首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 2685–2752 Ma old granite-greenstone crust in the Rainy Lake area, Ontario, consists of metaigneous and metasedimentary rocks that range in composition from tholeiite to monzogranite and include anorthosite, trachyandesite, monzodiorite and high-silica rhyodacite. Major element, rare earth and other trace element data are the basis for modelling the formation of the crust by melting of large-ionlithophile element enriched and unenriched mantle, by melting of basalt at mantle to crustal levels and by melting of monzodiorite and tonalite at crustal levels.

All metaigneous rocks lie on a 143Nd/144Nd vs. 147Sm/144Nd isochron with an age of 2737 ±42 Ma and an initial 143Nd/144Nd of 0.509178 ±33 (εNd = +1.9). This age is consistent with U-Pb zircon ages, which suggests the Nd isotopic system has been unaffected since the crust-forming events. The positive initial εNd's are further evidence for time-averaged depletion in Sm/Nd relative to CHUR for the Archean mantle. The similarity of the initial Nd isotopic composition for both mantle-derived and crustally-derived rocks suggests rapid recycling of crustal components, which were previously derived from depleted mantle sources.

Initial 143Nd/144Nd ratios on individual rocks range from εNd = +3.3 to εNd = −0.4. Younger granitoids have lower εNd values (+1.5 to −0.1) relative to tholeiites and monzodiorites crystallized from mantle-derived melts (+3.3 to +1.0). Thus, incorporation of slightly older crust (ca. 100–200 Ma) in some of the granitoid source areas is possible. Mantle-derived rocks form an isochron of 2764 ±58 Ma that represents a minimum age for enrichment processes in the mantle sources for the Rainy Lake area. Consideration of data from the Abitibi belt suggests such enrichment processes in the mantle may have preceded crust-forming events in a wide area of the Superior Province, perhaps by as much as 50–70 Ma.  相似文献   


2.
Lavas from several major bathymetric highs in the eastern Indian Ocean that are likely to have formed as Early to Middle Cretaceous manifestations of the Kerguelen hotspot are predominantly tholeiitic; so too are glass shards from Eocene to Paleocene volcanic ash layers on Broken Ridge, which are believed to have come from eruptions on the Ninetyeast Ridge. The early dominance of tholeiitic compositions contrasts with the more recent intraplate, alkalic volcanism of the Kerguelen Archipelago. Isotopic and incompatible-element ratios of the plateau lavas are distinct from those of Indian mid-ocean ridge basalts; their Nd, Sr, 207Pb/204Pb and isotopic ratios overlap with but cover a much wider range than measured for more recent oceanic products of the Kerguelen hotspot (including the Ninetyeast Ridge) or, indeed, oceanic lavas from any other hotspot in the world. Samples from the Naturaliste Plateau and ODP Site 738 on the southern tip of the Kerguelen Plateau are particularly noteworthy, with εNd(T) = − 13 to −7, (87Sr/86Sr)T=0.7090 to 0.7130 and high 207Pb/204Pb relative to 206Pb/204Pb. In addition, the low-εNd(T) Naturaliste Plateau samples are elevated in SiO2 (> 54 wt%). In contrast to “DUPAL” oceanic islands such as the Kerguelen Archipelago, Pitcairn and Tristan da Cunha, the plateau lavas with extreme isotopic characteristics also have relative depletions in Nb and Ta (e.g., Th/Ta, La Nb > primitive mantle values); the lowest εNd(T) and highest Th/Ta and La Nb values occur at sites located closest to rifted continental margins. Accepting a Kerguelen plume origin for the plateau lavas, these characteristics probably reflect the shallow-level incorporation of continental lithosphere in either the head of the early Kerguelen plume or in plume-derived magmas, and suggest that the influence of such material diminished after the period of plateau construction. Contamination of asthenosphere with the type of material affecting Naturaliste Plateau and Site 738 magmatism appears unlikely to be the cause of low-206Pb/04Pb Indian mid-ocean ridge basalts. Finally, because isotopic data for the plateaus do not cluster or form converging arrays in isotope-ratio plots, they provide no evidence for either a quickly evolving, positive εNd, relatively high-206Pb/204Pb plume composition, or a plume source dominated by mantle with εNd of −3 to 0.  相似文献   

3.
Carbon and sulfur isotope ratios have been determined for more than 200 samples of Precambrian graphitic and sulfidic metasediments from the Superior and Churchill Provinces of Canada. The sediments were deposited in small sedimentary basins related to various Canadian greenstone belts. The age of the Archean samples is approximately 2.7 Ga., the Proterozoic samples about 1.8 Ga.,

The Archean organic material shows C isotope values between −47 and −15%. vs. PDB. The Proterozoic metasediments show a smaller range, with δ13C between −30 and −17%.,

A few carbonate samples yielded C isotopic compositions between −5.9 and −4.7%.,

Associated iron sulfides have δ34S-values ranging from −6 to +8%., which are consistent with isotopic fractionation effects either by inorganic or bacterial reactions in the sedimentary sulfur cycle.

The great variability of organic C isotopic composition, especially in the late Archean, although affected by extensive postdepositional alteration, might indicate differences in the environmental conditions and/or the organic content of these sedimentary basins. Some extremely 13C-depleted organic carbon values support a global occurrence of environments likely dominated by methanotrophic organisms at the end of the Archean.  相似文献   


4.
Combined 147Sm---143Nd and the now extinct [τ(1/2)146=103×106 yr] 146Sm---142Nd isotopic systematics are reported for early Archean gneisses from Greenland (Amîtsoq and Akilia associations), and Canada (Acasta gneiss). Using both field relationships and high resolution U---Pb SHRIMP ion-probe ages, it has been possible to identify the most ancient rocks in these terrains for isotopic analyses. Preliminary 142Nd analyses of a still limited number of samples have failed to identify terrestrial 142Nd anomalies. Effects, if present, are limited to < 10 ppm and we have thus been unable to confirm the +33±4 ppm ε142 value claimed by Harper and Jacobsen (1992a, b) for a single sample. From the lack of 146Sm---142Nd effects we infer that large-scale fractionation events that may have occurred in the first 200 Ma of Earth history did not leave a significant nor widespread imprint on the early Archean mantle or crust. If a terrestrial magma ocean, with associated LREE fractionation, formed as a result of planetary accretion, then it had a lifetime of at most 250 m.y. before being remixed into the Earth's mantle.

The samples analysed in this study have a range of ε143 values including highly positive values of up to +4.2. This requires that the earliest known Archean crust was differentiated from a reservoir that was strongly depleted in the LREE as compared with chondritic compositions. In the early Archean it is proposed that the depletions in LREE are a consequence of extraction of a limited fraction of the Earth's continental crust ( < 10%) from the upper 200 km of the mantle. A three reservoir model, consisting of the continental crust, depleted mantle and a more primitive mantle reservoir can be extended to account for both the present-day, as well as the evolving Nd isotopic composition of the Earth's crust and mantle. In contrast to previous models, the rate of growth of the continental crust is used as an input parameter to constrain the concomitant growth and evolution of the depleted mantle reservoir. Recycling of large volumes of bulk continental crust into the mantle is not considered to be an important process, nor is the existence of an additional major enriched component in the early Archean mantle.  相似文献   


5.
Carbon and nitrogen abundance and isotopic compositions, from four EH4, one EH5, five EL6 chondrites and one aubrite, were determined by using stepped pyrolysis (N only) and combustion (N and C) extractions in attempts to distinguish the components present. Carbon contents range from 0.15 to 0.70 wt%, with no systematic relationship between carbon content and meteorite group or petrologic type. Whole-rock δ13C values range from −28.5 to −4.1 %., Most C occurs as graphite and when temperature steps above 700°C are considered, there is a difference between EH4,5 (δ13C = −9.1 to -5.8%.) and EL6 chondrites (δ13C = −6.7 to +4.2%.). Carbon in Bustee aubrite is isotopically lighter (δ13C = −24%.) than in any enstatite chondrite.

Nitrogen occurs as osbornite, sinoite and in isostructural substitution for oxygen in silicate lattice sites. Nitrogen abundances and isotopic compositions are more variable than C, due to the heterogenous distribution of N-bearing minerals. Three EL6's containing osbornite have higher N concentrations than other type 6 enstatite chondrites. Sinoite, where present, is depleted in 15N relative to osbornite. Nitrogen in the Bustee aubrite has a similar abundance and δ15N value to those of EL6's, again dominated by the presence of osbornite.

In addition to the refractory C-and N-bearing minerals there is also organic material (largely terrestrial contamination) and evidence for at least two “exotic” components. The first is a host for Xe (HL) and is characterized by δ13C <-−47%. and δ15N ≤−73%., whereas the second is less well-defined, but is marked by δ15N = +269%.  相似文献   


6.
The Sr, Nd and Pb isotopic compositions for the Kovdor phoscorite–carbonatite complex (PCC), Kola Peninsula, NW Russia, have been determined to characterize the mantle sources involved and to evaluate the relative contributions of a plume and subcontinental lithospheric mantle in the formation of the complex. The Kovdor PCC is a part of the Kovdor ultramafic–alkaline–carbonatite massif, and consists of six intrusions. The initial isotopic ratios of the analyzed samples, calculated at 380 Ma, display limited variations: εNd, + 2.0 to + 4.7; 87Sr/86Sr, 0.70319 to 0.70361 (εSr, − 12.2 to − 6.2); 206Pb/204Pb, 18.38 to 18.74; 207Pb/204Pb, 15.45 to 15.50; 208Pb/204Pb, 37.98 to 39.28. The Nd and Sr isotope data of the Kovdor PCC generally fit the patterns of the other phoscorites and carbonatites from the Kola Alkaline Province (KAP), but some data are slightly shifted from the mixing line defined as the Kola Carbonatite Line, having more radiogenic 87Sr/86Sr ratios. However, the less radiogenic Nd isotopic compositions and negative Δ7/4 values of Pb isotopes of the analyzed samples exclude crustal contamination, but imply the involvement of a metasomatized lithospheric mantle source. Isotopic variations indicate mixing of at least three distinct mantle components: FOZO-like primitive plume component, EMI-like enriched component and DMM-like depleted component. The isotopic nature of the EMI- and DMM-like mantle component observed in the Kovdor samples is considered to be inherited from metasomatized subcontinental lithospheric mantle. This supports the previous models invoking plume–lithosphere interaction to explain the origin of the Devonian alkaline carbonatite magmatism in the KAP.  相似文献   

7.
M. C. Tate  D. B. Clarke 《Lithos》1997,39(3-4):179-194
Late Devonian (385−370 Ma) granitoid intrusions in the Meguma Zone of southwestern Nova Scotia represent two geographically separate magmatic suites that show subtly different lithological, geochemical and isotopic characteristics. “Central intrusions” crop out with satellite mafic-intermediate intrusions, range in composition from granodiorite to leucogranite, contain two micas, have exclusively peraluminous compositions (molar A/CNK 1.1-1.3), variably high values for FeOT (0.4–6.0 wt.%), Ba (5–980 ppm), Y (6–50 ppm), Pb (2–50 ppm), Ga (11–53 ppm), 87Sr/86Sri (0.7081-0.7130), δ18O (9.8–13.0) and δ34S (4.5–11.9), in conjunction with low values for εNd (−1 to −6.5). In contrast, “peripheral plutons” crop out with synplutonic mafic-intermediate intrusions, range in composition from tonalite to leucogranite, may contain minor hornblende, have dominantly peraluminous compositions (molar A/CNK 0.9-1.3), variably high concentrations of TiO2 (0.1-1.1 wt.%), Al2O3 (12.0–19.7 wt.%), CaO (0.2–4.9 wt.%), Sr (7–720 ppm), Cr (3–111 ppm) and V (1–136 ppm), higher εNd values (−2.0 to 3.2), and lower values for 87Sr/86Sri (0.7040-0.7079), δ188O (7.6–10.5) and δ34S (0–4.6). Such regional diversity is explained by inferring that upper crustal contamination dominated the central granitoid compositions and mixing with mantle-derived mafic-intermediate magmas dominated peripheral granitoid compositions. However, additional contributions from heterogeneous lower crust cannot be excluded.  相似文献   

8.
In situ zircon U–Pb ages and Hf isotopic compositions and whole rock geochemical and Sr–Nd–Pb isotopic data are presented for the Zijinshan alkaline intrusive complex from the Shanxi Province, western North China Craton. Salic rocks dominate the complex with the monzonite occurring in the outermost and pseudoleucite phonolitic breccia in the center. The intrusion took place 127 Ma ago with the earliest emplacement of monzonite and the termination of cryptoexplosive pseudoleucite phonolitic breccia. All rocks from this complex show LREE enrichment and HFSE depletion and exhibit enriched to depleted Sr–Nd isotopic features. The presence of inherited zircons and enriched Hf isotopic compositions in zircon rims, along with the enriched whole rock Sr–Nd isotopic compositions, indicate that the monzonite was formed through the mixing of lithospheric mantle-derived magma with lower crust-derived melts. The diopside syenite and nepheline-bearing diopside syenite are more depleted than the monzonite in terms of the Sr and Nd isotopes, together with their very high concentrations of LILE, we proposed that they originated from a mixed mantle source of enriched lithospheric mantle and depleted asthenosphere. The nepheline syenite has very low concentrations of MgO, Ni, Cr, suggesting that the magma underwent significant crystal fractionation. The most depleted Sr and Nd isotopic compositions ((87Sr/86Sr)i = 0.7036–0.7042, εNd(t) = − 0.2–0.3) among all rock types indicate a great contribution of asthenosphere to the nepheline syenite. The Zijinshan complex and its related crust-mantle interaction occurred in an extensional environment which resulted in continuously asthenospheric upwelling. Such an extensional environment might have been developed during the post-orogenic stage of the Late Paleozoic amalgamation of North China Craton with Mongolian continents and subsequent Mongol–Okhotsk ocean closure.  相似文献   

9.
Both adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province, eastern China are associated with Cretaceous Cu–Au mineralization. The Shaxi quartz diorite porphyrites exhibit adakite-like geochemical features, such as light rare earth element (LREE) enrichment, heavy REE (HREE) depletion, high Al2O3, MgO, Sr, Sr / Y and La / Yb values, and low Y and Yb contents. They have low εNd(t) values (− 3.46 to − 6.28) and high (87Sr / 86Sr)i ratios (0.7051–0.7057). Sensitive High-Resolution Ion Microprobe (SHRIMP) zircon analyses indicate a crystallization age of 136 ± 3 Ma for the adakitic rocks. Most volcanic rocks and the majority of monzonites and syenites in the Luzong area are K-rich (or shoshonitic) and were also produced during the Cretaceous (140–125 Ma). They are enriched in LREE and large-ion lithophile elements, and depleted in Ti, and Nb and Ba and exhibit relatively lower εNd(t) values ranging from − 4.65 to − 7.03 and relatively higher (87Sr / 86Sr)i ratios varying between 0.7057 and 0.7062. The shoshonitic and adakitic rocks in the Luzong area have similar Pb isotopic compositions (206Pb / 204Pb = 17.90–18.83, 207Pb / 204Pb = 15.45–15.62 and 208Pb / 204Pb = 38.07–38.80). Geological data from the Luzong area suggest that the Cretaceous igneous rocks are distributed along NE fault zones (e.g., Tanlu and Yangtze River fault zones) in eastern China and were likely formed in an extensional setting within the Yangtze Block. The Shaxi adakitic rocks were probably derived by the partial melting of delaminated lower crust at pressures equivalent to crustal thickness of > 50 km (i.e., 1.5 GPa), possibly leaving rutile-bearing eclogitic residue. The shoshonitic magmas, in contrast, originated mainly from an enriched mantle metasomatized by subducted oceanic sediments. They underwent early high-pressure (> 1.5 GPa) fractional crystallization at the boundary between thickened (> 50 km) lower crust and lithospheric mantle and late low-pressure (< 1.5 GPa) fractional crystallization in the shallow (< 50 km) crust. The adakitic and shoshonitic rocks appear to be linked to an intra-continental extensional setting where partial melting of enriched mantle and delaminated lower crust was probably controlled by lithospheric thinning and upwelling of hot asthenosphere along NE fault zones (e.g., Tanlu and Yangtze River fault zones) in eastern China. Both the shoshonitic and adakitic magmas were fertile with respect to Cu–Au mineralization.  相似文献   

10.
The Nd, O and Sr isotopic characteristics of Precambrian metasedimentary, metavolcanic and granitic rocks from the Black Hills of South Dakota are examined. Two late-Archean granites (2.5-2.6 Ga) have Tdm ages of 3.05 and 3.30 Ga, suggesting that at least one of the granites was derived through the melting of significantly older crust. Early-Proterozoic metasedimentary rocks have Tdm ages that range from 2.32 to 2.45 Ga. These model ages, in conjunction with probable stratigraphic ages ranging from 1.9 to 2.2 Ga, indicate that mantle-derived material was added to the continental crust of this region during the early-Proterozoic. Previous studies of the Harney Peak Granite complex have reported U-Pb and Rb-Sr ages of about 1.71 Ga and most granite samples examined in this study have Sr isotopic compositions consistent with that age. Two granite samples taken from the same sill, however, give two-point Rb-Sr and Sm-Nd ages of 2.08 ±0.08 and 2.20 ±0.20 Ga (∑2200Nd = −15.5), respectively. In addition, whole-rock and apatite samples of the spatially associated Tin Mountain pegmatite give a Sm-Nd isochron age of 2000 ±100 Ma (∑2200Nd = −5.8 ±1.8).

The Sm-Nd, O and Rb-Sr isotopic systematics of these granitic rocks have been complicated to some degree by both crystallization and post-crystallization processes, and the age of the pegmatite and parts of the Harney Peak Granite complex remain uncertain. Processes that probably complicated the isotopic systematics of these rocks include derivation from heterogeneous source material, assimilation, mixing of REE between granite and country rock during crystallization via a fluid phase and post-crystallization mobility of Sr. The Nd isotopic compositions of the pegmatite and the Harney Peak Granite indicate that they were not derived primarily from the exposed metasedimentary rocks.  相似文献   


11.
Temperature estimates and chemical composition of mantle xenoliths from the Cretaceous rift system of NW Argentina (26°S) constrain the rift evolution and chemical and physical properties of the lithospheric mantle at the eastern edge of the Cenozoic Andean plateau. The xenolith suite comprises mainly spinel lherzolite and subordinate pyroxenite and carbonatized lherzolite. The spinel lherzolite xenoliths equilibrated at high-T (most samples >1000 °C) and P below garnet-in. The Sm–Nd systematics of compositionally unzoned clino- and orthopyroxene indicate a Cretaceous minimum age for the high-T regime, i.e., the asthenosphere/lithosphere thermal boundary was at ca. 70 km depth in the Cretaceous rift. Major elements and Cr, Ni, Co and V contents of the xenoliths range between values of primitive and depleted mantle. Calculated densities based on the bulk composition of the xenoliths are <3280 kg/m3 for the estimated PT conditions and indicate a buoyant, stable upper mantle lithosphere. The well-equilibrated metamorphic fabric and mineral paragenesis with the general lack of high-T hydrous phases did not preserve traces of metasomatism in the mantle xenoliths. Late Mesozoic metasomatism, however, is obvious in the gradual enrichment of Sr, U, Th and light to medium REE and changes in the radiogenic isotope composition of an originally depleted mantle. These changes are independent of the degree of depletion evidenced by major element composition. 143Nd/144Ndi ratios of clinopyroxene from the main group of xenoliths decrease with increasing Nd content from >0.5130 (depleted samples) to ca. 0.5127 (enriched samples). 87Sr/86Sri ratios (0.7127–0.7131, depleted samples; 0.7130–0.7134, enriched samples) show no variation with variable Sr contents. Pbi isotope ratios of the enriched samples are rather radiogenic (206Pb/204Pbi 18.8–20.6, 207Pb/204Pbi 15.6–15.7, 208Pb/204Pbi 38.6–47) compared with the Pb isotope signature of the depleted samples. The large scatter and high values of 208Pb/204Pbi ratios of many xenoliths indicates at least two Pb sources that are characterized by similar U/Pb but by different Th/Pb ratios. The dominant mantle type in the investigated system is depleted mantle according to its Sr and Nd isotopic composition with relatively radiogenic Pb isotope ratios. This mantle is different from the Pacific MORB source and old subcontinental mantle from the adjacent Brazilian Shield. Its composition probably reflects material influx into the mantle wedge during various episodes of subduction that commenced in early Paleozoic or even earlier. Old subcontinental mantle was already replaced in the Paleozoic, but some inheritance from old mantle lithosphere is represented by rare xenoliths with isotope signatures indicating a Proterozoic origin.  相似文献   

12.
Leone Melluso  John J. Mahoney  Luigi Dallai   《Lithos》2006,89(3-4):259-274
Near-primitive picritic basalts in the northwestern Deccan Traps have MgO > 10 wt.% and consist of two groups (low-Ti and high-Ti) with markedly different incompatible element and Nd–Sr–Pb isotope characteristics. Many elemental characteristics of the low-Ti picritic basalts are similar to those of transitional or normal ocean ridge basalts. However, values of ratios like Ba/Nb (13–30) and Ce/Pb (4–11), and isotopic ratios (e.g., εNd(t) + 0.3 to − 6.3, (207Pb/204Pb)t 15.63–15.75 at (206Pb/204Pb)t 18.19–18.84, δ18Oolivine as high as + 6.2‰) are far-removed from ocean-ridge-type values, indicating a significant contribution from continental crust. The crustal signature could represent crustal contamination of ascending magmas; alternatively, it could represent a minor component within the Indian lithospheric mantle of anciently subducted sedimentary material or fluids derived from subducted material. In contrast, the high-Ti picritic basalts are chemically and isotopically rather similar to recent shield lavas of the Réunion hotspot (e.g., εNd(t) + 2 to + 4) and to volcanic rocks along the postulated pre-Deccan track of this hotspot in Pakistan. Neither type of picritic basalt is parental to the voluminous flows comprising the bulk of the Deccan Traps. However, many of the Deccan primary magmas could have been derived from mixtures of a high-Ti-type, Réunion-like source component and a component more similar to, or even more incompatible-element-depleted than, average ocean-ridge mantle.  相似文献   

13.
David R. Nelson 《Lithos》1989,22(4):265-274
Kimberlites which intruded the Sisimiut (formerly Holsteinsborg) region of central west Greenland during the Early Palaeozoic have initial 87Sr/86Sr between 0.7028 and 0.7033 and εNd between + 1.3 and + 3.9. Mid-Proterozoic potassic lamproites from the same region have initial 87Sr/86Sr between 0.7045 and 0.7060, εNd between −13 and −10 and unradiogenic initial Pb isotopic compositions. The isotopic data favour an asthenospheric mantle source for the kimberlite magmas, in common with “basaltic” kimberlites from other localities, whereas the lamproite magma sources evolved in isolation from the convecting mantle for > 1000 Ma, probably within the subcontinental lithospheric mantle of the Greenland craton, prior to emplacement of the lamproites.  相似文献   

14.
The Ungava orogen of northern Québec is one of the best preserved Proterozoic mobile belts of the world, recording > 200 Ma of plate divergence and convergence. Voluminous magmatism associated with rifting of the Superior Province basement ≈2.04 Ga resulted in the development of a volcanic rift margin sequence and an ocean basin. Four distinct mafic magma suites were erupted: (1) continental basalts (Eskimo Formation, western and central Povungnituk Group) with moderate to high Zr/Nb and negative Nb anomalies which have interacted with the continental crust (εNd(2.0 Ga)) from −7.4); (2) mafic lavas from the Flaherty Formation, eastern Povungnituk Group and some Watts Group lavas associated with passive margin rifting, having slightly enriched isotopic signatures (εNd(2.0 Ga) = +2.7 to +4.4) compared to the contemporaneous depleted mantle, high (Nb/Y)n and low Zr/Nb ratios (≈4.4 and ≈8.9, respectively); (3) a highly alkaline OIB-like suite (εNd(2.0 Ga) = +2.3 to +3.2, (Nb/Y)n> 12) within the Povungnituk Group composed of nephelinites, basanites and phonolites; and (4) depleted Mg-rich basalts and komatiitic basalts (εNd(2.0 Ga) ≈ + 4.5 to + 5.5) with trace-element characteristics of N-MORB, but with higher Fe and lower Al than primitive MORB (Chukotat Group, Ottawa Islands and some Watts Group samples). The ocean basin into which these lavas were erupted was subsequently destroyed during subduction between ≈1.90 and ≈1.83 Ga, resulting in the development a magmatic arc (Narsajuaq terrane and Parent Group).

The Ungava magmas provide a unique window into the mantle at 2.0 Ga. The chemical and isotopic similarity of these Proterozoic magmas to modern-day magmas provides strong evidence that the interplay between depleted mantle, OIB mantle and sub-continental mantle during the Proterozoic was comparable to that of the modern Earth.  相似文献   


15.
SHRIMP zircon U–Pb ages and geochemical and Sr–Nd–Pb isotopic data are presented for the gabbroic intrusive from the southern Taihang Mountains to characterize the nature of the Mesozoic lithospheric mantle beneath the central North China Craton (NCC). The gabbroic rocks emplaced at 125 Ma and are composed of plagioclase (40–50%), amphibole (20–30%), clinopyroxene (10–15%), olivine (5–10%) and biotite (5–7%). Olivines have high MgO (Fo = 78–85) and NiO content. Clinopyroxenes are high in MgO and CaO with the dominant ones having the formula of En42–46Wo41–50Fs8–13. Plagioclases are dominantly andesine–labradorite (An = 46–78%) and have normal zonation from bytownite in the core to andesine in the rim. Amphiboles are mainly magnesio and actinolitic hornblende, distinct from those in the Precambrian high-pressure granulites of the NCC. These gabbroic rocks are characterized by high MgO (9.0–11.04%) and SiO2 (52.66–55.52%), and low Al2O3, FeOt and TiO2, and could be classified as high-mg basaltic andesites. They are enriched in LILEs and LREEs, depleted in HFSEs and HREEs, and exhibit (87Sr/86Sr)i = 0.70492–0.70539, εNd(t) = − 12.47–15.07, (206Pb/204Pb)i = 16.63–17.10, Δ8/4 = 70.1–107.2 and Δ7/4 = − 2.1 to − 9.4, i.e., an EMI-like isotopic signatures. Such geochemical features indicate that these early Cretaceous gabbroic rocks were originated from a refractory pyroxenitic veined-plus-peridotite source previously modified by an SiO2-rich melt that may have been derived from Paleoproterozoic subducted crustal materials. Late Mesozoic lithospheric extension might have induced the melting of the metasomatised lithospheric mantle in response to the upwelling of the asthenosphere to generate these gabbroic rocks in the southern Taihang Mountains.  相似文献   

16.
The Maowu eclogite–pyroxenite body is a small (250×50 m) layered intrusion that occurs in the ultra-high-pressure (UHP) metamorphic terrane of Dabieshan, China. Like the adjacent Bixiling complex, the Maowu intrusion was initially emplaced at a crustal level, then subducted along with the country gneisses to mantle depths and underwent UHP metamorphism during the collision of the North and South China Blocks in the Triassic. This paper presents the results of a geochemical and isotopic investigation on the metamorphosed Maowu body. The Maowu intrusion has undergone open system chemical and isotopic behavior three times. Early crustal contamination during magmatic differentiation is manifested by high initial 87Sr/86Sr ratios (0.707–0.708) and inhomogeneous negative Nd(T) values of −3 to −10 at 500 Ma (probable protolith age). Post-magmatic and pre-UHP metamorphic metasomatism is indicated by sinusoidal REE patterns of garnet orthopyroxenites, lack of whole-rock (WR) Sm–Nd isochronal relationship, low δ18O values and an extreme enrichment of Th and REE in a clinopyroxenite. Finally, K and Rb depletion during UHP metamorphism is deduced from the high initial 87Sr/86Sr ratios unsupported by in situ Rb/Sr ratios. Laser ICP-MS spot analyses on mineral grains show that (1) Grt and Cpx attained chemical equilibrium during UHP metamorphism, (2) Cpx/Grt partition coefficients for REE correlate with Ca, and (3) LREE abundances in whole rocks are not balanced by that of the principal phases (Grt and Cpx), implying that the presence of LREE-rich accessory phases, such as monazite and apatite, is required to account for the REE budget.

Sm–Nd isotope analyses of minerals yielded three internal isochrons with ages of 221±5 Ma and (T)=−5.4 for an eclogite, 231±16 Ma and (T)=−6.2 for a garnet websterite, and 236±19 Ma and (T)=−6.9 for a garnet clinopyroxenite. The Cpx/Grt chemical equilibrium and the consistent mineral isochron ages indicate that the metasomatic processes mentioned above must have occurred prior to the UHP metamorphism. These Sm–Nd ages agree with published zircon and monazite U–Pb ages and constrain the time of UHP metamorphism to 220–236 Ma. The Maowu and Bixiling layered intrusions are similar in their in situ tectonic relationship with their country gneisses, but the two bodies are distinguished by their magma-chamber processes. The Bixiling magmas were contaminated by the lower crust, whereas the Maowu magmas were contaminated by the upper crustal rocks during their emplacement and differentiation. The two complexes represent two distinct suites of magmatic rocks, which have resided in the continental crust for about 300–400 Ma before their ultimate subduction to mantle depths, UHP metamorphism and return to the crustal level.  相似文献   


17.
The Qinling–Dabie–Sulu belt is the world's largest ultrahigh pressure (UHP) metamorphic belt. The UHP metamorphism is well dated at 220–245 Ma in the Dabie–Sulu belt but at 507 Ma in the Qinling belt. The Tongbaishan is located between the Qinling orogenic belt to the west and the Dabie–Sulu UHP metamorphic belt to the east. It is the key area for studying the tectonic relation between the Qinling and Dabie–Sulu belts and the diachronous UHP metamorphism. The Jigongshan granitic pluton (t=128 Ma) with a total area of 1200 km2, composed of monzogranite, was mostly emplaced into the Tongbai complex, an exposed basement in the Tongbaishan. The Jigongshan granites have SiO2=69.85–72.35%, K2O/Na2O=0.87–1.13, A/CNK=0.91–1.03, Rb/Sr=0.14–0.25 and Th/U=3.3–12. Their REE compositions show strongly fractionated patterns with (La/Yb)N=14–58 and Eu*/Eu=0.79–1.05. The granites are characterized by low radiogenic Pb isotopic composition. The present-day whole-rock Pb isotopic ratios are 206Pb/204Pb=16.707–17.055, 207Pb/204Pb=15.239–15.326 and 208Pb/204Pb=37.587–37.853, which are similar to that of the continental lower crust. Their Nd(t) values range from −16 to −20, and depleted-mantle Nd model ages (TDM) from 1.8 to 2.2 Ga. The above evidence indicates that the magma of the Jigongshan granites was derived from the partial melting of the continental crust. The Pb and Nd isotopic compositions of the Jigongshan granites resemble those of the Dabie core complex in the Dabieshan but are distinct from those of the Tongbai complex in the Tongbaishan. Thus, the Dabie core complex would be the magma source of the Jigongshan granites. The result implies that the Dabie core complex is extended to the west and constitutes the unexposed basement underlaying the Tongbai complex in the Tongbaishan.  相似文献   

18.
Three types of zircon coexist in an unusual lower crustal xenolith from the Valle Guffari diatreme (Hyblean Plateau, Sicily): igneous Type 1 (near-euhedral, weakly zoned; Ce/Ce > 1); partially recrystallised Type 2 (ovoid, structureless; weak Ce anomaly); hydrothermal Type 3 (sugary, spongy-textured, probably related to F-rich aqueous fluids). U–Pb dating by LAM-ICPMS, supported by in situ Hf-isotope analysis, suggests that both Type 1 and Type 2 zircons were originally Archean (ca 2.7 Ga), though many of these grains have experienced severe Pb loss. The U–Pb ages of the hydrothermal zircons cluster around 246 Ma, interpreted as the timing of the hydrothermal event. Their εHf (+ 8.5 to − 1.2) indicates the mixing of old crustal components and material from a juvenile source.

In situ Os-isotope analyses of sulfides hosted in peridotite xenoliths from Valle Guffari show Paleoproterozoic–Archean TRD minimum ages, corresponding to the age of the oldest zircon grains in the crustal xenolith. Other peaks of TRD ages suggest that multiple metasomatic events have affected the lithospheric mantle.

These observations suggest that the lower crust and the upper part of the lithospheric mantle beneath the Hyblean Plateau represent the northernmost portion of the African Plate. These two units have coexisted since at least late Archean time, and have remained linked through several episodes of crustal modification, including the Permo-Triassic hydrothermal event, which was probably related to the onset of rifting in the Ionian Basin.  相似文献   


19.
Tanya Furman  David Graham 《Lithos》1999,48(1-4):237-262
This study presents new major and trace element and Sr–Nd isotopic results for a suite of Miocene–Recent mafic lavas from the Kivu volcanic province in the western branch of the East African Rift. These lavas exhibit a very wide range in chemical and isotopic characteristics, due to a lithospheric mantle source region that is heterogeneous on a small scale, probably <1 km. The chemical and isotopic variations are mostly geographically controlled: lavas from Tshibinda volcano, which lies on a rift border fault on the northwestern margin of the province, have higher values of 87Sr/86Sr, (La/Sm)n, Ba/Nb, and Zr/Hf than the majority of Kivu (Bukavu) samples. The range of 87Sr/86Sr at Tshibinda (0.70511–0.70514) overlaps some compositions found in the neighboring Virunga province, while Bukavu group lavas include the lowest 87Sr/86Sr (0.70314) and highest Nd (+7.6) yet measured in western rift lavas. The Tshibinda compositions trend towards a convergence for Sr–Nd–Pb isotopic values among western rift lavas. Among Kivu lavas, variations in 143Nd/144Nd correlate with those for certain incompatible trace element ratios (e.g., Th/Nb, Zr/Hf, La/Nb, Ba/Rb), with Tshibinda samples defining one compositional extreme. There are covariations of isotopic and trace element ratios in mafic lavas of the East African Rift system that vary systematically with geographic location. The lavas represent a magmatic sampling of variations in the underlying continental lithospheric mantle, and it appears that a common lithospheric mantle (CLM) source is present beneath much of the East African Rift system. This source contains minor amphibole and phlogopite, probably due to widespread metasomatic events between 500 and 1000 Ma. Lava suites which do not show a strong component of the CLM source, and for which the chemical constraints also suggest the shallowest magma formation depths, are the Bukavu group lavas from Kivu and basanites from Huri Hills, Kenya. The inferred extent of lithospheric erosion therefore appears to be significant only beneath these two areas, which is generally consistent with lithospheric thickness variations estimated from gravity and seismic studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号