首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2016年7月31日至8月1日,新疆伊犁河谷发生了一次极端强降水事件,多站突破降水极值。利用NCEP/NCAR 1°×1°和2.5°×2.5°再分析资料、中国地面卫星雷达三源融合逐小时降水产品、新疆地区常规观测资料、基于地基GPS观测的大气可降水量资料及基于拉格朗日方法的HYSPLIT轨迹模式结果,通过对水汽输送流函数、势函数、水汽输送轨迹和暴雨区水汽收支计算,结合伊犁河谷GPS观测分析,揭示了此次强降水期间的大尺度水汽输送、辐合特征及伊犁河谷局地水汽变化特点。结果表明:(1)强降水期间大西洋及红海均对伊犁河谷的水汽供应具有贡献,河谷处于水汽通量辐合区,向西开口的地形辐合和抬升为局地暴雨的发生提供有利的动力辐合条件。低纬度印度夏季风环流和中纬度大西洋向东输送的气流共同构成伊犁河谷极端降水天气的水汽输送通道,其中印度夏季风西南水汽输送主要集中在对流层低层,对流层中层水汽的输送以大西洋向东气流和低槽自身水汽输送为主。(2)HYSPLIT模拟结果表明暴雨区3000 m中纬度偏西路径的水汽输送最为强盛,偏南路径水汽源于阿拉伯海,对流层底层偏西、偏东路径和中层偏北路径水汽通过垂直运动补充对流层低层的水汽;5000 m水汽输送轨迹以偏西路径和低槽自身携带的水汽为主。(3)降水期间水汽集中在对流层低层,通过垂直输送项向高层输送;强降水时段暴雨区对流层低层南边界水汽流入量迅速增强,中高层水汽流入主要集中在西边界。(4)降水前槽前西南气流造成伊犁河谷测站GPS-PWV明显跃升,强降水时段受印度西南季风影响,测站PWV快速增高并维持,局地GPS-PWV的增加与大尺度水汽输送辐合增强有关。  相似文献   

2.
利用常规资料,NCEP/NCAR的1°×1°每6h再分析资料和柳州多普勒雷达资料,对2017年7月9-10日发生在柳州一次副高边缘特大暴雨进行了分析。结果表明:高空槽、低空急流以及地面辐合线是这次过程的主要影响系统,副高脊线的稳定维持,使得暴雨区主要出现在柳州中北部;孟加拉湾与南海源源不断的水汽输送为这次暴雨提供了充分的水汽条件;地面弱冷空气的侵入增强了柳州上空的不稳定度,并在地面形成中尺度辐合线触发暴雨产生。地面中尺度辐合线的长久维持为强降水提供了动力抬升的条件,有利于强降水的维持;低质心、高效率的"列车效应"回波反复经过柳州市北部三县,造成了特大暴雨。  相似文献   

3.
利用自动站观测资料、探空资料及NCEP再分析资料,对2006年6月12日夜间和2008年5月27日夜间贵州南部局地大暴雨天气过程进行对比分析。结果表明,两次过程均发生在西高东低、东北低涡稳定维持的有利环流形势下,700 hPa巴塘低涡东移是造成贵州西南部强降水的主要影响系统,巴塘低涡和低空西南急流在贵州东南部维持对贵州西南部暴雨起重要作用,同时不稳定能量在贵州南部积聚为暴雨发生提供了有利条件,但相对于后一过程,前一过程在贵州水汽辐合区更大,其大雨量级以上降水范围更广;地面中尺度辐合线生成发展是两次局地大暴雨发生发展的可能触发原因,暴雨中心位于辐合线南侧暖区中;前一过程西太平洋副热带高压较强且位置偏西(西脊点到达110°E),南支槽东移有利于引导700 hPa低涡移动,弱冷空气与暖湿空气交汇形成能量锋锋生,引起低涡强烈发展、涡旋环流增强,而后一过程副高偏弱且位置偏南、偏东,500 hPa上无高原槽影响,以及地面贵州南部为低压控制且无冷空气影响,是前一过程比后一过程降水强度更大的原因。  相似文献   

4.
《高原气象》2021,40(4):815-828
首先对2008-2019年4-9月湖南弱天气尺度背景下暖区暴雨依据500 hPa环流形势分为强西南急流型和副高型,然后对2018年4月30日(简称"4·30"过程)和2016年7月17日(简称"7·17"过程)两次不同类型暖区暴雨过程进行对比分析。结果表明:(1)两类暖区暴雨具有明显季节差异,强西南急流型和副高型分别发生在春季和夏季。强西南急流型一天任何时刻均会出现,夜间降水频次增多。副高型的日变化明显,降水峰值出现在上午。强西南急流型降水范围广,多出现在湘南地区,西南急流北推到长江中下游地区时,湘北也会出现暴雨。副高型降水分散,在湘西北、湘北及湘东南地区均出现强降水,局地性强,对流性明显。(2)"4·30"过程暴雨区处于上下一致西南风中,在切变线南侧辐合上升、西南急流和地面辐合线共同影响下湘东北出现暴雨,属于强西南急流型暖区暴雨;而"7·17"过程,副高脊线控制湖南,受中低层弱切变和地面中尺度气旋影响,湘西北出现暴雨,属于副高型暖区暴雨。(3)"4·30"过程暴雨区上空垂直螺旋度均为负值,700 hPa存在负值中心,意味着700 hPa切变线造成暴雨区强辐合上升,导致强降水发生;"7·17"过程,垂直螺旋度呈"上正下负"结构,900 hPa高度强气旋性旋转辐合最强,表征近地层中小尺度系统影响造成暴雨。"4·30"过程水汽输送和辐合比"7·17"过程更强。"7·17"过程比"4·30"过程低层热力不稳定能量更大且热力不稳定层结更强。β中尺度辐合线和γ小尺度气旋分别为"4·30"过程和"7·17"过程的触发机制。  相似文献   

5.
汪玲瑶  谌芸  肖天贵  李晟祺  葛蕾 《气象》2018,44(6):771-780
本文首先给出江南地区暖区暴雨的定义,并按天气形势将其分为暖切变型、冷锋锋前型、副热带高压(以下简称副高)型和强西南急流型四类。然后利用2010—2016年5—9月常规和自动站逐时降水等非常规观测资料统计暖区暴雨的时空分布特征和降水性质等,并对暖区暴雨的形成原因进行初步分析。最后利用NCEP FNL全球分析资料,基于中尺度分析技术给出四类暖区暴雨的系统配置:(1)四类暖区暴雨均为分散性局地降水,降水多发生于山区、平原和湖泊交界处等不均匀下垫面附近。其中,暖切变型降水范围广、强度最大、极端性最明显且主要位于江南中西部;冷锋锋前型降水集中、强度较大且具有一定极端性,主要位于江南中部;副高型降水强度较弱,主要位于江南中东部;强西南急流主要位于江南西部。(2)暖切变型和强西南急流型以夜间降水为主,副高型降水集中在午后,冷锋锋前型降水日变化不明显。(3)暖区暴雨由稳定性和对流性降水共同组成且降水量越大,降水对流性越明显。(4)在低层高湿、不稳定能量积聚等有利背景下,暖切变型、冷锋型和副高型暖区降水多由边界层(地面)中尺度辐合线配合高低空急流耦合产生,强西南急流型一般形成于低空急流上的中尺度风速脉动及地面辐合线附近,且低空急流越强,暴雨强度越大。(5)暖切变型和冷锋型暖区暴雨的落区分别位于低层850hPa暖切变以南和地面锋前的显著湿区内,副高型和强西南急流型的暴雨落区分别位于副高内和强低空急流出口区左前侧的水汽充沛且大气层结不稳定区内。四类暖区暴雨常表现为长生命史的移动型中尺度雨团途经山区或河流湖泊等不均匀下垫面时,强度增大、移速减慢,形成暖区局地强降水。  相似文献   

6.
王洪勋 《浙江气象》2012,33(1):5-10,35
利用NCEP/NCAR1°×1°的分析资料,对比分析了分别发生在2009年和2010年相同季节不同年份的两次连阴雨过程的异同,重点分析它们降水特征和形成原因。结果表明,乌拉尔山和鄂霍次克海高压脊以及它们之间的宽广西风槽稳定维持是该季节连阴雨形成的有利环流背景。垂直上升运动是形成降水的必要动力条件,大气中充足的水汽输送和水汽在降水区的持续性辐合是连阴雨的形成的必要水汽条件。频繁南下的冷空气强迫暖湿空气抬升既直接导致了上升运动,同时也可以触发大气不稳定能量的释放,增强上升运动。连阴雨时期雨量主要集中在冷暖空气长期对峙,强锋区长时间维持的时期。强水汽输送和强水汽辐合在时间和空间上重合并且长时间维持有利于大范围的持续性暴雨天气发生。  相似文献   

7.
利用湖南省区域自动站和常规观测站降水资料、NCEP/NCAR和JRA-55再分析资料及湖南省气象台大气河预报业务产品,分析了2017年6月22日至7月2日湖南一次特大致洪暴雨过程的雨洪和水汽输送异常特征,以及大气河水汽输送对强降雨的影响,在此基础上定量分析了强降雨区各边界的水汽收支状况及各水汽轨迹的贡献。结果表明:此次强降水过程分为三个阶段,第一、第三阶段降雨的范围、强度均明显大于第二阶段。欧亚中高纬稳定的"1槽1脊"环流形势、低纬较稳定的西太副高及其外围强劲的水汽输送是此次暴雨发生的环流背景。水汽通量、水汽通量散度、比湿等物理量的水平及垂直分布对降水的阶段性特征和位置、强度变化有很好的指示作用。三个强降雨时段,来自孟加拉湾、南海和西太副高西南侧的水汽输送表现出不同的强度和位置,造成到达湖南境内的偏南水汽输送空间异常程度不同。大气河的强弱及其水汽输送通道、辐合区位置以及强降雨区各边界水汽净收入对强降水发生、发展起关键作用。水汽后向轨迹分析表明,低层偏南的水汽输送是此次极端强降雨较长时间维持的重要因素,而来自北方的干冷空气侵入利于大气斜压性增强和对流不稳定维持,是第二阶段降水强度弱于第一、第三阶段的另一原因。  相似文献   

8.
地面降水诊断方程对降水过程的定量诊断   总被引:9,自引:5,他引:4  
崔晓鹏 《大气科学》2009,33(2):375-387
降水, 尤其是强降水 (暴雨), 对国家经济发展、 社会建设以及人民生活影响巨大, 然而由于同降水相关的物理过程非常复杂, 因此, 对降水的研究与预测十分困难。过去有关降水的研究大多关注水汽及水汽辐合 (输送) 的影响, 对与降水有关的水汽收支研究较多。Gao et al.(2005a) 率先将大气中水汽和云中水凝物 (云水、 雨水、 云冰、 雪及霰等) 的变化方程结合起来, 得到一个地面降水诊断方程, 从而可以将与降水有关的大气中水汽和云的演变过程在同一框架下定量地分析研究。本文利用一套21天长度的热带云分辨尺度模拟资料, 通过计算地面降水诊断方程中的局地水汽变化、 水汽辐合辐散率、 地面蒸发率以及云的变化率等各项, 分析了这些物理过程对降水的贡献, 指出局地水汽和云的变化率、 水汽辐合率, 地面蒸发率等均对地面降水有重要贡献。区域平均资料分析表明, 若水汽辐合与局地大气变干共存, 则产生强降水; 若存在水汽辐合但局地大气增湿或者存在水汽辐散但局地大气变干, 则引起中等强度降水; 若水汽辐散与局地大气增湿共存, 则造成弱降水。将降水划分成对流和层状降水进行分析发现, 对流降水率一般大于层状降水率, 水汽辐合是对流降水最主要的水汽源, 而局地大气变干则是层状降水最主要的水汽源。区域平均局地大气变干主要发生在降水性层状云区, 而最强的局地大气增湿则发生在对流云区和晴空区; 最强的局地云的消散发生在层状云区, 而最强的局地云的发展发生在对流云区。  相似文献   

9.
利用常规观测资料、NCEP 1 °×1 °FNL资料、自动站降水资料,对华南两次双雨带过程中的回流暖区暴雨个例进行了对比分析,结果表明:(1)与暖湿的南到西南气流相比,变性高压脊后部回流的东到东南气流具有一定干冷属性,边界层两支不同性质的气流汇合形成辐合渐近线和边界层锋区。回流暖区暴雨实际是先有回流、预先在东侧形成浅薄的冷池,后有高空槽加深东移、带来边界层西南风,与东南风辐合,形成低层辐合抬升条件,西南风暖平流使边界层锋区加强并缓慢东移,产生的暴雨。回流和高空槽均起到关键的作用;(2)回流暖区暴雨区域在边界层内具有弱对流性不稳定或湿中性层结、而在中低层具有明显对流性不稳定,其发生发展机制有别于锋前暖区暴雨和典型锋面暴雨;(3)边界层较大水平螺旋度与回流暖区暴雨有良好对应关系,对回流暖区暴雨预报有指示意义,是回流暖区暴雨区别于锋面暴雨的重要动力学特征;(4)回流暖区的水汽输送主要集中在850 hPa以下,以925 hPa最显著,北侧锋区的水汽输送主要集中在850~700 hPa;南北两支雨带低层的水汽输送通道可能存在部分重合,当南侧暖区雨带的对流发展起来后,部分水汽可能被南侧辐合系统截留,从而影响北侧的水汽输送强度。这可能是导致北雨带降雨强度不如南雨带的一个原因。   相似文献   

10.
利用地面自动站和区域气象站常规观测数据、MICAPS天气图、NCEP1°×1°再分析产品以及卫星和雷达产品,对陕西北部榆林市2016年8月11日20时—16日20时连续出现的对流性大暴雨天气进行水汽条件综合分析。结果表明:(1)这次连续出现的对流性大暴雨发生在西太平洋副热带高压强盛期,其外围的西南暖湿气流与贝湖加尔双冷涡底部分裂的冷空气在榆林上空交汇,两个系统都是稳定的大尺度系统,从而形成长时间对峙,有利于切变、辐合等低值系统生成和发展,触发对流性大暴雨。(2)连续大暴雨与对流有效位能呈正相关,容易出现在CAPE高能舌附近梯度最大处,对应850hPa辐合线附近暖区一侧。(3)连续大暴雨期间850hPa辐合线一直维持,水汽通道有孟加拉湾、南海、东海、黄海4个来源,通过南支槽和副高外围环流输送。(4)连续大暴雨的水汽输送特征分为触发、维持和增强3个阶段,在暴雨的启动阶段,干线过境和水汽辐合抬升起触发作用;维持阶段主要依赖深厚的湿层;增强阶段表现为更强的辐合和更强的上升运动带来更大的降水。(5)大暴雨在卫星云图上表现为高空槽云系上生成中尺度的暴雨云团,雷达回波图上表现为降水回波内部生成低层强辐合和高层强辐散,最大反射率因子为55dBz。  相似文献   

11.
卜松  李英 《大气科学》2020,44(1):27-38
利用CMORPH降水资料,将热带气旋(TC)登陆后的降水分为路径左侧降水(L型)和右侧降水(R型)两类,并针对登陆华东地区TC的 L型和R型降水的大气环流场、环境水平风垂直切变以及台风环流内的动热力条件进行对比分析,结果表明:2005~2014年间登陆华东地区的20例TC中包括12例L型和8例R型。总体来看,大气环流因子对于登陆华东TC降水分布起主要作用。L型降水TC高层南亚高压主要呈纬向带状分布,在登陆过程中路径左侧维持偏东风高空辐散气流,中层西风槽偏东,西太平洋副热带高压(简称副高)偏南,环境水平风垂直切变指向西南。R型降水TC高层南亚高压断裂,呈经向分布。TC路径左侧风场较均匀,右侧东南风高空辐散气流明显。副高的位置偏北呈块状,同时环境水平风垂直切变指向东北,有利于路径右侧降水。台风环流内,低层冷暖平流输送以及水汽辐合与降水落区也有较好对应关系。L型TC低层暖平流的输送使TC西南象限低层增暖,大气稳定度降低。同时水汽辐合区也主要位于西南象限,有利于TC路径左侧降水。而R型TC副高位置偏北可将南侧的东南暖湿气流向台风环流更西部输送,东北象限维持暖平流,有利于路径右侧降水发生。  相似文献   

12.
利用常规观测资料及NCEP 1°×1° 6h再分析资料,对2007年7月上旬四川东北部连续出现的3场大暴雨过程的环流形势及动力结构、水汽输送和热力不稳定条件进行了诊断分析。结果表明:(1)前2场区域性大暴雨出现在副热带高压和巴尔喀什湖冷涡两个长波系统稳定少动的阻塞环流形势下.第3场局地性大暴雨发生在环流调整过程中,副热带高压快速东撤导致对流云团在东移过程中迅速减弱消亡;(2)暴雨的水汽主要来自南海,低空偏南风急流的维持为连续暴雨提供了源源不断的水汽输送和持续的能量供应,3场暴雨的中心均出现在位于低空急流出口区左侧水汽辐合中心的巴中地区;(3)造成严重洪涝灾害的前2场区域性大暴雨过程期间,从地面到高层形成了“辐合-辐散-辐合-辐散”接力式上下大气运动的动力结构,大气层结处于高能和对流不稳定状态,且有冷空气触发,大暴雨发生在能量锋区偏向暖区一侧。  相似文献   

13.
陈丹  周长艳  齐冬梅 《高原气象》2019,38(6):1149-1157
利用1960-2016年川渝逐日降水资料和NCEP/NCAR再分析资料,分析了夏季青藏高原及周边大气热源与四川盆地暴雨的关系。结果表明,青藏高原及其周边的大气热源对四川盆地夏季暴雨频数具有显著的影响。影响关键区分别位于高原中南部及其南侧和高原中东部及其东侧,由此定义了一个影响四川盆地夏季暴雨频数的高原热力差指数Itc,该指数能够较好地反映出盆地夏季暴雨频数的东、西部差异变化特征。当Itc偏高时,副高位置偏西偏北,阿拉伯海、孟加拉湾水汽输送增强,同时贝加尔湖西侧槽或低压位置偏西,盆地西部水汽辐合上升异常增强,暴雨明显偏多;而盆地东部暴雨偏少。当Itc偏低时,副高位置偏东,来自于东南沿海的水汽输送在盆地东部增强,同时贝加尔湖南侧多阻塞形势,使得水汽在盆地东部辐合上升增强,产生暴雨偏多;此时盆地西部暴雨偏少。  相似文献   

14.
利用常规观测资料、广西中尺度站逐时雨量资料、NCEP/NCAR 1°×1°再分析资料及国家气候中心提供的副高监测指标资料,对2010—2015年广西5次副高控制下的暴雨天气形势和物理量特征,及副高指数变化进行对比分析。结果表明:500 h Pa为副高控制时,在广西北部山区易出现东北-西南向的暴雨区;副高(588 dagpm线控制区)的位置决定暴雨中心的位置,暴雨一般发生在副高稳定或略为西进的过程中,脊线位置变化小;暴雨主要是由对流层中低层的辐合扰动强度决定,850 h Pa的切变线强度、位置对暴雨出现有明显影响,高层不利环境场对暴雨落区的位置有明显的制约,使得暴雨落区大多出现在桂北25°N附近,纬距变化不超过0.5个纬度;湿层相对浅薄,但整层能量充沛,水汽辐合主要集中在近地层,必须要有强烈的上升运动,使得近地层能量得以释放而产生暴雨。  相似文献   

15.
利用NCEP1°×1°再分析资料、常规观测资料、自动站等资料,对2016年8月24日夜间关中地区出现的强对流暴雨过程进行了分析。结果表明:(1)副高异常强盛,横槽转竖引导冷空气南下,与副高内部的暖湿气流交汇是造成这次强对流暴雨的主要背景条件;(2)造成这次强对流暴雨的水汽来源主要是本地水汽的聚积和辐合,整个过程大气处于对流性不稳定状态,锋面过境是该次过程的抬升触发机制;(3)对流不稳定、中等强度的对流有效位能和合适的对流抑制能量更有利于高降水效率和强降水的形成;(4)中尺度对流系统东移的过程中,尺度明显增大,并配合有利的对流条件,发展为MCC且维持时间较久,从而造成区域性强对流暴雨。  相似文献   

16.
GCE(Goddard Cumulus Ensemble)模式中体现了云与云之间的相互作用,以及云与周围环境、长波辐射及示踪气体等之间的相互作用.模式可通过云中的水凝物等微物理量描述云体的生命史(发展、成熟、消散),并在此基础上通过引入地面降水诊断方程对降水的发展过程进行分析,因而降水过程实际上是云的发展过程的体现.本文所使用的二维云分辨模式(2DCRM)就是GCE模式的二维版本.利用该模式对2008年6月10-15日的华南暴雨过程进行模拟,分析了主要降水时段地面降水收支及热量收支在不同降水发展阶段的特征.模拟结果表明,在降水初始阶段,主要由局地大气增湿和水汽辐合率减小来抑制降水发展;在成熟阶段,局地水汽变化、水汽辐合、地面蒸发和局地水凝物变化均有正的贡献,降水强度达到最大;在衰退阶段,降水强度减小的主要原因是水汽辐合显著减小.在降水性层状云区,降水主要来自于水汽辐合,水汽的主要消耗项是局地水汽增加;在对流云区,降水主要来自于水汽辐合与局地大气变干,水汽的主要消耗过程是水凝物生成并向降水性层状云区输送.初始阶段和衰退阶段的局地大气温度变化率相对较小,成熟阶段区域平均大气冷却达到最强,区域平均大气温度变化率主要受区域平均的热辐散率与区域平均的潜热释放影响.  相似文献   

17.
基于1979-2015年青藏高原(下称高原)地区气象观测站的逐日降水资料和ERA-Interim逐日再分析资料,分析高原南侧经圈环流的季节演变及年际变化特征,并讨论其对高原降水及水汽输送的影响。结果表明,高原南侧80°E-90°E范围存在前季风环流、季风环流、Hadley环流的季节演变,前季风环流有-0. 377 s~(-1)·(10a)~(-1)减弱的趋势,季风环流有0. 524 m·s~(-1)·(10a)~(-1)显著增强趋势。在90°E-105°E范围存在季风环流和Hadley环流季节转换,季风环流存在0. 413 m·s~(-1)·(10a)~(-1)的增强趋势。基于各经圈环流开始、结束时间的定义,发现在80°E-90°E,前季风环流建立的时间有推迟而结束时间有提前的现象,其维持时间出现每10年-1. 47候的缩短趋势。在90°E-105°E,季风环流维持时间增长,Hadley环流维持时间缩短。前季风环流增强使得高原水汽辐散区辐散增强,水汽辐合区辐合增强,高原西南侧有东北向水汽输送增强,而高原西北侧有西南向水汽输送增强。夏季季风环流增强,高原南部至孟加拉湾地区自南向北的经向水汽输送显著增强,印度洋向高原输送的西南向水汽通量明显增加。前季风环流增强,春季高原中部及西南部降水减少,而东南部和北部降水增加。夏季季风环流增强时,高原南侧上升支增强,高原南部降水增加,而高原北部降水出现减少。  相似文献   

18.
沈晓玲  冯博  李锋  徐一平 《气象》2024,50(2):170-180
利用多源观测资料及ERA5(0.25°×0.25°)再分析资料,对2021年6月9日夜里浙江首场梅汛期局地暖区暴雨的降水成因进行了诊断分析。结果表明:此次过程环流形势与典型梅雨完全不同,属于弱天气背景下的局地暖区暴雨;南海低压和西太平洋副热带高压之间东南气流的维持,为暴雨区提供充沛的水汽来源,925 hPa超低空偏南风急流的加强有利于低层增温增湿,不稳定层结加剧,暴雨区位于急流轴左侧;整层高湿背景及较低的自由对流高度导致的弱抬升条件就能触发对流,中高层气旋性辐合旋转加强使暴雨加强,较厚的暖云层有利于提高降水效率;地面中尺度辐合带的生成激发了初始对流,其维持和加强不断激发对流云团生成,产生列车效应,导致暴雨形成。龙门山小尺度地形有利于东南气流在迎风坡强迫抬升,对流加强,且垂直速度的发展程度与地形有较好的对应关系,地形高度越高,激发的垂直速度越强。  相似文献   

19.
利用常规气象资料、物理量场资料、卫星云图、大气监测自动站等资料,对2008年7月23-24日出现在山东中东部的暴雨天气过程成因进行了诊断分析.结果表明:暴雨天气过程是副高边缘的西南暖湿气流、西南涡和地面倒槽共同影响造成的;副高在暴雨预报中非常关键,副高的强弱影响暴雨的落区;低空急流向暴雨区源源不断地输送水汽,为强对流的发展积累了不稳定能量;850 hPa θse的水平变化、能量锋区和6 h降水区分布关系密切,高层引导气流对低层的引导作用较大,加强对500 hPa形势场的维持和变化分析,有利于准确预报低层影响系统的发展和变化;本次过程降水存在明显的中尺度降水特征,地面辐合中心和辐合线为强降水发展提供了启动机制,强降雨中心位于地面辐合中心、辐合线附近.  相似文献   

20.
利用ERA5再分析资料、CMORPH融合降水资料和山地通量观测资料对2020年6月26日发生在四川冕宁一次夜间致灾暴雨进行综合诊断分析。结果表明:本次夜间暴雨发生前,白天地面热源存在明显的正异常变化,地面热源的正异常区与降水有很好的对应关系。同时大气热源(视热源和视水汽汇)与暴雨的关系密切且相互影响,降水释放凝结潜热,加热大气,使得视热源也随之增加。在暴雨发展强盛阶段,视水汽汇的垂直输送项达到最大,而视水汽汇的局地变化项能很好指示整个暴雨过程中区域水汽的净输送状况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号