首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
Space–time series can be partitioned into space–time smooth and space–time rough, which represent different scale characteristics. However, most existing methods for space–time series prediction directly address space–time series as a whole and do not consider the interaction between space–time smooth and space–time rough in the process of prediction. This will possibly affect the accuracy of space–time series prediction, because the interaction between these two components (i.e., space–time smooth and space–time rough) may cause one of them as dominant component, thus weakening the behavior of the other. Therefore, a divide-and-conquer method for space–time prediction is proposed in this paper. First, the observational fine-grained data are decomposed into two components: coarse-grained data and the residual terms of fine-grained data. These two components are then modeled, respectively. Finally, the predicted values of the fine-grained data are obtained by integrating the predicted values of the coarse-grained data with the residual terms. The experimental results of two groups of different space–time series demonstrated the effectiveness of the divide-and-conquer method.  相似文献   

2.
The classical integral formula for determining the indirect effect in connection with the Stokes–Helmert method is related to a planar approximation of the sea level. A strict integral formula, as well as some approximations to it, are derived. It is concluded that the cap- size truncated integral formulas will suffer from the omission of some long-wavelength contributions, of the order of 50 cm in high mountains for the classical formula. This long-wavelength information can be represented by a set of spherical harmonic coefficients of the topography to, say, degree and order 360. Hence, for practical use, a combination of the classical formula and a set of spherical harmonics is recommended. Received: 10 March 1998 / Accepted: 16 November 1998  相似文献   

3.
Ionospheric scintillation produces strong disruptive effects on global navigation satellite system (GNSS) signals, ranging from degrading performances to rendering these signals useless for accurate navigation. The current paper presents a novel approach to detect scintillation on the GNSS signals based on its effect on the ionospheric-free combination of carrier phases, i.e. the standard combination of measurements used in precise point positioning (PPP). The method is implemented using actual data, thereby having both its feasibility and its usefulness assessed at the same time. The results identify the main effects of scintillation, which consist of an increased level of noise in the ionospheric-free combination of measurements and the introduction of cycle-slips into the signals. Also discussed is how mis-detected cycle-slips contaminate the rate of change of the total electron content index (ROTI) values, which is especially important for low-latitude receivers. By considering the effect of single jumps in the individual frequencies, the proposed method is able to isolate, over the combined signal, the frequency experiencing the cycle-slip. Moreover, because of the use of the ionospheric-free combination, the method captures the diffractive nature of the scintillation phenomena that, in the end, is the relevant effect on PPP. Finally, a new scintillation index is introduced that is associated with the degradation of the performance in navigation.  相似文献   

4.
The topographic potential and the direct topographic effect on the geoid are presented as surface integrals, and the direct gravity effect is derived as a rigorous surface integral on the unit sphere. By Taylor-expanding the integrals at sea level with respect to topographic elevation (H) the power series of the effects is derived to arbitrary orders. This study is primarily limited to terms of order H 2. The limitations of the various effects in the frequently used planar approximations are demonstrated. In contrast, it is shown that the spherical approximation to power H 2 leads to a combined topographic effect on the geoid (direct plus indirect effect) proportional to H˜2 (where terms of degrees 0 and 1 are missing) of the order of several metres, while the combined topographic effect on the height anomaly vanishes, implying that current frequent efforts to determine the direct effect to this order are not needed. The last result is in total agreement with Bjerhammar's method in physical geodesy. It is shown that the most frequently applied remove–restore technique of topographic masses in the application of Stokes' formula suffers from significant errors both in the terrain correction C (representing the sum of the direct topographic effect on gravity anomaly and the effect of continuing the anomaly to sea level) and in the term t (mainly representing the indirect effect on the geoidal or quasi-geoidal height). Received: 18 August 1998 / Accepted: 4 October 1999  相似文献   

5.
6.
 The direct topographical correction is composed of both local effects and long-wavelength contributions. This implies that the classical integral formula for determining the direct effect may have some numerical problems in representing these different signals. On the other hand, a representation by a set of harmonic coefficients of the topography to, say, degree and order 360 will omit significant short-wavelength signals. A new formula is derived by combining the classical formula and a set of spherical harmonics. Finally, the results of this solution are compared with the Moritz topographical correction in a test area. Received: 27 July 1998 / Accepted: 29 March 2000  相似文献   

7.
A key limitation of precise point positioning (PPP) is the long convergence time, which requires about 30 min under normal conditions. Frequent cycle slips or data gaps in real-time operation force repeated re-convergence. Repairing cycle slips with GPS data alone in severely blocked environments is difficult. Adding GLONASS data can supply redundant observations, but adds the difficulty of having to deal with differing wavelengths. We propose a single-difference between epoch (SDBE) method to integrate GPS and GLONASS for cycle slip fixing. The inter-system bias can be eliminated by SDBE, thus only one receiver clock parameter is needed for both systems. The inter-frequency bias of GLONASS satellites also cancels in the SDBE, so cycle slips are preserved as integers, and the LAMBDA method is adopted to search for cycle slips. Data from 7 days of 20 globally distributed IGS sites were selected to test the proposed cycle slip fixing procedure with artificial blocking of the signal; cycle slips were introduced for all un-blocked satellites at each epoch. For a 30-s sampling interval, the average success rate of fixing can be improved from 73 to 98 % by adding GLONASS. Even for a 180-s sampling interval, GPS + GLONASS can achieve a success rate of 81 %. A real-time kinematic PPP experiment was also performed, and the results show that using GPS + GLONASS can achieve continuous high-accuracy real-time PPP without re-convergence.  相似文献   

8.
ABSTRACT

In traditional vulnerability assessments, a synthetic index method is usually used to select all types of social and economic indexes so that more aspects can be covered; however, the requisite social and economic data are not always available or are not highly relevant to the studied geographical space, which makes it difficult to conduct quantitative calculations. In this paper, a spatial value density assessment method was developed to improve the hazard of place model. First, a three-dimensional (3D) model of a coastal city was obtained using oblique airborne photogrammetry and image-based 3D reconstruction and then, architecture footprints were employed to extract the geometric information of each individual building. Additionally, a vulnerability assessment system was established to quantitatively account for the aggregate economic value of a selected set of urban surface features. Using geographic information system (GIS) techniques, the aggregate value of these urban features within each geographic unit can be accurately calculated to quantify the exposure and vulnerability of coastal cities to storm surge. A vulnerability assessment was conducted using Weihai city as an example. The study shows that vulnerability assessment accuracy was greatly improved by downscaling the assessment granularity from county-level administrative districts to a 1-km grid.  相似文献   

9.
10.
11.
The current satellite clock products are computed using the ionosphere-free phase (L1/L2) and code (P1/P2) observations. Thus, if users conduct undifferenced positioning using these clock products together with C1 and P2 observations, the differential code bias (DCB) (C1–P1) should be properly compensated. The influence of DCB (C1–P1) on the undifferenced ambiguity solutions is investigated. Based on the investigation, we propose a new DCB (C1–P1) estimation method. Using it, the satellite DCB (C1–P1) can be computed. A 30-day (DOY 205–234, 2012) dual-frequency GPS data set is processed to estimate the DCB (C1–P1). Comparing the estimated results with that of IGS DCB products, the accuracy is better than 0.13 m. The performances of DCB (C1–P1) in the code-based single-point positioning, precise point positioning (PPP) convergence and wide-lane uncalibrated phase delay (UPD) estimation are investigated using the estimated DCB (C1–P1). The results of the code-based single-point positioning show that the influence of DCB (C1–P1) on the up direction is more evident than on the horizontal directions. The accuracy is improved by 50 % and reaches to decimeter level with DCB (C1–P1) application. The performance of DCB (C1–P1) in PPP shows that it can accelerate PPP convergence through improving the accuracy of the code observation. The computed UPD values show that influence of DCB (C1–P1) on UPD of each satellite is different, and some values are larger than 0.3 cycles.  相似文献   

12.
We present a novel methodology for integration of multiple InSAR data sets for computation of two dimensional time series of ground deformation. The proposed approach allows combination of SAR data acquired with different acquisition parameters, temporal and spatial sampling and resolution, wavelength and polarization. Produced time series have combined coverage, improved temporal resolution and lower noise level. We apply this methodology for mapping coal mining related ground subsidence and uplift in the Greater Region of Luxembourg along the French–German border. For this we processed 167 Synthetic Aperture Radar ERS-1/2 and ENVISAT images acquired between 1995 and 2009 from one ascending (track 29) and one descending (track 337) tracks and created over five hundred interferograms that were used for time series analysis. Derived vertical and east–west linear deformation rates show with remarkable precision a region of localized ground deformation located above and caused by mining and post-mining activities. Time series of ground deformation display temporal variability: reversal from subsidence to uplift and acceleration of subsidence in the vertical component, and horizontal motion toward the center of the subsidence on the east–west component. InSAR results are validated by leveling measurements collected by the French Geological Survey (BRGM) during 2006–2008. We determined that deformation rate changes are mainly caused by water level variations in the mines. Due to higher temporal and spatial resolution the proposed space-borne method detected a larger number of subsidence and uplift areas in comparison to leveling measurements restricted to annual monitoring of benchmark points along roads. We also identified one deformation region that is not precisely located above the mining sites. Comparison of InSAR measurements with the water levels measured in the mining pits suggest that part of the water that filled the galleries after termination of the dewatering systems may come from this region. Providing that enough SAR data is available, this method opens new opportunities for detecting and locating man-made and natural ground deformation signals with high temporal resolution and precision.  相似文献   

13.
Given the level of contemporary technological accomplishment in computing, it is now possible to undertake image‐processing tasks on a variety of “smaller” systems. While a typical hardware configuration includes 24 bits of refresh memory for color. 8 bits each for red, green, and blue, it is feasible to construct color‐composite images comprised of three spectral bands of remotely sensed data using workstations configured with only a single eight‐bit graphics plane for color. Such systems are commonly available in colleges and universities, since they are less expensive than fully configured color workstations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号