首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
MERLIN images of Mrk 348 at 22 GHz show H2O maser emission at 0.02–0.11 Jy , within ∼ 0.8 pc of the nucleus. This is the first direct confirmation that molecular material exists close to the Seyfert 2 nucleus. Mrk 348 was observed in 2000 May one month after Falcke et al. first identified the maser in single-dish spectra. The peak maser flux density has increased about threefold. The masing region is ≲ 0.6 pc in radius. The flux density of radio continuum emission from the core has been rising for about 2 yr. The maser–core separation is barely resolved, but at the 3 σ significance level maser and core are not coincident along the line of sight. The masers lie in the direction of the northern radio lobes and probably emanate from material shocked by a jet with velocity close to c . The correlation between the radio continuum increase and maser flare is explained as arising from high-level nuclear activity through a common excitation mechanism, although direct maser amplification of the core by masers tracing a Keplerian disc is not completely ruled out.  相似文献   

2.
In this paper, we study the galactic distribution and luminosity function of OH/IR maser sources. All the selected OH/IR sources have optical or infrared identification. Most of them are associated with late-type (>M5) Mira variables. Their derived density distribution shows a steep peak at a galactocentric distance of r0-7.5 kpc and decreases rapidly at smaller and larger R0. The FWHM of the distribution curve is 2.1 kpc. This is similar to the galactic distribution of Mira variables investigated by Glass et al.

We also derive the luminosity function of the identified OH/IR maser sources from their distances, their detection probabilities, and their corrected OH radio peak flux densities. The luminosity function ρ(L) varies as LOH−1.79. This is similar to that of unidentified maser sources. The range of luminosity of identified OH/IR sources is approximately from 0.16 Jy · kpc2 to 1000 Jy · kpc2. It is quite different from that of unidentified OH sources.

Finally, we discuss some differences and relations between identified and unidentified OH/IR maser sources.  相似文献   


3.
Before the observation of the 1974 U Ori eruption, it was considered that the Mira stars had only some regular OH variations. With this eruption, we realized that sometimes flares can occur in this type of star. In the course of an OH Mira star monitoring programme with the Nançay radio telescope, we have discovered a new eruptive type of OH maser emission in several sources. Especially, in early 1992, we observed a quickly rising 1665 Mhz emission in the Mira X Oph. The main characteristics of this flare were: large flux variations independent of the light curve; large degree of circular polarization; radial velocity emission close to the stellar velocity.  相似文献   

4.
A flare of OH maser emission was discovered in W75N in 2000. Its location was determined with the Very Long Baseline Array (VLBA) to be within 110 au from one of the ultracompact H  ii regions, Very Large Array 2 (VLA2). The flare consisted of several maser spots. Four of the spots were found to form Zeeman pairs, all of them with a magnetic field strength of about 40 mG. This is the highest ever magnetic field strength found in OH masers, an order of magnitude higher than in typical OH masers. Three possible sources for the enhanced magnetic field are discussed: (i) the magnetic field of the exciting star dragged out by the stellar wind; (ii) the general interstellar field in the gas compressed by the magnetohydrodynamic shock; and (iii) the magnetic field of planets which orbit the exciting star and produce maser emission in gaseous envelopes.  相似文献   

5.
We have used the Australia Telescope Compact Array (ATCA) to make a sensitive  (5 σ ≃100 mJy)  search for maser emission from the 4765-MHz 2Π1/2   F =1→0  transition of OH. 55 star formation regions were searched and maser emission with a peak flux density in excess of 100 mJy was detected toward 14 sites, with 10 of these being new discoveries. In addition we observed the 4750-MHz 2Π1/2   F =1→1  transition towards a sample of star formation regions known to contain 1720-MHz OH masers, detecting marginal maser emission from G348.550−0.979. If confirmed this would be only the second maser discovered from this transition.
The occurrence of 4765-MHz OH maser emission accompanying 1720-MHz OH masers in a small number of well-studied star formation regions has led to a general perception in the literature that the two transitions favour similar physical conditions. Our search has found that the presence of the excited-state 6035-MHz OH transition is a much better predictor of 4765-MHz OH maser emission from the same region than 1720-MHz OH maser emission is. Combining our results with those of previous high-resolution observations of other OH transitions we have examined the published theoretical models of OH masers and find that none of them predicts any conditions in which the 1665-, 6035- and 4765-MHz transitions are inverted simultaneously.  相似文献   

6.
We report the results of a month long program of daily observationsconducted to study the short-term variability of the H2O maseremission from W51M. During the period of our experiment, we observedsignificant changes in the flux density of some maser features, but no driftin the velocity of any feature. The flux density of a feature at 82.8 kms-1 declined from 1140 Jy to 152 Jy over the month-long monitoringprogram. We tentatively conclude that this variation may be caused byenhanced interstellar scintillation.  相似文献   

7.
Radio surveys of supernova remnants (SNRs) in the Galaxy have discovered 19 SNRs which are accompanied by the OH maser emission at 1720 MHz. This unusual maser is thought to be produced behind a shock front when a SNR expands into a molecular cloud. An important ingredient of this model is that the X-ray emission from the remnant enhances the production of OH molecules. In this sense, to study the characteristics of the mixed-morphology SNRs accompanied by the OH maser emission at 1720 MHz is important. By studying the X-ray characteristics of the mixed-morphology SNRs accompanied by the 1720 MHz OH maser emission, it is found that the ionization rate of X-ray is not correlated with the physical parameters , D, r, r2 and so on, but is correlated with the X-ray luminosity Lx. Meanwhile, Lx is closely correlated with the beam flux density of the weakest feature of the accompanying 1720 MHz OH maser emission. These mean that the X-ray emission from SNRs is sufficient to dissociate the water molecules behind a shock front and to produce the 1720 MHz OH masers.  相似文献   

8.
Using the 25-m telescope of Shanghai Observatory, Joint Radio Astronomy Laboratory, 19 known maser sources and 20 candidates in H II regions were surveyed for water vapour maser emission at 22.2 GHz. 21 sources were detected, of which two are for the first time. Combining with some previous data, the time variations in the flux and velocity are obtained and discussed. Time variation in the peak flux density is common and is of two types, a change in the intensity of the same peak, and a swapping-over of two peaks. The corresponding IRAS sources were identified and the relation between the maser emission and the infrared parameters discussed. It is shown that maser production rate is more sensitive to the infrared flux intensity than the infrared colour distribution.  相似文献   

9.
We present the results of a search for the ground-state hyperfine transition of the OH radical near 53 MHz using the National Mesosphere–Stratosphere–Troposphere (MST) Radar Facility at Gadanki, India. The observed position was G48.4−1.4 near the Galactic plane. The OH line is not detected. We place a 3σ upper limit for the line flux density at 39 Jy from our observations. We also did not detect recombination lines (RLs) of carbon, which were within the frequency range of our observations. The 3σ upper limit of 20 Jy obtained for the flux density of carbon RLs, along with observations at 34.5 and 327 MHz, are used to constrain the physical properties of the line-forming region. Our upper limit is consistent with the line emission expected from a partially ionized region with electron temperature, density and path lengths in the range 20–300 K, 0.03–0.3 cm−3 and 0.1–170 pc, respectively.  相似文献   

10.
用中科院射电联合实验室上海天文台25米望远镜,对19个已知水脉泽源和20个HII区候选源进行了水脉泽观测和搜寻,共测到水脉泽辐射21个,包括2个首次测到S/N≥3σ的源.结合已知脉泽资料求出了脉泽时变,发现峰值流量的变化比较普遍,包括同一峰强度变化及不同成分置换引起的变化两种情况,峰值速度变化多数由不同成分置换所造成.证认了对应的IRAS源并探讨了脉泽辐射与红外参量的关系,表明红外辐射的强度对脉泽产生率的影响比颜色分布的影响大.  相似文献   

11.
We briefly discuss the observed features including the high flux density, short duration, narrow emission band, fast frequency drift, quasi-periodic oscillation and fast variation of polarized components, of 51 spike emission events observed at 2545/2645 MHz in the solar activity peak year, 1991 January–December, and carry out correlation analysis between these events and optical flares, magnetic field intensity and configuration of flare regions, and sunspot evolution types of active regions. In view of the fact that the observed and statistical characteristics of the spike emissions are very different from those of known types of solar radio burst and known solar radio components, we think that the spike emission in the peak years is probably a new type of radio burst excited by electron cyclotron maser instability under wave-particle resonance, or a new solar radio component.  相似文献   

12.
We present the results of our observations of the H2O maser emission toward the complex source ON2 associated with an active star-forming region. The observations were performed in a wide range of radial velocities, from ?75 to 90 km s?1. We have detected an emission with flux densities of 9.2, 4, and 26 Jy at radial velocities of ?33.5, ?24.4, and ?18.8 km s?1, respectively, at which no emission has been observed previously. The detected emission is most likely associated with a hitherto unknown cluster of maser spots located between the northern (N) and southern (S) components of the source ON2 (closer to the northern one). This cluster may be associated with one of the three CO molecular outflows in the ON2 region. We have also detected an emission at ?22 and ?14.5 km s?1 in N and at 12.6 km s?1 in S, which has extended significantly the velocity ranges of the maser emission in these sources and allowed their models to be improved.  相似文献   

13.
The class II methanol maser source G9.62+0.20E undergoes periodic flares at both 6.7 and 12.2 GHz. The flare starting in 2001 October was observed at seven epochs over three months using the Very Long Baseline Array (VLBA) at 12.2 GHz. High angular resolution images (beam size  ∼1.7 × 0.6 mas  ) were obtained, enabling us to observe changes in 16 individual maser components. It was found that while existing maser spots increased in flux density, no new spots developed and no changes in morphology were observed. This rules out any mechanism which disturbs the masing region itself, implying that the flares are caused by a change in either the seed or pump photon levels. A time delay of one to two weeks was observed between groups of maser features. These delays can be explained by light travel time between maser groups. The regularity of the flares can possibly be explained by a binary system.  相似文献   

14.
We report the results of three-year long observations of OH masers at 1665 MHz in the W3(OH) source carried out with the 32-m antenna of Svetloe Radio Astronomical Observatory.We found that the strongest activity during the period from December 2011 through March 2012 was exhibited by the region at radial velocity ?46.2km s?1. The region showed no activity in the ensuing time. The most striking outburst was the event that occurred on January 23, 2013 at UT 03:27. At that time the flux of the region increased by a factor of seven in 90 s, and then decreased down to the initial level. Such a time scale yields the upper estimate of 0.18 AU (2.7 × 1012 cm) for the linear size of the maser dot. In 2013–2014 intensity variations were found the ?47.6 and ?45.1km s?1 components with time scales on the order of 10 hours and anticorrelated behavior of the left- and right-hand polarization fluxes. This is the first time that such phenomena have been found in the behavior of OH maser emission, and they cannot be explained by any existing models of maser variability.  相似文献   

15.
We report observations of the 4765-MHz maser transition of OH (2Π1/2, J=1/2, F=1→0) towards 57 star-forming regions, taken with the 32-m Toruń telescope. Nine maser sources were detected, of which two had not been reported previously. The newly discovered sources in W75N and Cep A and four previously known sources were monitored over periods ranging from a few weeks to six months. Significant variations of the maser intensity occurred on time-scales of one week to two months. The relationships between the flux density and the linewidth for the new sources, established during the rise and fall phases of bursts that lasted 6–8 weeks, are consistent with a model of saturated masers.  相似文献   

16.
The Australia Telescope National Facility Mopra millimetre telescope has been used to search for 95.1-GHz class I methanol masers towards 62 6.6-GHz class II methanol masers. A total of 26 95.1-GHz masers were detected, 18 of these being new discoveries. Combining the results of this search with observations reported in the literature, a near complete sample of 66 6.6-GHz class II methanol masers has been searched in the 95.1-GHz transition, with detections towards 38 per cent (25 detections; not all of the sources studied in this paper qualify for the complete sample, and some of the sources in the sample were not observed in the present observations).
There is no evidence of an anticorrelation between either the velocity range, or peak flux density of the class I and II transitions, contrary to suggestions from previous studies. The majority of class I methanol maser sources have a velocity range that partly overlaps with the class II maser transitions. The presence of a class I methanol maser associated with a class II maser source is not correlated with the presence (or absence) of main-line OH or water masers. Investigations of the properties of the infrared emission associated with the maser sources shows no significant difference between those class II methanol masers with an associated class I maser and those without. This may be consistent with the hypothesis that the objects responsible for driving class I methanol masers are generally not those that produce main-line OH, water or class II methanol masers.  相似文献   

17.
使用澳大利亚Parkes64m射电望远镜,在五个不同的位置上观测了OH17.72.0附近的弱OH脉泽源.发现了一个新的弱OH脉泽源,其峰值速度为52.5km/s.利用二维Gaussian拟合技术,得到了这个源的最佳拟合位置  相似文献   

18.
A sample of 54 6.7-GHz methanol maser sources was monitored at HartRAO for 4 years, and 11 12.2-GHz methanol masers for 3 years. The majority of the maser features display a significant degree of variability but with a wide range of timescales and behaviors. Some maser features remained unvarying throughout the monitoring programme, while others showed sporadic flares or sudden drops in flux density. Yet another group show quasi-periodic and periodic variations. In some cases the maser features dropped below the detection limit for a significant length of time before increasing in intensity and reappearing.  相似文献   

19.
OH 17.7 − 2.0 is a post-asymptotic giant branch star that is of great interest. The 1612-MHz OH emission from OH 17.7 − 2.0 is characterized by a double-peaked spectrum. Such a line profile has been assumed to represent maser emission from an expanding circumstellar shell. A new VLBI observation of the OH maser in OH 17.7 − 2.0 has been made using the European VLBI Network, and a relative position map of the eight OH maser spots has been obtained. Using the relative position map, it is found that the eight OH maser spots are distributed on an expanding circumstellar shell. The parameters of the expanding circumstellar shell have been obtained.  相似文献   

20.
Two star-forming regions Cepheus A and W75N, were searched for the 4765-MHz OH maser emission using the multi-element radio linked interferometer network (MERLIN). The excited OH emission has an arc-like structure of 40 mas in Cep A and a linear structure of size 45 mas in W75N. We also found the 1720-MHz line in Cep A and Hutawarakorn [MNRAS 330 (2002) 349] reported the 1720-MHz emission in W75N. The 1720- and 4765-MHz OH spots coincided in space within 60 mas and in velocity within 0.3 km s–1 in both targets implying that both maser transitions arise from the same region. According to the modelling by Gray [MNRAS 252 (1991) 30] the 1720/4765-MHz co-propagation requires a low density, warm environment. The masers lie at the edges of H II regions where such conditions are expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号