首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Quantitative information regarding the length and stability condition of groundwater plumes of benzene, methyl tert‐butyl ether (MTBE), and tert‐butyl alcohol (TBA) has been compiled from thousands of underground storage tank (UST) sites in the United States where gasoline fuel releases have occurred. This paper presents a review and summary of 13 published scientific surveys, of which 10 address benzene and/or MTBE plumes only, and 3 address benzene, MTBE, and TBA plumes. These data show the observed lengths of benzene and MTBE plumes to be relatively consistent among various regions and hydrogeologic settings, with median lengths at a delineation limit of 10 µg/L falling into relatively narrow ranges from 101 to 185 feet for benzene and 110 to 178 feet for MTBE. The observed statistical distributions of MTBE and benzene plumes show the two plume types to be of comparable lengths, with 90th percentile MTBE plume lengths moderately exceeding benzene plume lengths by 16% at a 10‐µg/L delineation limit (400 feet vs. 345 feet) and 25% at a 5‐µg/L delineation limit (530 feet vs. 425 feet). Stability analyses for benzene and MTBE plumes found 94 and 93% of these plumes, respectively, to be in a nonexpanding condition, and over 91% of individual monitoring wells to exhibit nonincreasing concentration trends. Three published studies addressing TBA found TBA plumes to be of comparable length to MTBE and benzene plumes, with 86% of wells in one study showing nonincreasing concentration trends.  相似文献   

2.
Groundwater remediation and no-further action decision making at petroleum underground storage tank (UST) sites has largely been based on an understanding of plume length, plume stability, and attenuation rates for key hydrocarbon constituents. Regulatory guidance to support and guide such decisions is based in part on plume studies involving individual hydrocarbon constituents, namely benzene and methyl tert-butyl ether (MTBE). Questions remain regarding whether current guidance is applicable to chemical mixtures such as gasoline range organics (GRO), diesel range organics (DRO), and oxygen containing organic compounds (OCOCs) resulting from hydrocarbon biodegradation. To help address this concern, data from California's GeoTracker database were used to estimate maximum plume lengths, plume stability, and attenuation rates of DRO (which can be used as an analytical surrogate for OCOCs) and GRO relative to benzene and MTBE. The distributions of maximum plume lengths were similar for the four constituents with medians ranging from 27 to 32 m. The fraction of monitoring wells with a decreasing concentration trend ranged from 19% for DRO to 40% for MTBE, while fewer than 7% of the wells had an increasing concentration trend for any of the constituents. Median attenuation rates ranged from 0.10% day−1 for DRO to 0.17% day−1 for MTBE. The results suggest attenuation based risk management is appropriate for DRO and GRO plumes at most petroleum UST sites.  相似文献   

3.
This article describes various statistical analyses of plume-length data to evaluate the hypothesis that the presence of ethanol in gasoline may hinder the natural attenuation of hydrocarbon releases. Plume dimensions were determined for gasoline-contaminated sites to evaluate the effect of ethanol on benzene and toluene plume lengths. Data from 217 sites in Iowa (without ethanol; set 1) were compared to data from 29 sites in Kansas that were contaminated by ethanol-amended gasoline (10% ethanol by volume; set 2). The data were log-normally distributed, with mean benzene plume lengths (± standard deviation) of 193 ± 135 feet for set 1 and 263 ± 103 feet for set 2 (36% longer). The median lengths were 156 feet and 263 feet (69% longer), respectively. Mean toluene plume lengths were 185± 131 feet for set 1 and 211 ±99 feet for set 2 (14% longer), and the median lengths were 158 feet and 219 feet (39% longer), respectively. Thus, ethanol-containing BTEX plumes were significantly longer for benzene (p < 0.05), but not for toluene. A Wilcoxon signed rank test showed that toluene plumes were generally shorter than benzene plumes, which suggests that toluene was attenuated to a greater extent than benzene. This trend was more pronounced for set 2 (with ethanol), which may reflect that benzene attenuation is more sensitive to the depletion of electron acceptors caused by ethanol degradation. These results support the hypothesis that the presence of ethanol in gasoline can lead to longer benzene plumes. The importance of this effect, however, is probably site-specific, largely depending on the release scenario and the available electron acceptor pool.  相似文献   

4.
Quantifying the overall progress in remediation of contaminated groundwater has been a significant challenge. We utilized the GeoTracker database to evaluate the progress in groundwater remediation from 2001 to 2011 at over 12,000 sites in California with contaminated groundwater. This paper presents an analysis of analytical results from over 2.1 million groundwater samples representing at least $100 million in laboratory analytical costs. Overall, the evaluation of monitoring data shows a large decrease in groundwater concentrations of gasoline constituents. For benzene, half of the sites showed a decrease in concentration of 85% or more. For methyl tert‐butyl ether (MTBE), this decrease was 96% and for TBE, 87%. At remediation sites in California, the median source attenuation rate was 0.18/year for benzene and 0.36/year for MTBE, corresponding to half‐lives of 3.9 and 1.9 years, respectively. Attenuation rates were positive (i.e., decreasing concentration) for benzene at 76% of sites and for MTBE at 85% of sites. An evaluation of sites with active remediation technologies suggests differences in technology effectiveness. The median attenuation rates for benzene and MTBE are higher at sites with soil vapor extraction or air sparging compared with sites without these technologies. In contrast, there was little difference in attenuation rates at sites with or without soil excavation, dual phase extraction, or in situ enhanced biodegradation. The evaluation of remediation technologies, however, did not evaluate whether specific systems were well designed or implemented and did not control for potential differences in other site factors, such as soil type.  相似文献   

5.
Since the 1990s, questions have arisen as to whether the release of ethanol‐blended fuel will inhibit natural attenuation of other gasoline constituents in groundwater. This study evaluated the hypothesis that ethanol affects hydrocarbon attenuation and whether the use of ethanol‐blended fuel alters the applicability of monitored natural attenuation (MNA) as an approach for managing risks at fuel‐release sites. Groundwater data from California's GeoTracker database were used to compare attenuation of benzene, toluene, methyl tert‐butyl ether (MTBE), and tert‐butyl alcohol (TBA) at sites with and without detections of ethanol. Excel‐based tools were developed to conduct attenuation evaluations on thousands of wells simultaneously. Ethanol was detected at least once in 4.5% of the wells and 0.6% of the samples of which it was analyzed. The distribution of Mann‐Kendall concentration trend analysis results and first‐order attenuation rates were essentially the same at sites with or without ethanol detections. Median plume lengths were shorter at sites where ethanol had not been detected compared to sites where ethanol was detected (36 vs. 43 m for benzene; 36 vs. 42 m for toluene; 43 vs. 52 m for MTBE; and 44 vs. 59 m for TBA). However, the distribution of plume lengths was similar irrespective of ethanol concentrations, suggesting other factors may influence plume elongation. Finally, while anaerobic ethanol degradation can result in methane generation, the distributions of methane concentrations were the same at sites with and without ethanol detections. These results suggest that the use of ethanol‐blended fuel should not limit the application of MNA at most biodegrading fuel‐release sites.  相似文献   

6.
Groundwater contamination by fuel-related compounds such as the fuel oxygenates methyl tert -butyl ether (MTBE), tert -butyl alcohol (TBA), and tert -amyl methyl ether (TAME) presents a significant issue to managers and consumers of groundwater and surface water that receives groundwater discharge. Four sites were investigated on Long Island, New York, characterized by groundwater contaminated with gasoline and fuel oxygenates that ultimately discharge to fresh, brackish, or saline surface water. For each site, contaminated groundwater discharge zones were delineated using pore water geochemistry data from 15 feet (4.5 m) beneath the bottom of the surface water body in the hyporheic zone and seepage-meter tests were conducted to measure discharge rates. These data when combined indicate that MTBE, TBA, and TAME concentrations in groundwater discharge in a 5-foot (1.5-m) thick section of the hyporheic zone were attenuated between 34% and 95%, in contrast to immeasurable attenuation in the shallow aquifer during contaminant transport between 0.1 and 1.5 miles (0.1 to 2.4 km). The attenuation observed in the hyporheic zone occurred primarily by physical processes such as mixing of groundwater and surface water. Biodegradation also occurred as confirmed in laboratory microcosms by the mineralization of U- 14C-MTBE and U-14C-TBA to 14CO2 and the novel biodegradation of U- 14C-TAME to 14CO2 under oxic and anoxic conditions. The implication of fuel oxygenate attenuation observed in diverse hyporheic zones suggests an assessment of the hyporheic zone attenuation potential (HZAP) merits inclusion as part of site assessment strategies associated with monitored or engineered attenuation.  相似文献   

7.
A paradigm for the design, monitoring, and optimization of in situ methyl tert -butyl ether (MTBE) aerobic biobarriers is presented. In this technology, an oxygen-rich biologically reactive treatment zone (the "biobarrier") is established in situ and downgradient of the source of dissolved MTBE contamination in groundwater, typically gasoline-impacted soils resulting from leaks and spills at service station sites or other fuel storage and distribution facilities. The system is designed so that groundwater containing dissolved MTBE flows to, and through, the biobarrier treatment zone, ideally under natural gradient conditions so that no pumping is necessary. As the groundwater passes through the biobarrier, the MTBE is converted by microorganisms to innocuous by-products. The system also reduces concentrations of other aerobically degradable chemicals dissolved in the groundwater, such as benzene, toluene, xylenes, and tert -butyl alcohol. This design paradigm is based on experience gained while designing, monitoring, and optimizing pilot-scale and full-scale MTBE biobarrier systems. It is largely empirically based, although the design approach does rely on simple engineering calculations. The paradigm emphasizes gas injection–based oxygen delivery schemes, although many of the steps would be common to other methods of delivering oxygen to aquifers.  相似文献   

8.
The HydraSleeve is a sampling device for collecting groundwater from the screened interval of a monitoring well without purging that uses a check valve to take in water over the first 3 to 5 feet of an upward pulling motion. If the check valve does not perform as expected, then the HydraSleeve has the potential to collect water from an incorrect depth interval, possibly above the screened interval of the well. We have evaluated volatile organic chemical (VOC) results from groundwater samples collected with the HydraSleeve sampler compared to other methods for sampling monitoring wells at three sites. At all three sites, lower VOC concentration results were observed for samples collected using the HydraSleeve. At two of these three sites, the low concentration sample results were most strongly associated with monitoring wells with more than 10 feet of water above the monitoring well‐screened interval. At the site with the largest dataset, the median bias for samples collected with HydraSleeve was ?20% (p < 0.001). At this site, a bias of ?26% (p < 0.001) was observed for the subset of monitoring wells with greater than 10 feet of water above the screened interval compared to a bias of ?7% (p = 0.21) for wells screened across the top of the water table. In addition to lower VOC concentrations, the monitoring records obtained using the HydraSleeve were more variable compared to monitoring records obtained using purge sampling methods, a characteristic that would make it more difficult to determine the long‐term concentration trend in the well.  相似文献   

9.
Noxious weeds threaten the Sheyenne National Grassland (SNG) ecosystem and therefore herbicides have been used for control. To protect groundwater quality, the herbicide application is restricted to areas where the water table is less than 10 feet (3.05 m) below the ground surface in highly permeable soils, or less than 6 feet (1.83 m) below the ground surface in low permeable soils. A local MODFLOW model was extracted from a regional GFLOW analytic element model and used to develop depth‐to‐groundwater maps in the SNG that are representative for the particular time frame of herbicide applications. These maps are based on a modeled groundwater table and a digital elevation model (DEM). The accuracy of these depth‐to‐groundwater maps is enhanced by an artificial neural networks (ANNs) interpolation scheme that reduces residuals at 48 monitoring wells. The combination of groundwater modeling and ANN improved depth‐to‐groundwater maps, which in turn provided more informed decisions about where herbicides can or cannot be safely applied.  相似文献   

10.
Vapor intrusion pathway evaluations commonly begin with a comparison of volatile organic chemical (VOC) concentrations in groundwater to generic, or Tier 1, screening levels. These screening levels are typically quite low reflecting both a desired level of conservatism in a generic risk screening process as well as limitations in understanding of physical and chemical processes that impact vapor migration in the subsurface. To study the latter issue, we have collected detailed soil gas and groundwater vertical concentration profiles and evaluated soil characteristics at seven different sites overlying chlorinated solvent contaminant plumes. The goal of the study was to evaluate soil characteristics and their impacts on VOC attenuation from groundwater to deep soil gas (i.e., soil gas in the unsaturated zone within 2 feet of the water table). The study results suggest that generic screening levels can be adjusted by a factor of 100× at sites with fine‐grained soils above the water table, as identified by visual observations or soil air permeability measurements. For these fine‐grained soil sites, the upward‐adjusted screening levels maintain a level of conservatism while potentially eliminating the need for vapor intrusion investigations at sites that may not meet generic screening criteria.  相似文献   

11.
Two groundwater plumes in north central Minnesota with residual crude oil sources have 20 to 50 mg/L of nonvolatile dissolved organic carbon (NVDOC). These values are over 10 times higher than benzene and two to three times higher than Diesel Range Organics in the same wells. On the basis of previous work, most of the NVDOC consists of partial transformation products from the crude oil. Monitoring data from 1988 to 2015 at one of the sites located near Bemidji, MN show that the plume of metabolites is expanding toward a lakeshore located 335 m from the source zone. Other mass balance studies of the site have demonstrated that the plume expansion is driven by the combined effect of continued presence of the residual crude oil source and depletion of the electron accepting capacity of solid phase iron oxide and hydroxides on the aquifer sediments. These plumes of metabolites are not covered by regulatory monitoring and reporting requirements in Minnesota and other states. Yet, a review of toxicology studies indicates that polar metabolites of crude oil may pose a risk to aquatic and mammalian species. Together the results suggest that at sites where residual sources are present, monitoring of NVDOC may be warranted to evaluate the fates of plumes of hydrocarbon transformation products.  相似文献   

12.
Evaluation of volatilization as a natural attenuation pathway for MTBE   总被引:2,自引:0,他引:2  
Lahvis MA  Baehr AL  Baker RJ 《Ground water》2004,42(2):258-267
Volatilization and diffusion through the unsaturated zone can be an important pathway for natural attenuation remediation of methyl tert-butyl ether (MTBE) at gasoline spill sites. The significance of this pathway depends primarily on the distribution of immiscible product within the unsaturated zone and the relative magnitude of aqueous-phase advection (ground water recharge) to gaseous-phase diffusion. At a gasoline spill site in Laurel Bay, South Carolina, rates of MTBE volatilization from ground water downgradient from the source are estimated by analyzing the distribution of MTBE in the unsaturated zone above a solute plume. Volatilization rates of MTBE from ground water determined by transport modeling ranged from 0.0020 to 0.0042 g m(-2)/year, depending on the assumed rate of ground water recharge. Although diffusive conditions at the Laurel Bay site are favorable for volatilization, mass loss of MTBE is insignificant over the length (230 m) of the solute plume. Based on this analysis, significant volatilization of MTBE from ground water downgradient from source areas at other sites is not likely. In contrast, model results indicate that volatilization coupled with diffusion to the atmosphere could be a significant mass loss pathway for MTBE in source areas where residual product resides above the capillary zone. Although not documented, mass loss of MTBE at the Laurel Bay site due to volatilization and diffusion to the atmosphere are predicted to be two to three times greater than mass loading of MTBE to ground water due to dissolution and recharge. This result would imply that volatilization in the source zone may be the critical natural attenuation pathway for MTBE at gasoline spill sites, especially when considering capillary zone limitations on volatilization of MTBE from ground water and the relative recalcitrance of MTBE to biodegradation.  相似文献   

13.
Methyl tert -butyl ether (MTBE) and benzene have been measured since 1993 in a shallow, sandy aquifer contaminated by a mid-1980s release of gasoline containing fuel oxygenates. In wells downgradient of the release area, MTBK was detected before benzene, reflecting a chromatographic-like separation of these compounds in the direction of ground water flow. Higher concentrations of MTBE and benzene were measured in the deeper sampling ports of multilevel sampling wells located near the release area, and also up to 10 feet (3 m) below the water table surface in nested wells located farther from the release area. This distribution of higher concentrations at depth is caused by recharge events that deflect originally horizontal ground water flowlines. In the laboratory, microcosms containing aquifer material incubated with uniformly labeled 14C-MTBE under aerobic and anaerobic. Fe(III)-reducing conditions indicated a low but measurable biodegradation potential (<3%14C-MTBW as 14CO2) after a seven-month incubation period, Tert -butyl alcohol (TBA), a proposed microbial-MTBE transformation intermediate, was detected in MTBE-contaminated wells, but TBA was also measured in unsaturated release area sediments. This suggests that TBA may have been present in the original fuel spilled and does not necessarily reflect microbial degradation of MTBE. Combined, these data suggest that milligram per liter to microgram per liter decreases in MTBE concentrations relative to benzene are caused by the natural attenuation processes of dilution and dispersion with less-contaminated ground water in the direction of flow rather than biodegradation at this point source gasoline release site.  相似文献   

14.
A groundwater plume containing high concentrations of pharmaceutical compounds, mainly sulfonamides, barbiturates, and ethyl urethane, in addition to chlorinated ethenes and benzene was investigated. The contamination originating from a former pharmaceutical industry discharges into a multilayered aquifer system and a downgradient stream. In this study, geological and hydrogeological data were integrated into a numerical flow model to examine identified trends using statistical approaches, including principal component analysis and hierarchal cluster analysis. A joint interpretation of the groundwater flow paths and contaminant concentrations in the different compartments (i.e., groundwater and hyporheic zone) provided insight on the transport processes of the different contaminant plumes to the stream. The analysis of historical groundwater concentrations of pharmaceutical compounds at the site suggested these compounds are slowly degrading. The pharmaceutical compounds migrate in both a deep semiconfined aquifer, as well as in the shallow unconfined aquifer, and enter the stream along a 2-km stretch. This contrasted with the chlorinated ethenes, which mainly discharge to the stream as a focused plume from the unconfined aquifer. The integrated approach developed here, combining groundwater flow modeling and statistical analyses of the contaminant concentration data collected in groundwater and the hyporheic zone, lead to an improved understanding of the observed distribution of contaminants in the unconfined and semiconfined aquifers, and thus to their discharge to the stream. This approach is particularly relevant for large and long-lasting contaminant sources and plumes, such as abandoned landfills and industrial production sites, where field investigations may be very expensive.  相似文献   

15.
Isotopic mapping of groundwater perchlorate plumes   总被引:1,自引:0,他引:1  
Analyses of stable isotope ratios of chlorine and oxygen in perchlorate can, in some cases, be used for mapping and source identification of groundwater perchlorate plumes. This is demonstrated here for large, intersecting perchlorate plumes in groundwater from a region having extensive groundwater perchlorate contamination and a large population dependent on groundwater resources. The region contains both synthetic perchlorate derived from rocket fuel manufacturing and testing activities and agricultural perchlorate derived predominantly from imported Chilean (Atacama) nitrate fertilizer, along with a likely component of indigenous natural background perchlorate from local wet and dry atmospheric deposition. Most samples within each plume reflect either a predominantly synthetic or a predominantly agricultural perchlorate source and there is apparently a minor contribution from the indigenous natural background perchlorate. The existence of isotopically distinct perchlorate plumes in this area is consistent with other lines of evidence, including groundwater levels and flow paths as well as the historical land use and areal distribution of potential perchlorate sources.  相似文献   

16.
Vapor intrusion (VI) involves migration of volatile contaminants from subsurface through unsaturated soil into overlying buildings. In 2015, the US EPA recommended an approach for screening VI risks associated with gasoline releases from underground storage tank (UST) sites. Additional assessment of the VI risk from petroleum hydrocarbons was deemed unnecessary for buildings separated from vapor sources by more than recommended vertical screening distances. However, these vertical screening distances did not apply to potential VI risks associated with releases of former leaded gasoline containing 1,2-dichloroethane (1,2-DCA), because of a lack of empirical data on the attenuation of 1,2-DCA in soil gas. This study empirically evaluated 144 paired measurements of 1,2-DCA concentrations in soil gas and groundwater collected at 47 petroleum UST sites combined with BioVapor modeling. This included (1) assessing the frequency of 1,2-DCA detections in soil gas below 10−6 risk-based screening levels at different vertical separation distances and (2) comparing the US EPA recommended vertical screening distances with those predicted by BioVapor modeling. Vertical screening distances were predicted for different soil types using aerobic biodegradation rate constants estimated from the measured soil-gas data combined with conservative estimates of source concentrations. The modeling indicates that the vertical screening distance of 6 feet (1.8 m) recommended for dissolved-phase sources is applicable for 1,2-DCA below certain threshold concentrations in groundwater, while 15 feet (4.6 m) recommended for light nonaqueous phase liquid (LNAPL) sources is applicable for sites with clay and loam soils in the vadose zone, but not sand, if 1,2-DCA concentrations in groundwater exceed 150 μg/L. This dependence of the predicted vertical screening distances on soil type places added emphasis on proper soil characterization for VI screening at sites with 1,2-DCA sources. The soil-gas data suggests that a vertical screening distance of 15 feet (4.6 m) is necessary for both dissolved-phase and LNAPL sources.  相似文献   

17.
Many current watershed modeling efforts now incorporate surface water and groundwater for managing water resources since the exchanges between groundwater and surface water need a special focus considering the changing climate. The influence of groundwater dynamics on water and energy balance components is investigated in the Snake River Basin (SRB) by coupling the Variable Infiltration Capacity (VIC) and MODFLOW models (VIC‐MF) for the period of 1986 through 2042. A 4.4% increase in base flows and a 10.3% decrease in peak flows are estimated by VIC‐MF compared to the VIC model in SRB. The VIC‐MF model shows significant improvement in the streamflow simulation (Nash‐Sutcliffe efficiency [NSE] of 0.84) at King Hill, where the VIC model could not capture the effect of spring discharge in the streamflow simulation (NSE of ?0.30); however, the streamflow estimates show an overall decreasing trend. Two climate scenarios representing median and high radiative‐forcings such as representative concentration pathways 4.5 and 8.5 show an average increase in the water table elevations between 2.1 and 2.6 m (6.9 and 8.5 feet) through the year 2042. The spatial patterns of these exchanges show a higher groundwater elevation of 15 m (50 feet) in the downstream area and a lower elevation of up to 3 m (10 feet) in the upstream area. Broadly, this study supports results of previous work demonstrating that integrated assessment of groundwater‐surface water enables stakeholders to balance pumping, recharge and base flow needs and to manage the watersheds that are subjected to human pressures more sustainably.  相似文献   

18.
A study was conducted from July 1998 through November 2007 on the occurrence and distribution of the fuel oxygenate methyl tert-butyl ether (MTBE) in a large sand and gravel aquifer located in southern Maine. MTBE was detected in 44% of 129 water samples collected from monitoring wells in concentrations up to 38.7 µg/L (reporting limit = 0.1 µg/L). The number of wells with detectable quantities of MTBE declined slightly between 1999 and 2007, but in general MTBE persisted throughout the period of study. Overall, MTBE was detected more frequently in the shallow and more transmissive parts of the aquifer. There was a statistically significant difference (p < 0.001) for MTBE concentrations relative to nearby land uses. MTBE was detected in 83% of the samples collected from wells in low-density residential areas, in 50% of samples from urban areas, and in 60% of samples from undeveloped areas. The concentrations of MTBE in the test wells were compared across the sample dates for trends and seven wells had a positive trend (Mann–Kendall statistic), but none was significant at p < 0.05. Nine wells had a negative trend, but only one was significant at p < 0.05. Three wells had no trend. The absence of strong or even consistent trends indicates that MTBE persists in shallow groundwater, even after gasoline formulations were changed to reduce or eliminate MTBE.  相似文献   

19.
Field Treatment of MTBE‐Contaminated Groundwater Using Ozone/UV Oxidation   总被引:1,自引:0,他引:1  
Methyl‐tertiary butyl ether (MTBE) is often found in groundwater as a result of gasoline spills and leaking underground storage tanks. An extrapolation of occurrence data in 2008 estimated at least one detection of MTBE in approximately 165 small and large public water systems serving 896,000 people nationally (United States Environmental Protection Agency [U.S. EPA] 2008). The objective of this collaborative field study was to evaluate a small groundwater treatment system to determine the effectiveness of ultraviolet (UV)/ozone treatment in removing MTBE from contaminated drinking water wells. A pilot‐scale advanced oxidation process (AOP) system was tested to evaluate the oxidation efficiency of MTBE and intermediates under field conditions. This system used ozone as an oxidizer in the presence of UV light at hydraulic retention times varying from 1 to 3 min. MTBE removal efficiencies approaching 97% were possible with this system, even with low retention times. The intermediate t‐butyl alcohol (TBA) was removed to a lesser extent (71%) under the same test conditions. The main intermediate formed in the oxidation process of the contaminated groundwater in these studies was acetone. The concentrations of the other anticipated intermediates t‐butyl formate (TBF), isopropyl alcohol (IPA), methyl acetate (MAc), and possible co‐occurring aromatics (BTEX) in the effluent were negligible.  相似文献   

20.
The Dogo hot spring, situated in Matsuyama City, Ehime Prefecture, Japan, is one of the oldest and most famous hot springs in Japan. The groundwater level or discharge at the spring decreased four times during the past eight or nine Nankai earthquakes. These are large interplate earthquakes that have occurred repeatedly in the western part of the Nankai Trough at intervals of 100–200 years since A.D. 684. To clarify the mechanism of these earthquake-related changes in the water level at the spring, we analyzed groundwater-level data recorded at the spring immediately after the 1946 Nankai earthquake and over the period from 1985 to 2006. We detected the other nine postseismic increases in groundwater level and no decreases, except for a large decrease of 11.4 m related to the 1946 Nankai earthquake. The increases were probably caused by ground-shaking, while the decrease was caused by a change in coseismic volumetric strain. These results lead to the following explanation of the recorded earthquake-related changes in the groundwater level at the Dogo hot spring. Both coseismic changes in volumetric strain and ground-shaking can lead to postseismic changes in groundwater pressure. The increase in groundwater pressure arising from ground-shaking is generally greater than the change in pressure associated with changes in coseismic volumetric strain; however, at the time of the Nankai earthquakes, the spring experiences a large increase in coseismic volumetric strain, leading to a considerably larger decrease in the groundwater level than the increase associated with ground-shaking. Therefore, the groundwater level at the Dogo hot spring usually increases at times of relatively large earthquakes, although the groundwater level or discharge decreases in the case of the Nankai earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号