首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article reports on findings of a research project examining farmers' coping strategies in the Brazilian Amazon in response to El Niño related weather events. We examine the extent of vulnerability of small and large farmers to these events in a tropical rainforest environment. Little attention has been given to the impact of ENSO events in Amazônia, despite evidence for devastating fires during ENSOs. Although we found a range of locally developed forecasting techniques and coping mechanisms, farmers have sustained significant losses, and we suggest that increased access to scientific forecasts would greatly enhance the ability of the farmers in our study area to cope with El Niño related weather events. In Amazônia the El Niño phase of the El Niño-Southern Oscillation (ENSO) climate pattern leads to an extended period of reduced rainfall (Hobbs et al., 1998). This period of reduced rainfall can result in significant agricultural losses for farmers and ranchers in the area and in increased forest flammability. We have found that the majority of our study population uses several methods of forecasting, coping with, and adapting to drought events – and they recognize the economic losses they can experience and the loss of forests through the accidental spread of fire. The poorest farmers in our study area experience El Niño related drought events as a serious threat to their livelihoods. Their vulnerability is heightened during extreme climate events and our observations revealed that all of the farmers in our study would benefit from increased availability of improved forecast information relevant to their locality and their current farming strategies. This paper examines the availability and use of forecasts, the occurrence of accidental fires and techniques to prevent fire related losses, and the coping mechanisms for dealing with El Niño related drought in the agricultural regions surrounding the cities of Altamira and Santarém, in Pará State, Brazil. Distribution of an El Niño Prediction Kit at the end of the study and a series of workshops may lead to better local information on rainfall variability and create a farmer-maintained grid of collecting stations to sensitize farmers to the variability of precipitation in the region, and on their property.  相似文献   

2.
The study quantified rainfall variability for March–May (MAM) and October–December (OND) seasons in Tharaka district, Kenya. The parameters analysed were inter-annual variability of seasonal rainfall, onset and cessation using daily rainfall data in three agro-ecological zones’ stations. Percentage mean cumulative method was used to determine onset and cessation, and seasonal variability was estimated using rainfall variability indices. Although both seasons are highly variable, OND has been persistently below mean over time while MAM shows high within-season variability. Despite the near uniformity in the mean onset and cessation dates, the former is highly variable on an inter-annual scale. The two rainfall seasons are inherently dissimilar and therefore require specific cropping in agro-ecological zone LM4 and LM4-5. It is possible that farmers in IL5 are missing an opportunity by under-utilising MAM rainfall. The results should be incorporated in implications of climate variability and vulnerability assessment in semi-arid Tharaka district.  相似文献   

3.
With global concern on climate change impacts, developing countries are given special attention due their susceptibility. In this paper, change and variability in climate, land use and farmers' perception, adaptation and response to change are examined in Danangou watershed in the Chinese Loess Plateau. The first focus is to look at how climate data recorded at meteorological stations recently have evolved, and how farmers perceived these changes. Further, we want to see how the farmers respond and adapt to climate variability and what the resulting impact on land use is. Finally, other factors causing change in land use are considered. Local precipitation and temperature instrumental data and interview data from farmers were used. The instrumental data shows that the climate is getting warmer and drier, the latter despite large interannual variability. The trend is seen on the local and regional level. Farmers' perception of climatic variability corresponds well with the data record. During the last 20 years, the farmers have become less dependent on agriculture by adopting a more diversified livelihood. This adaptation makes them less vulnerable to climate variability. It was found that government policies and reforms had a stronger influence on land use than climate variability. Small-scale farmers should therefore be considered as adaptive to changing situations, planned and non-consciously planned.  相似文献   

4.
Increasing climate variability and extreme weather conditions along with declining trends in both rainfall and temperature represent major risk factors affecting agricultural production and food security in many regions of the world. The rangelands of Ethiopia, Kenya, and Somalia in the East African Horn remain one of the world's most food insecure regions, yet have substantially increasing human populations predominantly dependent on pastoralist and agro-pastoralist livelihoods. We identify regions where substantial rainfall decrease between two periods interrupted by the 1998 El Nino event (1981–2012) in the East African Horn is coupled with human population density increases. Vegetation in this region is characterized by a variable mosaic of land covers, generally dominated by grasslands necessary for agro-pastoralism, interspersed by woody vegetation. Recent assessments indicate that vegetation degradation is occurring, adversely impacting fragile ecosystems and human livelihoods. Using AVHRR and MODIS vegetation products from 1981 to 2012, we observe changes in vegetation patterns and productivity over the last decade across the East African Horn. We observe vegetation browning trends in areas experiencing reduced main-growing season precipitation; these areas are also concurrently experiencing increasing population pressures. We also found that the drying precipitation patterns only partially statistically explain the vegetation browning trends, indicating that other factors such as population pressures and land use changes might be responsible for the observed declining vegetation condition. Furthermore, we show that the general vegetation browning trends persist even during years with normal rainfall conditions such as 2012, pointing to potential long-term degradation of rangelands on which approximately 10 million people depend. These findings may have implications for current and future regional food security monitoring and forecasting as well as for mitigation and adaptation strategies in a region where population is expected to continue increasing against a backdrop of drying climate trends and increased climatic variability.  相似文献   

5.
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UK Meteorological Office Hadley Centre’s climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is under-estimated (over-estimated) over wet (dry) regions of southern Africa.  相似文献   

6.
Weather variability poses numerous risks to agricultural communities, yet farmers may be able to reduce some of these risks by adapting their cropping practices to better suit changes in weather. However, not all farmers respond to weather variability in the same way. To better identify the causes and consequences of this heterogeneous decision-making, we develop a framework that identifies (1) which socio-economic and biophysical factors are associated with heterogeneous cropping decisions in response to weather variability and (2) which cropping strategies are the most adaptive, considering economic outcomes (e.g., yields and profits). This framework aims to understand how, why, and how effectively farmers adapt to current weather variability; these findings, in turn, may contribute to a more mechanistic and predictive understanding of individual-level adaptation to future climate variability and change. To illustrate this framework, we assessed how 779 farmers responded to delayed monsoon onset in fifteen villages in Gujarat, India during the 2011 growing season, when the monsoon onset was delayed by three weeks. We found that farmers adopted a variety of strategies to cope with delayed monsoon onset, including increasing irrigation use, switching to more drought-tolerant crops, and/or delaying sowing. We found that farmers’ access to and choice of strategies varied with their assets, irrigation access, perceptions of weather, and risk aversion. Richer farmers with more irrigation access used high levels of irrigation, and this strategy was associated with the highest yields in our survey sample. Poorer farmers with less secure access to irrigation were more likely to push back planting dates or switch crop type, and economic data suggest that these strategies were beneficial for those who did not have secure access to irrigation. Interestingly, after controlling for assets and irrigation access, we found that cognitive factors, such as beliefs that the monsoon onset date had changed over the last 20 years or risk aversion, were associated with increased adaptation. Our framework illustrates the importance of considering the complexity and heterogeneity of individual decision-making when conducting climate impact assessments or when developing policies to enhance the adaptive capacity of local communities to future climate variability and change.  相似文献   

7.
华北地区降水、蒸发和降水蒸发差的时空变化特征   总被引:18,自引:4,他引:14  
利用华北地区1951~2000年80个观测台站的降水、气温的逐日观测资料分析京津唐地区、华北西部、华北中南部和胶东半岛地区降水、蒸发和降水蒸发差在1951~1965年、1966~1976年和1977~2000年3个时期年代际变化特征。京津唐地区和华北西部地区夏季降水和降水蒸发差从1977年开始减少得比较明显;而胶东地区和华北中南部地区从1965年开始减少,1977年之后减少的更加严重,但4个区域5、6月的降水和降水蒸发差却出现明显的增加。分析还指出,胶东地区和京津唐地区可利用水资源量减少最多。另外还利用欧洲中心(ECMWF)1958~2000年的700 hPa风场资料分析了华北地区夏季降水异常的可能成因,分析结果表明:东亚夏季风在1977年之后明显减弱,造成我国华北地区夏季降水偏少。  相似文献   

8.
The International Workshop on Reducing Vulnerability of Agriculture and Forestry to Climate Variability and Climate Change held in Ljubljana, Solvenia, from 7 to 9 October 2002 addressed a range of important issues relating to climate variability, climate change, agriculture, and forestry including the state of agriculture and forestry and agrometeological information, and potential adaptation strategies for agriculture and forestry to changing climate conditions and other pressures. There is evidence that global warming over the last millennium has already resulted in increased global average annual temperature and changes in rainfall, with the 1990s being likely the warmest decade in the Northern Hemisphere at least. During the past century, changes in temperature patterns have, for example, had a direct impact on the number of frost days and the length of growing seasons with significant implications for agriculture and forestry. Land cover changes, changes in global ocean circulation and sea surface temperature patterns, and changes in the composition of the global atmosphere are leading to changes in rainfall. These changes may be more pronounced in the tropics. For example, crop varieties grown in the Sahel may not be able to withstand the projected warming trends and will certainly be at risk due to projected lower amounts of rainfall as well. Seasonal to interannual climate forecasts will definitely improve in the future with a better understanding of dynamic relationships. However, the main issue at present is how to make better use of the existing information and dispersion of knowledge to the farm level. Direct participation by the farming communities in pilot projects on agrometeorological services will be essential to determine the actual value of forecasts and to better identify the specific user needs. Old (visits, extension radio) and new (internet) communication techniques, when adapted to local applications, may assist in the dissemination of useful information to the farmers and decision makers. Some farming systems with an inherent resilience may adapt more readily to climate pressures, making long-term adjustments to varying and changing conditions. Other systems will need interventions for adaptation that should be more strongly supported by agrometeorological services for agricultural producers. This applies, among others, to systems where pests and diseases play an important role. Scientists have to guide policy makers in fostering an environment in which adaptation strategies can be effected. There is a clear need for integrating preparedness for climate variability and climate change. In developed countries, a trend of higher yields, but with greater annual fluctuations and changes in cropping patterns and crop calendars can be expected with changing climate scenarios. Shifts in projected cropping patterns can be disruptive to rural societies in general. However, developed countries have the technology to adapt more readily to the projected climate changes. In many developing countries, the present conditions of agriculture and forestry are already marginal, due to degradation of natural resources, the use of inappropriate technologies and other stresses. For these reasons, the ability to adapt will be more difficult in the tropics and subtropics and in countries in transition. Food security will remain a problem in many developing countries. Nevertheless, there are many examples of traditional knowledge, indigenous technologies and local innovations that can be used effectively as a foundation for improved farming systems. Before developing adaptation strategies, it is essential to learn from the actual difficulties faced by farmers to cope with risk management at the farm level. Agrometeorologists must play an important role in assisting farmers with the development of feasible strategies to adapt to climate variability and climate change. Agrometeorologists should also advise national policy makers on the urgent need to cope with the vulnerabilities of agriculture and forestry to climate variability and climate change. The workshop recommendations were largely limited to adaptation. Adaptation to the adverse effects of climate variability and climate change is of high priority for nearly all countries, but developing countries are particularly vulnerable. Effective measures to cope with vulnerability and adaptation need to be developed at all levels. Capacity building must be integrated into adaptation measures for sustainable agricultural development strategies. Consequently, nations must develop strategies that effectively focus on specific regional issues to promote sustainable development.  相似文献   

9.
Summary ?One of the most important features in analysing the climatology of any region is to study the precipitation and its periodicity of different harmonics in order to study the behavior of the observed data. In this study the amplitude of frequencies, phase angle and basic statistical parameters are calculated in order to depict spatial characteristics of precipitation over Jordan. Precipitation records of 17 stations were chosen according to climatic regions of Jordan. The first and second harmonic analyses explain more than 90% of the precipitation variation in Jordan effectively. The amplitudes of the first and second harmonic were calculated in order to describe the climatic regions in the country. The maximum amplitudes were found in the northern mountainous region. The phase angle representing the time of maximum rainfall is also used in the form of a contour chart. It is found that Jordan has its main rainfall season in winter with maximum around January. The coefficient of variation shows the high variability of rainfall of the country. Received February 4, 2002; revised August 1, 2002; accepted August 6, 2002  相似文献   

10.
Climate models agree that semi-arid regions around the world are likely to experience increased rainfall variability and longer droughts in the coming decades. In regions dependent on agriculture, such changes threaten to aggravate existing food insecurity and economic underdevelopment, and to push migration to urban areas. In the Brazilian semi-arid region, the Sertão, farmers’ vulnerability to climate—past, present, and future—stems from several factors, including low yielding production practices and reliance on scarce and seasonally variable water resources. Using interpolated local climate data, we show that, since 1962, in the Bacia do Jacuípe—one of the poorest regions in the Sertão of Bahía state—average temperatures have increased?~?2 °C and rainfall has decreased?~?350 mm. Over the same time period, average milk productivity—the main rural economic activity in the county—has fallen while in Brazil and in Bahía as a whole milk productivity has increased dramatically. This paper teases apart the drivers of climate vulnerability of the Bacia do Jacuípe in relation to the rest of Bahía. We then present the results of a suite of pilot projects by Adapta Sertão, a coalition of organizations working to improve the adaptive capacity of farmers living in the semi-arid region. By testing a number of different technologies and arrangements at the farm level, Adapta Sertão has shown that interventions focused on balanced animal diets and efficient irrigation systems can help reduce (but not eliminate) the dependence of production systems from climate. They are thus viable adaptation strategies that should be tested at a larger scale, with implications for semi-arid regions worldwide.  相似文献   

11.
Adaptation in Canadian Agriculture to Climatic Variability and Change   总被引:3,自引:0,他引:3  
The effects of climatic variability and change on Canadian agriculture have become an important research field since the early 1980s. In this paper, we seek to synthesize this research, focusing on agricultural adaptation, a purposeful proactive or reactive response to changes associated with climate, and influenced by many factors. A distinctive feature of methods used in research on adaptation in Canadian agriculture is the focus on the important role of human agency. Many individual farmers perceive they are well adapted to climate, because of their extensive 'technological' tool-kit, giving them confidence in dealing with climatic change. In many regions, little concern is expressed over climatic change, except where there are particular types of climatic vulnerability. Farmers respond to biophysical factors, including climate, as they interact with a complex of human factors. Several of these, notably institutional and political ones, have tended to diminish the farm-level risks stemming from climatic variability and change, but may well increase the long term vulnerability of Canadian agriculture. Notwithstanding the technological and management adaptation measures available to producers, Canadian agriculture remains vulnerable to climatic variability and to climate change.  相似文献   

12.
This is a study of the annual and interannual variability of regional rainfall produced by the Center for Weather Forecasts and Climate Studies/Center for Ocean, Land and Atmospheric Studies (CPTEC/COLA) atmospheric global climate model. An evaluation is made of a 9-member ensemble run of the model forced by observed global sea surface temperature (SST) anomalies for the 10-year period 1982–1991. The Brier skill score and, Relative Operating Characteristics (ROC) are used to assess the predictability of rainfall and to validate rainfall simulations, in several regions world wide. In general, the annual cycle of precipitation is well simulated by the model for several continental and oceanic regions in the tropics and mid latitudes. Interannual variability of rainfall during the peak rainy season is realistically simulated in Northeast Brazil, Amazonia, central Chile, and southern Argentina–Uruguay, Eastern Africa, and tropical Pacific regions, where the model shows good skill. Some regions, such as northwest Peru–Ecuador, and southern Brazil exhibit a realistic simulation of rainfall anomalies associated with extreme El Niño warming conditions, while in years with neutral or La Niña conditions, the agreement between observed and simulated rainfall anomalies is not always present. In the monsoon regions of the world and in southern Africa, even though the model reproduces the annual cycle of rainfall, the skill of the model is low for the simulation of the interannual variability. This is indicative of mechanisms other than the external SST forcing, such as the effect of land–surface moisture and snow feedbacks or the representation of sub-grid scale processes, indicating the important role of factors other than external boundary forcing. The model captures the well-known signatures of rainfall anomalies of El Niño in 1982–83 and 1986–87, indicating its sensitivity to strong external forcing. In normal years, internal climate variability can affect the predictability of climate in some regions, especially in monsoon areas of the world.  相似文献   

13.
The Western Australian wheat-belt has experienced more rainfall decline than any other wheat-cropping region in Australia. Future climate change scenarios suggest that the Western Australian wheat-belt is likely to see greater future reductions in rainfall than other regions, together with a further increase in temperatures. While these changes appear adverse for water-limited rain-fed agriculture, a close analysis of the changes and their impacts reveals a more complex story. Twentieth century changes in rainfall, temperature and atmospheric CO2 concentration have had little or no overall impact on wheat yields. Changes in agricultural technology and farming systems have had much larger impacts. Contrary to some claims, there is no scientific or economic justification for any immediate actions by farmers to adapt to long-term climate change in the Western Australian wheat-belt, beyond normal responses to short-term variations in weather. Rather than promoting current change, the most important policy response is research and development to enable farmers to facilitate future adaptation to climate change. Research priorities are proposed.  相似文献   

14.
Improving the adaptive capacity of small-scale irrigation systems to the impacts of climate change is crucial for food security in Asia. This study analyzes the capacity of small-scale irrigation systems dependent on the Asian monsoon to adapt to variability in river discharge caused by climate change. Our study is motivated by the Pumpa irrigation system, a small-scale irrigation system located in Nepal that is a model for this type of system. We developed an agent-based model in which we simulated the decisions farmers make about the irrigation strategy to use according to available water flow. Given the uncertainty associated with how climate change may affect the Asian monsoon, we simulated the performance of the system under different projections of climate change in the region (increase and decrease in rainfall, reduction and expansion of the monsoon season, and changes in the timing of the onset of the monsoon). Accordingly to our simulations, farmers might need to adapt to rainfall intensification and a late onset in the monsoon season. The demands for collective action among farmers (e.g. infrastructure repair, meetings, decisions, etc.) might increase considerably due to climate change. Although our model suggests that investment in new infrastructure might increase the performance of the system under some climate change scenarios, the high inequality among farmers when water availability is reduced might hinder the efficiency of these measures due to a reduction of farmers’ willingness to cooperate. Our modeling exercise helps to hypothesize about the most sensitive climate change scenarios for smallscale irrigation farming in Nepal and helps to frame a discussion of some possible solutions and fundamental trade-offs in the process of adaptation to improve for food and water security under climate change.  相似文献   

15.
Precipitation variability imposes significant pressure in areas where agricultural practice is dominated by smallholder farmers who are dependent on subsistence farming. Advances in the understanding of this variability, in both time and space, have an important role to play in increasing the resilience of agricultural systems. The need is particularly pressing in regions of the world such as the African continent, which is already affected by multiple stresses including poverty and economic and political instability. In this paper, we explore the use of generalised linear models (GLMs) for this purpose, via a case study from north-east South Africa. A GLM is used to link the local rainfall variability to large-scale climate drivers identified from previous subcontinental-scale analyses, and the ability of the resulting model to simulate precipitation features that are relevant in agricultural applications is evaluated. We focus in particular on a set of growing season indices, proposed for the investigation of intraseasonal characteristics relevant for maize production in the region. Seven indices were computed from spatially averaged daily rainfall series from nine stations in the study area. As a first attempt to use GLMs for this type of application, the results are encouraging and suggest that the models are able to reproduce a range of agriculture-relevant indices. However, further research into spatial correlation structure is recommended to improve the multisite generation of the rainfall-derived characteristics.  相似文献   

16.
Rural, resource-poor communities currently face a number of stressors that curtail livelihood options and reduce overall quality of life. Climate stress in southern Africa could potentially further threaten the livelihoods of such communities. Inappropriate response and adaptation options to risks, including climate stress, could further undermine development efforts in the region. The design and effective implementation of strategies to improve coping and adaptation to possible future risks cannot be undertaken without a detailed assessment of current response options to various risks. By using the Sustainable Livelihoods Framework, this pilot study identifies some of the strategies and constraints to secure livelihoods that are currently being used by small-scale farmers in the Muden area of KwaZulu-Natal. The role and perception of climate risks in relation to a variety of other constraints and risks in the area are also examined. Health status, lack of information and ineffective institutional structures and processes are shown to be some of the key factors aggravating current response options and overall development initiatives with potential negative outcomes for future adaptation to periods of possible heightened climate stress.  相似文献   

17.
How individuals perceive climate change is linked to whether individuals support climate policies and whether they alter their own climate-related behaviors, yet climate perceptions may be influenced by many factors beyond local shifts in weather. Infrastructure designed to control or regulate natural resources may serve as an important lens through which people experience climate, and thus may influence perceptions. Likewise, perceptions may be influenced by personal beliefs about climate change and whether it is human-induced. Here we examine farmer perceptions of historical climate change, how perceptions are related to observed trends in regional climate, how perceptions are related to the presence of irrigation infrastructure, and how perceptions are related to beliefs and concerns about climate change. We focus on the regions of Marlborough and Hawke’s Bay in New Zealand, where irrigation is utilized on the majority of cropland. Data are obtained through analysis of historical climate records from local weather stations, interviews (n = 20), and a farmer survey (n = 490). Across both regions, no significant historical trends in annual precipitation and summer temperatures since 1980 are observed, but winter warming trends are significant at around 0.2–0.3 °C per decade. A large fraction of farmers perceived increases in annual rainfall despite instrumental records indicating no significant trends, a finding that may be related to greater perceived water availability associated with irrigation growth. A greater fraction of farmers perceived rainfall increases in Marlborough, where irrigation growth has been most substantial. We find those classes of farmers more likely to have irrigation were also significantly more likely to perceive an increase in annual rainfall. Furthermore, we demonstrate that perceptions of changing climate – regardless of their accuracy – are correlated with increased belief in climate change and an increased concern for future climate impacts. Those farmers that believe climate change is occurring and is human induced are more likely to perceive temperature increases than farmers who believe climate change is not occurring and is not human induced. These results suggest that perceptions are influenced by a variety of personal and environmental factors, including infrastructure, which may in turn alter decisions about climate adaptation.  相似文献   

18.
This study analyses the perceptions of Zoque indigenous men and women of changes in climate variability, indicated by rainfall and temperature records from the region. Peasant farmers perceive decreases in rainfall and increases in temperature as these factors are related to modifications in the corn planting season and the introduction of crops which were usually only found in hot regions. The climate changes in the zone are attributed to vegetation loss and the eruption of the Chichón volcano in 1982. The Zoque perception is structured according to cultural and individual experience, tied to agriculture and the annual weather calendar. The volcanic eruption offers a significant chronological reference point in order to explain different environmental transformations, such as climate, within Zoque territory. Perception is the mental picture of local climate variability changes and the responses in seasonal agriculture modifications, utilizing individual and cultural experiences which are vulnerable to economic and environmental change.  相似文献   

19.
Egypt is almost totally dependent upon water that originates from the upstream headwaters of the Nile in the humid Ethiopian and East African highlands. Analysis of rainfall and river flow records during the 20th century demonstrates high levels of interannual and interdecadal variability. This is experienced locally and regionally in the headwater regions of the Nile and internationally through its effects on downstream Nile flows in Sudan and Egypt. Examples of climate variability are presented from areas in the basin where it exerts a strong influence on society; the Ethiopian highlands (links with food security), Lake Victoria (management of non-stationary lake levels) and Egypt (exposure to interdecadal variability of Nile flows). These examples reveal adaptations across various scales by individuals and institutions acting alongside other social and economic considerations.Water resources management in the downstream riparian Egypt has involved institutional level reactive adaptations to prolonged periods of low and high Nile flows. Observed responses include the establishment of more robust contingency planning and early warning systems alongside strategic assessment of water use and planning in response to low flows during the 1980s. In the 1990s high flows have enabled Egypt to pursue opportunistic policies to expand irrigation. These policies are embedded in wider socio-political and economic considerations but increase Egypt's exposure and sensitivity to climate driven fluctuations in Nile flows. Analysis of climate change projections for the region shows there is no clear indication of how Nile flows will be affected because of uncertainty about future rainfall patterns in the basin. In many instances the most appropriate entry point for adaptation to climate change will be coping with climate variability and will play out against the certainty of looming national water scarcity in Egypt due to rapid population growth and its possible exacerbation by water demands from upstream riparians.  相似文献   

20.
The positive phase of the subtropical Indian Ocean dipole(SIOD) is one of the climatic modes in the subtropical southern Indian Ocean that influences the austral summer inter-annual rainfall variability in parts of southern Africa. This paper examines austral summer rain-bearing circulation types(CTs) in Africa south of the equator that are related to the positive SIOD and the dynamics through which specific rainfall regions in southern Africa can be influenced by this relationship. Four austral...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号