首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Summary The crystal structure of sigloite, Fe3 [(H2O)3OH] [Al2(PO4)2(OH)2(H2O)2]- 2 H2O, triclinic, a 5.190 (2), b 10.419 (4), c 7.033 (3) Å, 105.00 (3), 111.31(3), 70.87 (3)°, V 330.5 (2) Å3, Z = 1, space group P , has been refined to anR index of 5.3% using 1713 observed (I > 2.5 1) reflections collected with graphite-monochromated MoK X-rays. Sigloite is isostructural with the laueite-group minerals. Corner-linked [A15] chains (: unspecified ligand) are cross-linked by (PO4) tetrahedra to form a mixed corner-linked tetrahedral-octahedral sheet of composition [A12(PO4)2(OH)2(H2O)2]2-. These sheets are linked by (Fe3+O2(OH, H2O)4) octahedra and two (H2O) groups that participate in a hydrogen-bonding network. Sigloite is the oxidized equivalent of paravauxite, Fe2+(H2O)4[Al2(PO4)2(OH)2(H2O)2]-2 H2O, and detailed comparison of the two structures shows that the oxidation mechanism involves loss of hydrogen from one of the (H2O) groups coordinating the Fe3+, and positional disorder of both the Fe3+ and (OH) and (H2O) ligands.
Siggloit: Der Oxidationsmechanismus in (M 2 3 + (PO4)2(OH)2(H2O)2]2- Strukturen
Zusammenfassung Die Kristallstruktur von Sigloit, Fe3+ [(H2O)3OH] [Al2(PO4)2(OH)2(H2O)2].2 H2O, triklin, a 5,190 (2), b 10,419 (4), c 7,033 (3) Å, 105,00 (3), 111,31 (3), 70,87 (3)°, V 330,5 (2) Å3,Z = 1, Raumgruppe P , wurdefür 1713 beobachtete Reflexe (I > 2,5 I), die mit MoKa-Röntgenstrahlung (Graphit-Monochromator) gesammelt wurden, auf einen R-Wert von 5,3% verfeinert. Sigloit ist isotyp mit den Mineralen deer Laueit-Gruppe. Über Ecken verknüpfte [A15]-Ketten (: nicht spezifizierter Ligand) werden über (P04)-Tetraeder zu ebenfalls über Ecken verknüpfte Tetraeder-OktaederSchichten der Zusammensetzung [A12(PO4)2(OH)2(H2O)2]2- verbunden. Diese Schichten werden über (Fe3+O2(OH, H2O)4)-Oktaeder und zwei (H2O)-Gruppen, die amWasserstoffbrücken-Netzwerk beteiligt sind, verbunden. Sigloit ist das oxidierte Analogon zu Paravauxit, Fe2+(H2O)4[A12(PO4)2(OH)2(H2O)2] - 2 H2O; ein detaillierter Vergleich dieser beiden Strukturen zeigt, daß der Oxidationsmechanismus sowohl den Verlust eines Wasserstoffatoms (H2O)-Gruppe, welche ein Fe3+-Atom koordiniert, als auch eine Fehlordnung der Punktlagen von Fe3+ und von den (OH) und (H2O) Liganden bedingt.
  相似文献   

2.
Large-scale melting of the Earth’s early mantle under the effect of global impact processes was accompanied by the generation of volatiles, which concentration was mainly controlled by the interaction of main N, C, O, and H gas-forming elements with silicate and metallic melts at low oxygen fugacity (fO2), which predominated during metallic segregation and self-oxidation of magma ocean. The paper considers the application of Raman and IR (infrared) Fourier spectroscopy for revealing the mechanisms of simultaneous dissolution and relative contents of N, C, O, and H in glasses, which represent the quench products of reduced model FeO–Na2O–Al2O3–SiO2 melts after experiments at 4 GPa, 1550°C, and fO2 1.5–3 orders of magnitude below the oxygen fugacity of the iron—wustite buffer equilibrium (fO2(IW)). Such fO2 values correspond to those inferred for the origin and evolution of magma ocean. It was established that the silicate melt contains complexes with N–H bonds (NH3, NH 2 + , NH 2 - ), N2, H2, and CH4 molecules, as well as oxidized hydrogen species (OH hydroxyl and molecular water H2O). Spectral characteristics of the glasses indicate significant influence of fO2 on the N–C–O–H proportion in the melt. They are expressed in a sharp decrease of NH 2 + , NH 2 - (O–NH2), OH, H2O, and CH4 and simultaneous increase of NH 2 - (≡Si–NH2) and NH3 with decreasing fO2. As a result, NH3 molecules become the dominant nitrogen compounds among N–C–H components in the melt at fO2 two orders of magnitude below fO2(IW), whereas molecular СН4 prevails at higher fO2. The noteworthy feature of the redox reactions in the melt is stability of the ОН groups and molecular water, in spite of the sufficiently low fO2. Our study shows that the composition of reduced magmatic gases transferred to the planet surface has been significantly modified under conditions of self-oxidation of mantle and magma ocean.  相似文献   

3.
Summary Switzerite has the following schematical chemical formula Mn 4 2+(VI) (Me 3+,2+,1+,)(VI) (Me 3+,2+,1+,)(V) (PO4)4. 8 H2O, whereMe is mainly iron; the mineral is monoclinic, space groupP21/c, Z=4; lattice parameters area=8.496,b=13.173,c=17.214 Å, -96.65°. The atomic arrangement was determined by direct methods and refined by least-squares method. FinalR index is 0.077 for 3038 observed reflections. The crystal structure of switzerite can be described as built up by octahedral sheets parallel to (001), with formula [Mn4O10(H2O)4]2.Me coordination bipyramidal dimers link these units in thec direction whileMe coordination octahedra stick out from the sheets to which they are connected through a vertex. The atomic arrangement of switzerite is compared with that in ludlamite, Fe3(PO4)2·4H2O, and in whitmoreite, Fe2+Fe 2 3+ (OH)2(PO4)2·4 H2O. The only analogy in all these structures is the presence of octahedral slabs exhibiting, however, different shapes.
Switzerit: Chemische Formel und Kristallstruktur
Zusammenfassung Switzerit hat die schematische chemische Formel Mn 4 2+(VI) (Me 3+,2+,1+,)(VI) (Me 3+,2+,1+,)(V) (PO4)4·8 H2O, wobeiMe hauptsächlich Eisen ist. Das Mineral ist monoklin, RaumgruppeP21/c,Z=4; Gitterkonstanten:a=8,496,b=13,173,c=17,214 Å, =96,65°. Die Atomanordnung wurde mit direkten Methoden bestimmt und nach der Methode der kleinsten Quadrate verfeinert. Es wurde für 3038 beobachtete ReflexeR=0,077 erreicht. Man kann die Kristallstruktur des Switzerits als aus Oktaederschichten der Formel [Mn4O10(H2O)4]2, die parallel zu (001) liegen, beschreiben. Dimere aus trigonalen Dipyramiden umMe verbinden diese Einheiten in Richtung derc-Achse, während Koordinationsoktaeder umMe aus diesen Schichten, an die sie über eine Ecke verknüpft sind, hervorragen. Die Atomanordnung des Switzerits wird mit denen des Ludlamits, Fe3(PO4)2·4 H2O und des Whitmoreits, Fe2+Fe 2 3+ (OH)2(PO4)2·4 H2O verglichen. Die einzige Analogie zwischen allen diesen Strukturen ist die Anwesenheit von Oktaederschichten, die aber verschiedene Gestalt haben.


With 3 Figures  相似文献   

4.
Single-crystal study of the structure (R = 0.0268) was performed for garyansellite from Rapid Creek, Yukon, Canada. The mineral is orthorhombic, Pbna, a = 9.44738(18), b = 9.85976(19), c = 8.14154(18) Å, V = 758.38(3) Å3, Z = 4. An idealized formula of garyansellite is Mg2Fe3+(PO4)2(OH) · 2H2O. Structurally the mineral is close to other members of the phosphoferrite–reddingite group. The structure contains layers of chains of M(2)O4(OH)(H2O) octahedra which share edges to form dimers and connected by common edges with isolated from each other M(1)O4(H2O)2 octahedra. The neighboring chains are connected to the layer through the common vertices of M(2) octahedra and octaahedral layers are linked through PO4 tetrahedra.  相似文献   

5.
Stable oxygen and carbon isotopefractionation during the experimental formation ofordered norsethite (BaMg[CO3]2) from thereaction of anhydrous BaCO3 (witherite) withrelatively low concentrated sodium-magnesiumbicarbonate solutions has been studied between20° and 135 °C. In the investigatedtemperature range, 18O and 13C are enrichedin norsethite with respect to water and gaseous carbondioxide, respectively. Whereas 18O/16Opartitioning is intermediate between those of theBaCO3–H2O and MgCO3–H2O systems,13C/12C partitioning is more similar to thatfor BaCO3–CO2. Between 20° and90°C, the temperature dependences of the18O/16O and 13C/12C fractionationfactors are represented by the equations (T in °K):103 ln BaMg[CO3]2-H2O = 2.83 106T--2.85, and 103lnBaMg[CO3]2-CO2(gas) = 1.78 106T--10.16. The later equation considers carbon isotope fractionationbetween the dissolved carbonate ion and carbon dioxide measured by Halaset al. (1997). Under standard state conditions (25 °C) the fractionation factors in the system BaMg[CO3]2-CO2-H2O are: Oxygen isotopes: BaMg(CO3)2-H2O = 1.02941, BaMg(CO3)2-OH-(aq) = 1.07059,BaMg(CO3)2-CO2(gas) = 0.98868, andBaMg(CO3)2-H2CO3 * = 0.98843; carbon isotopes:BaMg(CO3)2-CO2(gas) = 1.00992,BaMg(CO3)2-H2CO3 * = 1.01099,BaMg(CO3)2-HCO3 - = 1.00194,BaMg(CO3)2-CO3 2- = 1.00491 or 1.00150.The spontaneous precipitation of aBaMg[CO3]2 gel at 20 °C,followed by the alteration of the products at20° or 60°C for 31 days,demonstrated isotope exchange reactions betweensolids and mother solutions dueto recrystallization. Isotope equilibrium, wasnot reached within run time.  相似文献   

6.
NMR shieldings (σ) and electric field gradients (eq) are calculated using ab initio methods at the O and T nuclei (where T=P, Si) in two different types of molecules-TH3 dimers, i.e. H3SiOSiH3 and H3POPH 3 2+ , and TO4 trimeric rings, i.e., Si3O 9 6- and P3O 9 3- , which serve as models for assessing the effects of polymerization, bond length and bond angle variation on the NMR properties of polymerized silicates and phosphates. In agreement with earlier ab initio studies on H3SiOSiH3 we confirm that σ(29Si), σ(31P), σ(17O) and eq(17O) all decrease as θ(SiOSi) decreases in the range from 180° to 100°. However, correction for artifacts due to distant core electrons leads to a considerably reduced value for the anisotropy in σ O, bringing it into better agreement with estimated experimental values. The qualitative change in σ(29Si) with θ(SiOSi) can be understood on the basis of changes in the energies of the highest energy occupied MO's and consequent variations in their contributions to the paramagnetic part of the shielding. For H3POPH 3 2+ we calculate a larger value of eqO than for the analog Si compound but the same type of variation of σ(17O) with θ(TOT). The change in σ(31P) with θ(POP) is, however, calculated to be much smaller than in the Si case and a maximum is predicted for intermediate angles. For the trimeric rings we obtain energy optimized geometries in good agreement with x-ray structural data, with T-O terminal distances systematically shorter than the T-O bridging distances. Calculated σ(T) anisotropies are also in good agreement with experiment and can be simply related to the calculated structure. After correction for distant core effects we obtain a change in σ(31P) between PO 4 3- and P3O 9 3- in reasonable agreement with experiment.  相似文献   

7.
Zinclipscombite, a new mineral species, has been found together with apophyllite, quartz, barite, jarosite, plumbojarosite, turquoise, and calcite at the Silver Coin mine, Edna Mountains, Valmy, Humboldt County, Nevada, United States. The new mineral forms spheroidal, fibrous segregations; the thickness of the fibers, which extend along the c axis, reaches 20 μm, and the diameter of spherulites is up to 2.5 mm. The color is dark green to brown with a light green to beige streak and a vitreous luster. The mineral is translucent. The Mohs hardness is 5. Zinclipscombite is brittle; cleavage is not observed; fracture is uneven. The density is 3.65(4) g/cm3 measured by hydrostatic weighing and 3.727 g/cm3 calculated from X-ray powder data. The frequencies of absorption bands in the infrared spectrum of zinclipscombite are (cm?1; the frequencies of the strongest bands are underlined; sh, shoulder; w, weak band) 3535, 3330sh, 3260, 1625w, 1530w, 1068, 1047, 1022, 970sh, 768w, 684w, 609, 502, and 460. The Mössbauer spectrum of zinclipscombite contains only a doublet corresponding to Fe3+ with sixfold coordination and a quadrupole splitting of 0.562 mm/s; Fe2+ is absent. The mineral is optically uniaxial and positive, ω = 1.755(5), ? = 1.795(5). Zinclipscombite is pleochroic, from bright green to blue-green on X and light greenish brown on Z (X > Z). Chemical composition (electron microprobe, average of five point analyses, wt %): CaO 0.30, ZnO 15.90, Al2O3 4.77, Fe2O3 35.14, P2O5 33.86, As2O5 4.05, H2O (determined by the Penfield method) 4.94, total 98.96. The empirical formula calculated on the basis of (PO4,AsO4)2 is (Zn0.76Ca0.02)Σ0.78(Fe 1.72 3+ Al0.36)Σ2.08[(PO4)1.86(AsO4)0.14]Σ2.00(OH)1. 80 · 0.17H2O. The simplified formula is ZnFe 2 3+ (PO4)2(OH)2. Zinclipscombite is tetragonal, space group P43212 or P41212; a = 7.242(2) Å, c = 13.125(5) Å, V = 688.4(5) Å3, Z = 4. The strongest reflections in the X-ray powder diffraction pattern (d, (I, %) ((hkl)) are 4.79(80)(111), 3.32(100)(113), 3.21(60)(210), 2.602(45)(213), 2.299(40)(214), 2.049(40)(106), 1.663(45)(226), 1.605(50)(421, 108). Zinclipscombite is an analogue of lipscombite, Fe2+Fe 2 3+ (PO4)2(OH)2 (tetragonal), with Zn instead of Fe2+. The mineral is named for its chemical composition, the Zn-dominant analogue of lipscombite. The type material of zinclipscombite is deposited in the Mineralogical Collection of the Technische Universität Bergakademie Freiberg, Germany.  相似文献   

8.
The crystal structures of two new compounds (H3O)2[(UO2)(SeO4)2(H2O)](H2O)2 (1, orthorhombic, Pnma, a = 14.0328(18), b = 11.6412(13), c = 8.2146(13) Å, V = 134.9(3) Å3) and (H3O)2[(UO2)(SeO4)2(H2O)](H2O) (2, monoclinic, P21/c, a = 7.8670(12), b = 7.5357(7), c = 21.386(3) Å, β = 101.484(12)°, V = 1242.5(3) Å3) have been solved by direct methods and refined to R 1 = 0.076 and 0.080, respectively. The structures of both compounds contain sheet complexes [(UO2)(SeO4)2]2? formed by cornershared [(UO2)O4(H2O)] bipyramids and SeO4 tetrahedrons. The sheets are parallel to the (100) plane in structure 1 and to (?102) in structure 2. The [(UO2)(SeO4)2(H2O)]2? layers are linked by hydrogen bonds via interlayer groups H2O and H3O+. The sheet topologies in structures 1 and 2 are different and correspond to the topologies of octahedral and tetrahedral complexes in rhomboclase (H2O2)+[Fe(SO4)2(H2O)2] and goldichite K[Fe(SO4)2(H2O)2](H2O)2, respectively.  相似文献   

9.
In order to elucidate the solution behavior of carbon and hydrogen in iron-bearing magmatic melts in equilibrium with a metallic iron phase and graphite at oxygen fugacity (fO2) values 2–5 orders of magnitude below the iron-wustite buffer equilibrium, fO2 (IW), experiments were carried out at 4 GPa and 1550°C with melts of FeO-Na2O-SiO2-Al2O3 compositions. Melt reduction in response to an fO2 decrease was accompanied by a decrease in FeO content. The values of fO2 in the experiments were determined on the basis of equilibrium between Fe-C-Si alloy and silicate liquid. Infrared and Raman spectroscopy showed that carbon compounds are formed in FeO-Na2O-SiO2-Al2O3 melts: CH4 molecules, CH3 complexes (Si-O-CH3), and complexes with double C=O bonds. The content of CO2 molecules and carbonate ions (CO 3 2? ) is very low. In addition to carbon-bearing compounds, dissolved hydrogen occurs in melt as H2 and H2O molecules and OH? groups. The spectral characteristics of FeO-Na2O-SiO2-Al2O3 glasses indicate the occurrence of redox reactions in the melt, which are accompanied at decreasing fO2 by a significant decrease in H2O and OH?, a slight decrease in H2, and a significant concomitant increase in CH4 content. The content of species with the double C=O bond increases considerably at decreasing fO2 and reaches a maximum at ΔlogfO2(IW) = ?3. According to the obtained IR spectra, the total water content (OH? + H2O) in the glasses is 1.2–5.8 wt % and decreases with decreasing fO2. The high H2O contents are due largely to oxygen release related to FeO reduction in the melt. The total carbon content at high H2O (4.9–5.8 wt %) is approximately 0.4 wt %. The carbon content in liquid iron alloys depends on silicon content and, probably, oxygen solubility and ranges from 0.3 to 3.65 wt %. Low carbon contents were observed at a significant increase in Si content in liquid iron alloy, which may be as high as ~13 wt % at fO2 values 4–5 orders of magnitude below fO2(IW).  相似文献   

10.
The crystal structure of a new compound, [(H5O2)(H3O)(H2O)][(UO2)(SeO4)2] (monoclinic, P21/n a = 8.3105(15), b = 11.0799(14), c = 13.227(2) Å, β = 103.880(13)°, V = 1182.4(3) Å3), has been solved by direct methods and refined to R 1 = 0.036. The structure is based on [(UO2)(SeO4)2]2? sheet complexes formed by corner-shared UO7 pentagonal bipyramids and SeO4 tetrahedrons. The sheets are parallel to the ( $ \bar 1 The crystal structure of a new compound, [(H5O2)(H3O)(H2O)][(UO2)(SeO4)2] (monoclinic, P21/n a = 8.3105(15), b = 11.0799(14), c = 13.227(2) ?, β = 103.880(13)°, V = 1182.4(3) ?3), has been solved by direct methods and refined to R 1 = 0.036. The structure is based on [(UO2)(SeO4)2]2− sheet complexes formed by corner-shared UO7 pentagonal bipyramids and SeO4 tetrahedrons. The sheets are parallel to the (01) plane. Oxonium ions and water molecules forming [(H3O)·(H2O)·(H5O2)]2+ complexes are interlayer. Among minerals, the existence of (H5O2)+ has been unambiguously confirmed only in rhomboclase, (H5O2)+[Fe2(SO4)2(H2O)2]. Original Russian Text ? S.V. Krivovichev, 2008, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2008, No. 2, pp. 123–130.  相似文献   

11.
Summary The crystal structure of meta-uranocircite II, Ba(UO2)2(PO4)2·6H2O, has been determined with a synthetic crystal using three-dimensional X-ray techniques.R=0.071 andR w =0.064 were obtained for 1743 observed reflections. Ba(UO2)2(PO4)2·6H2O is monoclinic, space groupP1121/a, a=9.789,b=9.822,c=16.868 Å, =89.95° andZ=4. The structure consists of slightly corrugated UO2PO4 layers parallel (001). The layers are connected by Ba atoms and H2O molecules. Uranium exhibits a (2+4)-coordination with mean U-O bond lengths of 1.78 Å for the uranyl oxygens and 2.28 Å for the phosphate oxygens. The average P-O bond length is 1.52 Å. Barium is coordinated by two uranyl oxygens. two phosphate oxygens and five water molecules. The Ba–O bond lengths vary from 2.74 to 3.11 Å. Two of the six water molecules of the formula are not bonded to barium.
Die Kristallstruktur des Meta-Uranocircits II, Ba(UO2)2(PO4)2·6H2O
Zusammenfassung Die Kristallstruktur des Meta-Uranocircits II, Ba(UO2)2(PO4)2·6H2O, wurde anhand eines künstlichen Kristalls mit dreidimensionalen Röntgendaten bearbeitet und für 1743 Reflexe aufR=0,071 undR w =0,064 verfeinert. Ba(UO2)2(PO4)2·6H2O kristallisiert monoklin in der RaumgruppeP1121/a, a=9,789,b=9,882,c=16,868 Å, =89,95° und einem Zellinhalt von vier Formeleinheiten. Die Struktur besteht aus schwach gewellten UO2PO4-Schichten parallel (001), die durch Ba-Atome und H2O-Moleküle miteinander verknüpft sind. Uran besitzt oktaedrische (2+4)-Koordination mit mittleren U-O-Abständen von 1,78 Å für die Uranylsauerstoffatome und 2,28 Å für die Phosphatsauerstoffatome. Die P-O-Abstände der Phosphattetraeder messen im Mittel 1.52 Å. Barium ist von je zwei Uranyl- und Phosphatsauerstoffatomen sowie von fünf Wassermolekülen koordiniert. Die Ba-O-Abstände betragen 2,74–3,11 Å. Von den sechs H2O-Molekülen der Formel sind zwei nicht an Barium gebunden.


With 3 Figures  相似文献   

12.
Solubility and solution mechanisms of H2O in depolymerized melts in the system Na2O-Al2O3-SiO2 were deduced from spectroscopic data of glasses quenched from melts at 1100 °C at 0.8-2.0 GPa. Data were obtained along a join with fixed nominal NBO/T = 0.5 of the anhydrous materials [Na2Si4O9-Na2(NaAl)4O9] with Al/(Al+Si) = 0.00-0.25. The H2O solubility was fitted to the expression, XH2O=0.20+0.0020fH2O-0.7XAl+0.9(XAl)2, where XH2O is the mole fraction of H2O (calculated with O = 1), fH2O the fugacity of H2O, and XAl = Al/(Al+Si). Partial molar volume of H2O in the melts, , calculated from the H2O-solulbility data assuming ideal mixing of melt-H2O solutions, is 12.5 cm3/mol for Al-free melts and decreases linearly to 8.9 cm3/mol for melts with Al/(Al+Si) ∼ 0.25. However, if recent suggestion that is composition-independent is applied to constrain activity-composition relations of the hydrous melts, the activity coefficient of H2O, , increases with Al/(Al+Si).Solution mechanisms of H2O were obtained by combining Raman and 29Si NMR spectroscopic data. Degree of melt depolymerization, NBO/T, increases with H2O content. The rate of NBO/T-change with H2O is negatively correlated with H2O and positively correlated with Al/(Al+Si). The main depolymerization reaction involves breakage of oxygen bridges in Q4-species to form Q2 species. Steric hindrance appears to restrict bonding of H+ with nonbridging oxygen in Q3 species. The presence of Al3+ does not affect the water solution mechanisms significantly.  相似文献   

13.
We measured the adsorption of Cu(II) onto goethite (α-FeOOH), hematite (α-Fe2O3) and lepidocrocite (γ-FeOOH) from pH 2-7. EXAFS spectra show that Cu(II) adsorbs as (CuO4Hn)n−6 and binuclear (Cu2O6Hn)n−8 complexes. These form inner-sphere complexes with the iron (hydr)oxide surfaces by corner-sharing with two or three edge-sharing Fe(O,OH)6 polyhedra. Our interpretation of the EXAFS data is supported by ab initio (density functional theory) geometries of analogue Fe2(OH)2(H2O)8Cu(OH)4and Fe3(OH)4(H2O)10Cu2(OH)6 clusters. We find no evidence for surface complexes resulting from either monodentate corner-sharing or bidentate edge-sharing between (CuO4Hn)n−6 and Fe(O,OH)6 polyhedra. Sorption isotherms and EXAFS spectra show that surface precipitates have not formed even though we are supersaturated with respect to CuO and Cu(OH)2. Having identified the bidentate (FeOH)2Cu(OH)20 and tridentate (Fe3O(OH)2)Cu2(OH)30 surface complexes, we are able to fit the experimental copper(II) adsorption data to the reactions
  相似文献   

14.
Summary The stability field of scorzalite (FeAl2[OH/PO4]2) was investigated in the P-T range from 487 to 684 °C and 0.1 to 0.3 GPa. in hydrothermal experiments. The oxygen fugacity was fixed by the Ni/NiO buffer. Scorzalite shows a decomposition according to the reaction: FeAl2[OH/PO4]2) FeAlPO5 + AlPO4 (berlinite) + H2O. The mean standard enthalpy and standard entropy of reaction were determined as H R 0 = 94(13) kJ, ASR = 180(16) JK–1. A57Fe-Mößbauer spectroscopic examination showed that about 4 atomic % of the total Fe in scorzalite is trivalent.
Experimentelle Bestimmung der thermischen Stabilität von Skorzalith, FeAl2[OH/ PO4]2, und das Auftreten von Lazulith-Skorzalith Mischkristallen unter den Bedingungen der Amphibolithfazies
Zusammenfassung Das Stabilitätsfeld von Skorzalith (FeAl2[OH/PO4]2) wurde im P-T-Bereich zwischen 487 und 684 °C und zwischen 0.1 und 0.3 GPa in Hydrothermalexperimenten unter der Sauerstoffugazität des Ni/NiO-Puffers untersucht. Skorzalith zerfällt unter diesen Bedingungen gemäß der Reaktion: FeAl2[OH/PO4]2) FeAlPO5 + AlPO4 (Berlinit) + H2O. Die Reaktionsenthalpie und -entropie für Standardbedingungen wurden zu H R 0 = 94(13) kJ und ASR = 180(16) JK–1 bestimmt.57 Fe-Mößbaueruntersuchungen ergaben, daß ungefähr 4% des Gesamteisens in Skorzalith dreiwertig vorliegen.


With 4 Figures  相似文献   

15.
The following organic radicals were identified by EPR spectroscopy in apatite from marine phosphorites (granular, nodular, shelly, and microcrystalline), supergene phosphorites (from ocean islands only), and modern and fossil biological materials (human dental enamel, fossil shark teeth, and pathogenic cardioliths): ?H3, ?H2-R, HO?HR,(CH3)2-?R,3?org, PO 3 2? , P(OR)3, and perinaphteenyl. Each textural and petrographic type of apatite corresponds to a specific model of organic radicals, which correlates with the type of organic matter (sapropelic, humic, guano, or collagen). The latter is controlled by the conditions of mineral formation, including climatic ones, and postdiagenetic (catagenetic) processes. A relationship was established between the EPR spectra of observed organic radicals and the valence state and structural position of impurity ions: (1) vanadium: V4+ (VO2+) in the Ca2+ II site or V5+ (VO4)3? ?? (PO4)3? and (2) uranium: U4+(UO2) in the Ca2+ II site or U6+ chemisorbed on the surface as UO 2 2+   相似文献   

16.
The following hardsphere modified Redlich-Kwong (HSMRK) equation of state was obtained by least squares fitting to available P-V-T data for methane (P in bars; T in Kelvins; v in cm3 mol?1; b = 60.00 cm3 mol?1; R = 83.14 cm3barmol?1K?1): PRT(1 + y + y2?y3v(1?y)3)-c(T) + d(T)v + e(T)v2/v(v + b)T12y = b4vc(T) = 13.403 × 106 + (9.28 × 104)T + 2.7 T2d(T) = 5.216 × 109 ? (6.8 × 106)T + (3.28 × 103)T2e(T) = (?2.3322 × 1011) + (6.738 × 108)T + (3.179 × 105)T2 For the P-T range of experimental data used in the fit (50 to 8600 bars and from 320 to 670 K), calculated volumes and fugacity coefficients for CH4 relative to experimentally determined volumes and fugacity coefficients have average percent deviations of 0.279 and 1.373, respectively. The HSMRK equation, which predicts linear isochores over a wide P-T range, should yield reasonable estimates of fugacity coefficients for CH4 to pressures and temperatures well outside the P-T range of available P-V-T data. Calculations for the system H2O-CO2-CH4, using the HSMRK equations for H2O and CO2 of Kerrick and Jacobs (1981) and the HSMRK equation for CH4 of this study, indicate that compared to the binary H2O-CO2 system, small amounts of CH4 in the ternary system H2O-CO2-CH4 slightly increases the activity of H2O, and significantly decreases the activity of CO2.  相似文献   

17.
18.
Jarosite phases are common minerals in acidic, sulfate-rich environments. Here, we report heat capacities (C p) and standard entropies (S°) for a number of jarosite samples. Most samples are close to the nominal composition AFe3(SO4)2(OH)6, where A = K, Na, Rb, and NH4. One of the samples has a significant number of defects on the Fe sites and is called the defect jarosite; others are referred to as A-jarosite. The samples, their compositions, and the entropies at T = 298.15 K are:
Sample Chemical composition S o/(J mol−1 K−1)
K-jarosite K0.92(H3O)0.08Fe2.97(SO4)2(OH)5.90(H2O)0.10 427.4 ± 0.7
Na-jarosite Na0.95(H3O)0.05Fe3.00(SO4)2(OH)6.00 436.4 ± 4.4
Rb-jarosite RbFe2.98(SO4)2(OH)5.95(H2O)0.05 411.9 ± 4.1
NH4-jarosite (NH4)0.87(H3O)0.13Fe3.00(SO4)2(OH)6.00 447.2 ± 4.5
Defect jarosite K0.94(H3O)0.06Fe2.34(SO4)2(OH)4.01(H2O)1.99 412.7 ± 4.1
There are additional configurational entropies of 13.14 and 8.23 J mol−1 K−1 in defect and NH4-jarosite, respectively. A detailed analysis of the synchrotron X-ray diffraction patterns showed a large anisotropic peak broadening for defect and NH4-jarosite. The fits to the low-temperature (approx. <12 K) C p data showed that our samples can be divided into two groups. The first group is populated by the K-, Na-, Rb-, and NH4-jarosite samples, antiferromagnetic at low temperatures. The second group contains the H3O-jarosite (studied previously) and the defect jarosite. H3O- and defect jarosite are spin glasses and their low-T C p was fit with the expression C p = γT + ΣB j T j , where j = (3, 5, 7, 9). The linear term is typical for spin glasses and the sum represents the lattice contribution to C p. Surprisingly, the C p of the K-, Na-, Rb-, and NH4-jarosite samples, which are usually considered to be antiferromagnetic at low temperatures, also contains a large linear term. This finding suggests that even these phases do not order completely, but have a partial spin-glass character below their Néel transition temperature.  相似文献   

19.
The reactions of secondary lead orthophosphate with approximately 10?1 M sodium fluoride and sodium bromide solutions have been investigated at 25°C. Interpretation of the solubility data resulted in solubility product constants for fluoropyromorphite and bromopyromorphite of 10?71.6 and 10?78.1, respectively. According to these constants, the stability sequence for lead pyromorphites is Pb5(PO4)3Cl > Pb5(PO4)3Br > Pb5(PO4)3OH > Pb5(PO4)3F. The derived free energy data have been used to evaluate the respective stabilities of fluoro-pyromorphite and bromopyromorphite within the systems PbF2-PbO-P2O5-H2O and PbBr2-PbO-P2O5-H2O and to predict the equilibrium behavior of the Pb5(PO4)3F-Pb5(PO4)3OH solid solution under aqueous conditions.  相似文献   

20.
The solubility of Gd2Ti2O7 ceramic in acidic solutions (HCl and HClO4) was studied at 250°C and saturation vapor pressure within pH 2.5–5.2. The dissolution process occurs mainly via two reactions: 0.5 Gd2Ti2O7(cr) + 3H+ = Gd3+ + TiO2(cr) + 1.5 H2O at pH < 3 and 0.5Gd2Ti2O7(cr) + H+ + 0.5H2O = Gd(OH) 2 + TiO2(cr) at pH 3–5. The thermodynamic equilibrium constants were calculated at the 0.95 confidence level as log K (1) o = 4.12 ± 0.47; = ?0.97 ± 0.16 at 250°C. It was shown that Gd3+ undergoes hydrolysis in solutions with pH > 3, and the species Gd(OH) 2 + dominates up to at least pH 5. At pH < 3, Gd occurs in solutions as Gd3+. The second constant of Gd3+ hydrolysis was determined at 250°C as K o = ?5.09 ± 0.5, and the thermodynamic characteristics of the initial Gd2Ti2O7 solid phase were determined: S 298.15 o = 251.4 J/(mol K) and ΔfG 298.15 o = ?3630 ± 10 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号