differentiated by lithologies and degrees of contamination. These clusters are used to determine the background of granite and to calculate the anomalous load.  相似文献   

14.
A field survey was conducted to identify potential hyperaccumulators of Pb, Zn or Cd in the Beichang Pb/Zn mine outcrop in Yunnan Province, China. The average total concentrations of Pb, Zn, and Cd in the soils were up to 28,438, 5,109, and 52 mg kg−1, respectively. A total of 68 plant species belonging to 60 genera of 37 families naturally colonizing the outcrop were recorded. According to metal accumulation in the plants and translocation factor (TF), Silene viscidula was identified as potential hyperaccumulator of Pb, Zn, and Cd with mean shoot concentrations of 3,938 mg kg−1 of Pb (TF = 1.2), 11,155 mg kg−1 of Zn (TF = 1.8) and 236 mg kg−1 of Cd (TF = 1.1), respectively; S. gracilicanlis (Pb 3,617 mg kg−1, TF = 1.2) and Onosma paniculatum (Pb 1,837 mg kg−1, TF = 1.9) were potential Pb hyperaccumulators. Potentilla griffithii (Zn 8,748 mg kg−1, TF = 1.5) and Gentiana sp. (Zn 19,710 mg kg−1, TF = 2.7) were potential Zn hyperaccumulators. Lysimachia deltoides (Cd 212 mg kg−1, TF = 3.2) was a potential Cd hyperaccumulator. These new plant resources could be used to explore the mechanisms of Pb, Zn and/or Cd hyperaccumulation, and the findings could be applied for the phytoremediation of Pb, Zn and/or Cd-contaminated soils.  相似文献   

15.
The aim of this study is to estimate the C loss from forest soils due to the production of dissolved organic C (DOC) along a north–south European transect. Dissolved organic matter (DOM) was extracted from the forest soils incubated at a controlled temperature and water content. Soils were sampled from forest plots from Sweden to Italy. The plots represent monocultures of spruce, pine and beech and three selected chronosequences of spruce and beech spanning a range of mean annual temperature from 2 to 14 °C. The DOM was characterized by its DOC/DON ratio and the C isotope composition δ13C. The DOC/DON ratio of DOM varied from 25 to 15 after 16 days of incubation and it decreased to between 16 and 10 after 126 days. At the beginning of incubation the δ13C values of DOC were 1‰ or 2‰ less negative than incubated soils. At the end of the experiment δ13C of DOC were the same as soil values. In addition to DOC production heterotrophic respiration and N mineralization were measured on the incubated soils. The DON production rates decreased from 30 to 5 μgN gC−1 d−1 after 16 days of incubation to constant values from 5 to 2 μgN gC−1 d−1 after 126 days at the end of experiment. The DIN production rates were nearly constant during the experiments with values ranging from 20 to 4 μgN gC−1 d−1. DOC production followed first-order reaction kinetics and heterotrophic respiration followed zero-order reaction kinetics. Kinetic analysis of the experimental data yielded mean annual DOC and respiration productions with respect to sites. Mean annual estimates of DOC flux varied from 3 to 29 g of C m−2 (1–19 mg C g−1 of available C), corresponding to mean DOC concentrations from 2 to 85 mg C L−1.  相似文献   

16.
We utilize regional GPS velocities from Luzon, Philippines, with focal mechanism data from the Harvard Centroid Moment Tensor (CMT) Catalog, to constrain tectonic deformation in the complex plate boundary zone between the Philippine Sea Plate and Eurasia (the Sundaland block). Processed satellite imagery and digital elevation models are used with existing gravity anomaly, seismicity, and geologic maps to define a suite of six elastic blocks. Geodetic and focal mechanism data are inverted simultaneously to estimate plate rotations and fault-locking parameters for each of the tectonic blocks and faults comprising Luzon. Major tectonic structures that were found to absorb the plate convergence include the Manila Trench (20–100 mm yr− 1) and East Luzon Trough ( 9–15 mm yr− 1)/Philippine Trench ( 29–34 mm yr− 1), which accommodate eastward and westward subduction beneath Luzon, respectively; the left-lateral strike-slip Philippine Fault ( 20–40 mm yr− 1), and its northward extensions, the Northern Cordillera Fault ( 17–37 mm yr− 1 transtension), and the Digdig Fault ( 17–27 mm yr− 1 transpression). The Macolod Corridor, a zone of active volcanism, crustal thinning, extension, and extensive normal and strike-slip faulting in southwestern Luzon, is associated with left-lateral, transtensional slip of  5–10 mm yr− 1. The Marikina Fault, which separates the Central Luzon block from the Southwestern Luzon block, reveals  10–12 mm yr− 1 of left-lateral transpression. Our analysis suggests that much of the Philippine Fault and associated splays are locked to partly coupled, while the Manila and Philippine trenches appear to be poorly coupled. Luzon is best characterized as a tectonically active plate boundary zone, comprising six mobile elastic tectonic blocks between two active subduction zones. The Philippine Fault and associated intra-arc faults accommodate much of the trench-parallel component of relative plate motion.  相似文献   

17.
This study reports on the behavior of two redox-sensitive elements, As and Sb, along the turbidity gradient in the freshwater reaches of the turbid Gironde Estuary. During a 17-month survey, surface water and suspended particulate matter (SPM) were sampled monthly at six sites representing both fluvial branches of the Gironde Estuary. Additionally, two longitudinal high resolution profiles were sampled along the fluvial estuary of the Garonne Branch during two contrasted seasons, i.e. with and without the presence of the maximum turbidity zone (MTZ). Seasonal variability and spatial distribution of dissolved (<0.2 μm; <0.02 μm) and particulate As, Sb and Fe were measured and combined with SPM data to understand metalloid behavior in the estuarine freshwater turbidity gradient.At the two main fluvial entries of the Gironde Estuary, dissolved As and Sb concentrations showed strong (by a factor of 2–4) seasonal variations, that were only partly controlled by discharge-related dilution. Seasonal addition of dissolved As and Sb was attributed to the degradation of particulate As and Sb carrier phases in bottom sediment and/or in the adjacent aquifers, rather than release from SPM. In the surface freshwater reaches of the Gironde Estuary, Sb behaved conservatively under all hydrological conditions. In contrast, As was strongly reactive in the presence of the MTZ, with opposite behaviors in the two fluvial branches of the estuary: in the Garonne Branch As was removed from the dissolved phase, whereas in the Dordogne Branch As was added. Redistribution of As between the dissolved and the particulate phases along the turbidity gradient in estuarine freshwater only affected the <0.02 μm fraction, as the 0.02–0.2 μm fraction remained constant (300 ng L−1 in September 2005). Accordingly, As removal seemed to be decoupled from concomitant “colloidal” (0.02–0.2 μm) Fe flocculation in the turbidity gradient. The contrasting behavior of dissolved As in the fluvial estuaries of the Garonne and Dordogne Branches was attributed to sorption processes during equilibration of river-borne dissolved As with estuarine SPM forming the MTZ. This equilibrium, described by a distinct distribution coefficient Kd(As)  11,000 L kg−1 in the MTZ, resulted in either As release (desorption; Dordogne Branch) or removal (adsorption; Garonne Branch) in the respective fluvial estuaries. A mixing experiment under controlled laboratory conditions tended to support that equilibration between the dissolved phase and MTZ particles may induce both As release and removal in the estuarine freshwater reaches, with As distribution evolving towards a distinct Kd value for increasing SPM concentrations. The long-term survey allowed estimating annual (2004) dissolved fluxes of As and, for the first time Sb, at the main fluvial entries of the Gironde Estuary at 30.7 t a−1 and 3.2 t a−1 (Garonne River) and at 8.0 t a−1 and 2.3 t a−1 (Dordogne River), respectively.  相似文献   

18.
Timpanogos Cave, located near the Wasatch fault, is about 357 m above the American Fork River. Fluvial cave sediments and an interbedded carbonate flowstone yield a paleomagnetic and U–Th depositional age of 350 to 780 ka. Fault vertical slip rates, inferred from calculated river downcutting rates, range between 1.02 and 0.46 mm yr− 1. These slip rates are in the range of the 0–12 Ma Wasatch Range exhumation rate ( 0.5–0.7 mm yr− 1), suggesting that the long-term vertical slip rate remained stable through mid-Pleistocene time. However, the late Pleistocene (0–250 ka) decelerated slip rate ( 0.2–0.3 mm yr− 1) and the accelerated Holocene slip rate ( 1.2 mm yr− 1) are consistent with episodic fault activity. Assuming that the late Pleistocene vertical slip rate represents an episodic slowing of fault movement and the long-term (0–12 Ma) average vertical slip rate, including the late Pleistocene and Holocene, should be  0.6 mm yr− 1, there is a net late Pleistocene vertical slip deficit of  50–75 m. The Holocene and late Pleistocene slip rates may be typical for episodes of accelerated and slowed fault movement, respectively. The calculated late Pleistocene slip deficit may mean that the current accelerated Wasatch fault slip rate will extend well into the future.  相似文献   

19.
Contaminated fluvial sediments represent both temporary sinks for river-borne pollutants and potential sources in case of natural and/or anthropogenic resuspension. Reservoir lakes play a very important role in sediment dynamics of watersheds and may offer great opportunities to study historical records of river-borne particles and associated elements transported in the past. The fate and potential environmental impact of Hg depends on its abundance, its carrier phases and its chemical speciation. Historical Hg records and solid state Hg speciation were compared in sediments from two contrasting reservoirs of the Lot River (France) upstream and downstream from a major polymetallic pollution (e.g. Cd, Zn) source. Natural (geochemical background) and anthropogenic Hg concentrations and their relationships with predominant carrier phases were determined. The results reveal important historical Hg contamination (up to 35 mg kg−1) of the downstream sediment, reflecting the historical evolution of industrial activity at the point source, i.e. former coal mining, Zn ore treatment and post-industrial remediation work. Single chemical extractions (ascorbate, H2O2, KOH) suggest that at both sites most (∼75%) of the Hg is bound to organic and/or reactive sulphide phases. Organo-chelated (KOH-extracted) Hg, representing an important fraction in the uncontaminated sediment, shows similar concentrations (∼0.02 mg kg−1) at both sites and may be mainly attributed to natural inputs and/or processes. Although, total Hg concentrations in recent surface sediments at both sites are still very different, similar mono-methylmercury concentrations (up to 4 μg kg−1) and vertical distributions were observed, suggesting comparable methylation-demethylation processes. High mono-methylmercury concentrations (4–15 μg kg−1) in 10–40 a-old, sulphide-rich, contaminated sediment suggest long-term persistence of mono-methylmercury. Beyond historical records of total concentrations, the studied reservoir sediments provided new insights in solid state speciation and carrier phases of natural and anthropogenic Hg. In case of sediment resuspension, the major part of the Hg historically stored in the Lot River sediments will be accessible to biogeochemical recycling in the downstream fluvial-estuarine environment.  相似文献   

20.
Copper contamination in soils and vegetables in the vicinity of an abandoned copper mine in China was investigated. The Cu concentrations of 93 soil samples ranged from 30.4 to 3,191 mg kg−1 soil for a mean of 816.8 mg kg−1 soil. Among 15 samples from a 0 to 20-cm soil layer used for the toxicity characteristic leaching procedure (TCLP) test, the highest value of Cu-TCLP was 133.8 mg kg−1 soil and the TCLP values were positively correlated with the total Cu content of the soils. The sequential extraction of soils in the 0–20-, 20–40-, and 40–60-cm soil layers showed that Cu existed mainly in the Fe–Mn oxide fraction, sulfide/organic fraction, and residual fraction. The copper contamination of 21 species of vegetables from in situ sampling was also examined. Cu concentrations in the edible portions of Brassica chinensis and Solanum melongena were higher than the FAO/WHO standard (40 mg kg−1 DW). The health risk of copper for local inhabitants from consuming these vegetables was assessed on the basis of the target hazard quotient. Enriched concentrations of copper were also found in situ in eight cultivars of B. chinensis planted in the fields, with two levels of Cu concentration. The results showed that there is severe copper contamination in this mine area, and the pollutant in soils show a high risk of leaching into the groundwater and diffusing through the food chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号