首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
This paper explores the predicted hydrologic responses associated with the compounded error of cascading global circulation model (GCM) uncertainty through hydrologic model uncertainty due to climate change. A coupled groundwater and surface water flow model (GSFLOW) was used within the differential evolution adaptive metropolis (DREAM) uncertainty approach and combined with eight GCMs to investigate uncertainties in hydrologic predictions for three subbasins of varying hydrogeology within the Santiam River basin in Oregon, USA. Predictions of future hydrology in the Santiam River include increases in runoff in the fall and winter months and decreases in runoff for the spring and summer months. One‐year peak flows were predicted to increase whereas 100‐year peak flows were predicted to slightly decrease. The predicted 10‐year 7‐day low flow decreased in two subbasins with little groundwater influences but increased in another subbasin with substantial groundwater influences. Uncertainty in GCMs represented the majority of uncertainty in the analysis, accounting for an average deviation from the median of 66%. The uncertainty associated with use of GSFLOW produced only an 8% increase in the overall uncertainty of predicted responses compared to GCM uncertainty. This analysis demonstrates the value and limitations of cascading uncertainty from GCM use through uncertainty in the hydrologic model, offers insight into the interpretation and use of uncertainty estimates in water resources analysis, and illustrates the need for a fully nonstationary approach with respect to calibrating hydrologic models and transferring parameters across basins and time for climate change analyses. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Groundwater models often serve as management tools to evaluate competing water uses including ecosystems, irrigated agriculture, industry, municipal supply, and others. Depletion potential mapping—showing the model‐calculated potential impacts that wells have on stream baseflow—can form the basis for multiple potential management approaches in an oversubscribed basin. Specific management approaches can include scenarios proposed by stakeholders, systematic changes in well pumping based on depletion potential, and formal constrained optimization, which can be used to quantify the tradeoff between water use and stream baseflow. Variables such as the maximum amount of reduction allowed in each well and various groupings of wells using, for example, K‐means clustering considering spatial proximity and depletion potential are considered. These approaches provide a potential starting point and guidance for resource managers and stakeholders to make decisions about groundwater management in a basin, spreading responsibility in different ways. We illustrate these approaches in the Little Plover River basin in central Wisconsin, United States—home to a rich agricultural tradition, with farmland and urban areas both in close proximity to a groundwater‐dependent trout stream. Groundwater withdrawals have reduced baseflow supplying the Little Plover River below a legally established minimum. The techniques in this work were developed in response to engaged stakeholders with various interests and goals for the basin. They sought to develop a collaborative management plan at a watershed scale that restores the flow rate in the river in a manner that incorporates principles of shared governance and results in effective and minimally disruptive changes in groundwater extraction practices.  相似文献   

4.
New Zealand's gravel‐bed rivers have deposited coarse, highly conductive gravel aquifers that are predominantly fed by river water. Managing their groundwater resources is challenging because the recharge mechanisms in these rivers are poorly understood and recharge rates are difficult to predict, particularly under a more variable future climate. To understand the river‐groundwater exchange processes in gravel‐bed rivers, we investigate the Wairau Plain Aquifer using a three‐dimensional groundwater flow model which was calibrated using targeted field observations, “soft” information from experts of the local water authority, parameter regularization techniques, and the model‐independent parameter estimation software PEST. The uncertainty of simulated river‐aquifer exchange flows, groundwater heads, spring flows, and mean transit times were evaluated using Null‐space Monte‐Carlo methods. Our analysis suggests that the river is hydraulically perched (losing) above the regional water table in its upper reaches and is gaining downstream where marine sediments overlay unconfined gravels. River recharge rates are on average 7.3 m3/s, but are highly dynamic in time and variable in space. Although the river discharge regularly hits 1000 m3/s, the net exchange flow rarely exceeds 12 m3/s and seems to be limited by the physical constraints of unit‐gradient flux under disconnected rivers. An important finding for the management of the aquifer is that changes in aquifer storage are mainly affected by the frequency and duration of low‐flow periods in the river. We hypothesize that the new insights into the river‐groundwater exchange mechanisms of the presented case study are transferable to other rivers with similar characteristics.  相似文献   

5.
A numerical approach for approximating statistical moments of hydraulic heads of variably saturated flows in multi-dimensional porous media is developed. The approximation relies on a first-order Taylor series expansion of a finite element flow model and an adjoint state numerical method for variably saturated flows to evaluate sensitivities. This approach can be employed to analyze uncertainties associated with predictions of head of steady-state or transient flows in variably saturated porous media, with any type of boundary and initial conditions. Limitations of stochastic analytical methods such as spectral/perturbation approaches and the time-consuming Monte Carlo simulation technique are thus alleviated. An example is given to demonstrate the utility of the approach and to investigate the temporal evolution of head variances in a variably saturated flow regime. Results show that the fluctuation of the water table can have significant impacts on the propagation of the head variance.  相似文献   

6.
Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 km3/year during 1998–2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 km3/year during 1998–2002. It is the sum of the net abstraction of 250 km3/year of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/year of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on groundwater table observations, and with estimates of total water storage variations from the GRACE satellites mission. Due to the difficulty in estimating area-averaged seasonal groundwater storage variations from point observations of groundwater levels, it is uncertain whether WaterGAP underestimates actual variations or not. We conclude that WaterGAP possibly overestimates water withdrawals in the High Plains aquifer where impact of human water use on water storage is readily discernible based on WaterGAP calculations and groundwater observations. No final conclusion can be drawn regarding the possibility of monitoring water withdrawals in the High Plains aquifer using GRACE. For the less intensively irrigated Mississippi basin, observed and modeled seasonal groundwater storage reveals a discernible impact of water withdrawals in the basin, but this is not the case for total water storage such that water withdrawals at the scale of the whole Mississippi basin cannot be monitored by GRACE.  相似文献   

7.
Analysis of methods to estimate spring flows in a karst aquifer   总被引:2,自引:0,他引:2  
Sepúlveda N 《Ground water》2009,47(3):337-349
Hydraulically and statistically based methods were analyzed to identify the most reliable method to predict spring flows in a karst aquifer. Measured water levels at nearby observation wells, measured spring pool altitudes, and the distance between observation wells and the spring pool were the parameters used to match measured spring flows. Measured spring flows at six Upper Floridan aquifer springs in central Florida were used to assess the reliability of these methods to predict spring flows. Hydraulically based methods involved the application of the Theis, Hantush-Jacob, and Darcy-Weisbach equations, whereas the statistically based methods were the multiple linear regressions and the technology of artificial neural networks (ANNs). Root mean square errors between measured and predicted spring flows using the Darcy-Weisbach method ranged between 5% and 15% of the measured flows, lower than the 7% to 27% range for the Theis or Hantush-Jacob methods. Flows at all springs were estimated to be turbulent based on the Reynolds number derived from the Darcy-Weisbach equation for conduit flow. The multiple linear regression and the Darcy-Weisbach methods had similar spring flow prediction capabilities. The ANNs provided the lowest residuals between measured and predicted spring flows, ranging from 1.6% to 5.3% of the measured flows. The model prediction efficiency criteria also indicated that the ANNs were the most accurate method predicting spring flows in a karst aquifer.  相似文献   

8.
Simulating groundwater flow in basin‐fill aquifers of the semiarid southwestern United States commonly requires decisions about how to distribute aquifer recharge. Precipitation can recharge basin‐fill aquifers by direct infiltration and transport through faults and fractures in the high‐elevation areas, by flowing overland through high‐elevation areas to infiltrate at basin‐fill margins along mountain fronts, by flowing overland to infiltrate along ephemeral channels that often traverse basins in the area, or by some combination of these processes. The importance of accurately simulating recharge distributions is a current topic of discussion among hydrologists and water managers in the region, but no comparative study has been performed to analyze the effects of different recharge distributions on groundwater simulations. This study investigates the importance of the distribution of aquifer recharge in simulating regional groundwater flow in basin‐fill aquifers by calibrating a groundwater‐flow model to four different recharge distributions, all with the same total amount of recharge. Similarities are seen in results from steady‐state models for optimized hydraulic conductivity values, fit of simulated to observed hydraulic heads, and composite scaled sensitivities of conductivity parameter zones. Transient simulations with hypothetical storage properties and pumping rates produce similar capture rates and storage change results, but differences are noted in the rate of drawdown at some well locations owing to the differences in optimized hydraulic conductivity. Depending on whether the purpose of the groundwater model is to simulate changes in groundwater levels or changes in storage and capture, the distribution of aquifer recharge may or may not be of primary importance.  相似文献   

9.
A fuzzy parameterized probabilistic analysis (FPPA) method was developed in this study to assess risks associated with environmental pollution-control problems. FPPA integrated environmental transport modeling, fuzzy transformation, probabilistic risk assessment, fuzzy risk quantification into a general risk assessment framework, and was capable of handling uncertainties expressed as fuzzy-parameterized stochastic distributions. The proposed method was applied to two environmental pollution problems, with one being about the point-source pollution in a river system with uncertain water quality parameters and the other being concerned with groundwater contaminant plume from waste landfill site with poorly known contaminant physical properties. The study results indicated that the complex uncertain features had significant impacts on modeling and risk-assessment outputs; the degree of impacts of modeling parameters were highly dependent on the level of imprecision of these parameters. The results also implied that FPPA was capable of addressing vagueness or imprecision associated with probabilistic risk evaluation, and help generate risk outputs that could be elucidated under different possibilistic levels. The proposed method could be used by environmental managers to evaluate trade-offs involving risks and costs, as well as identify management solutions that sufficiently hedge against dual uncertainties.  相似文献   

10.
An ability to quantify the reliability of probabilistic flood inundation predictions is a requirement not only for guiding model development but also for their successful application. Probabilistic flood inundation predictions are usually produced by choosing a method of weighting the model parameter space, but previous study suggests that this choice leads to clear differences in inundation probabilities. This study aims to address the evaluation of the reliability of these probabilistic predictions. However, a lack of an adequate number of observations of flood inundation for a catchment limits the application of conventional methods of evaluating predictive reliability. Consequently, attempts have been made to assess the reliability of probabilistic predictions using multiple observations from a single flood event. Here, a LISFLOOD‐FP hydraulic model of an extreme (>1 in 1000 years) flood event in Cockermouth, UK, is constructed and calibrated using multiple performance measures from both peak flood wrack mark data and aerial photography captured post‐peak. These measures are used in weighting the parameter space to produce multiple probabilistic predictions for the event. Two methods of assessing the reliability of these probabilistic predictions using limited observations are utilized; an existing method assessing the binary pattern of flooding, and a method developed in this paper to assess predictions of water surface elevation. This study finds that the water surface elevation method has both a better diagnostic and discriminatory ability, but this result is likely to be sensitive to the unknown uncertainties in the upstream boundary condition. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Groundwater is not a sustainable resource, unless abstraction is balanced by recharge. Identifying the sources of recharge in a groundwater basin is critical for sustainable groundwater management. We studied the importance of river water recharge to groundwater in the south‐eastern San Joaquin Valley (24,000 km2, population 4 million). We combined dissolved noble gas concentrations, stable isotopes, tritium, and carbon‐14 analyses to analyse the sources, mechanisms, and timescales of groundwater recharge. Area‐representative groundwater sampling and numerical model input data enabled a stable isotope mass balance and quantitative estimates of river and local recharge. River recharge, identified by a lighter stable isotope signature, represents 47 ± 4% of modern groundwater in the San Joaquin Valley (recharged after 1950) but only 26 ± 4% of premodern groundwater (recharged before 1950). This implies that the importance of river water recharge in the San Joaquin valley has nearly doubled and is likely the result of a 40% increase in total recharge, caused by river water irrigation return flows and increased stream depletion and river recharge due to groundwater pumping. Compared with the large and long‐duration capacity for water storage in the subsurface, storage of water in rivers is limited in time and volume, as evidenced by cold river recharge temperatures resulting from fast infiltration and recharge. Groundwater banking of seasonal surface water flows and expansion of managed aquifer recharge practices therefore appear to be a natural and promising method for increasing the resilience of the San Joaquin Valley water supply system.  相似文献   

12.
Groundwater is a critical resource not only for human communities but also for many terrestrial, riparian, and aquatic ecosystems and species. Yet groundwater planning and management decisions frequently ignore or inadequately address the needs of these natural systems. As a consequence, ecosystems dependent on groundwater have been threatened, degraded, or eliminated, especially in arid regions. There is growing acknowledgment that governmental protections for these ecological resources are necessary, but current legal, regulatory and voluntary provisions are often inadequate. Groundwater management premised on “safe yield,” which aims to balance human withdrawals with natural recharge rates, typically provides little to no consideration for water needed by ecosystems. Alternatively, the “sustainable yield” concept aims to integrate social, economic and environmental needs for groundwater, but the complexity of groundwater systems creates substantial uncertainty about the impact that current or future groundwater withdrawals will have on ecosystems. Regardless of the legal or regulatory framework, guidance is needed to help ensure environmental water needs will be met, especially in the face of pressure to increase human uses of groundwater resources. In this paper, we describe minimum provisions for planning, managing, and monitoring groundwater that collectively can lower the risk of harm to groundwater-dependent ecosystems and species, with a special emphasis on arid systems, where ecosystems and species may be especially reliant upon and sensitive to groundwater dynamics.  相似文献   

13.
Coastal groundwater discharge (CGD) plays an important role in coastal hydrogeological systems as they are a water resource that needs to be managed, particularly in wetland areas. Despite its importance, identifying and monitoring CGD often presents physical and logistical constraints, restraining the application of more traditional submarine groundwater discharge surveying techniques. Here we investigate the capability of electrical resistivity imaging (ERI) in the Peníscola wetland (Mediterranean coast, Spain). ERI surveying made it possible to identify and delineate an ascending regional groundwater flow of thermal and Ra‐enriched groundwater converging with local flows and seawater intrusion. The continuous inputs of Ra‐rich groundwater have induced high activities of Ra isotopes and 222Rn into the marsh area, becoming among the highest previously reported in wetlands and coastal lagoons. Geoelectrical imaging enabled inferring focused upward discharging areas, leaking from the aquifer roof through a confining unit and culminating as spring pools nourishing the wetland system. Forward modelling over idealized subsurface configurations, borehole datasets, potentiometric records from standpipe piezometers, petrophysical analysis, and four natural and independent tracers (224Ra, 222Rn, temperature and salinity) permitted assessing the geoelectrical model and a derived hydrogeological pattern. The research highlights the potential of ERI to improve hydrogeological characterization of subsurface processes in complex contexts, with different converging flows. Additionally, a hydrogeological conceptual model for a groundwater‐fed coastal wetland was proposed, based on the integration of surveying datasets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Stream–aquifer interaction plays a vital role in the water cycle, and a proper study of this interaction is needed for understanding groundwater recharge, contaminants migration, and for managing surface water and groundwater resources. A model‐based investigation of a field experiment in a riparian zone of the Schwarzbach river, a tributary of the Rhine River in Germany, was conducted to understand stream–aquifer interaction under alternative gaining and losing streamflow conditions. An equivalent streambed permeability, estimated by inverting aquifer responses to flood waves, shows that streambed permeability increased during infiltration of stream water to aquifer and decreased during exfiltration. Aquifer permeability realizations generated by multiple‐point geostatistics exhibit a high degree of heterogeneity and anisotropy. A coupled surface water groundwater flow model was developed incorporating the time‐varying streambed permeability and heterogeneous aquifer permeability realizations. The model was able to reproduce varying pressure heads at two observation wells near the stream over a period of 55 days. A Monte Carlo analysis was also carried out to simulate groundwater flow, its age distribution, and the release of a hypothetical wastewater plume into the aquifer from the stream. Results of this uncertainty analysis suggest (a) stream–aquifer exchange flux during the infiltration periods was constrained by aquifer permeability; (b) during exfiltration, this flux was constrained by the reduced streambed permeability; (c) the effect of temporally variable streambed permeability and aquifer heterogeneity were found important to improve the accurate capture of the uncertainty; and (d) probabilistic infiltration paths in the aquifer reveal that such pathways and the associated prediction of the extent of the contaminant plume are highly dependent on aquifer heterogeneity.  相似文献   

15.
Dekui Yuan  Binliang Lin 《水文研究》2009,23(19):2804-2817
Beach water table fluctuations have an impact on the transport of beach sediments and the exchange of solute and mass between coastal aquifer and nearby water bodies. Details are given of the refinement of a dynamically integrated ground‐ and surface‐water model, and its application to study ground‐ and surface‐water interactions in coastal regions. The depth‐integrated shallow‐water equations are used to represent the surface‐water flow, and the extended Darcy's equation is used to represent the groundwater flow, with a hydrostatic pressure distribution being assumed to apply for both these two types of flows. At the intertidal region, the model has two layers, with the surface‐water layer being located on the top of the groundwater layer. The governing equations for these two types of flows are discretized in a similar manner and they are combined to give one set of linear algebraic equations that can be solved efficiently. The model is used to predict water level distributions across sloping beaches, where the water table in the aquifer may or may not decouple from the free water surface. Five cases are used to test the model for simulating beach water table fluctuations induced by tides, with the model predictions being compared with existing analytical solutions and laboratory and field data published in the literature. The numerical model results show that the integrated model is capable of simulating the combined ground‐ and surface‐water flows in coastal areas. Detailed analysis is undertaken to investigate the capability of the model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Many current watershed modeling efforts now incorporate surface water and groundwater for managing water resources since the exchanges between groundwater and surface water need a special focus considering the changing climate. The influence of groundwater dynamics on water and energy balance components is investigated in the Snake River Basin (SRB) by coupling the Variable Infiltration Capacity (VIC) and MODFLOW models (VIC‐MF) for the period of 1986 through 2042. A 4.4% increase in base flows and a 10.3% decrease in peak flows are estimated by VIC‐MF compared to the VIC model in SRB. The VIC‐MF model shows significant improvement in the streamflow simulation (Nash‐Sutcliffe efficiency [NSE] of 0.84) at King Hill, where the VIC model could not capture the effect of spring discharge in the streamflow simulation (NSE of ?0.30); however, the streamflow estimates show an overall decreasing trend. Two climate scenarios representing median and high radiative‐forcings such as representative concentration pathways 4.5 and 8.5 show an average increase in the water table elevations between 2.1 and 2.6 m (6.9 and 8.5 feet) through the year 2042. The spatial patterns of these exchanges show a higher groundwater elevation of 15 m (50 feet) in the downstream area and a lower elevation of up to 3 m (10 feet) in the upstream area. Broadly, this study supports results of previous work demonstrating that integrated assessment of groundwater‐surface water enables stakeholders to balance pumping, recharge and base flow needs and to manage the watersheds that are subjected to human pressures more sustainably.  相似文献   

17.
Increasing demand for fresh water extraction in the semi-arid regions necessitates the exploration of groundwater spring potential areas notwithstanding the importance of both conservation and management aspects for planning development. Potential map of groundwater springs reduces the costs of horizontal well drilling that provides useful tool for engineers to locate probable region for groundwater existence. The objective of this study is to establish a model of the potential map of groundwater spring occurrences. A statistical and probabilistic Logistic Regression (LR) model was developed in association with the specified spring location and effective occurrence factors. The most statistically significant effective factors on spring occurrences were selected to zone groundwater spring potential areas. The proposed model was evaluated statistically. Results showed a satisfactory prediction for the proposed model. The outcome of this study facilitates the low-cost utilization of groundwater resources when policy makers need strategic development planning.  相似文献   

18.
Sea water intrusion and remediation in the Upper Floridan Aquifer in South Carolina is simulated using the finite-element model SUTRA developed by the U.S. Geological Survey. A sensitivity analysis of the effect of the hydrogeologic parameters on the sea water recharge and seepage velocities is performed. An increase in confining unit and/or in aquifer conductivity results in an increase of the sea water recharge. An increase in aquifer porosity results in a decrease of the sea water recharge. Among the three remedial techniques simulated—reduced aquifer withdrawals, an injection well, and a combined injection and capture well—the reduced aquifer withdrawals and injection well are the best methods for preventing sea water intrusion.  相似文献   

19.
Advances in remote sensing have enabled hydraulic models to run at fine scale resolutions, producing precise flood inundation predictions. However, running models at finer resolutions increase their computational expense, reducing the feasibility of running the multiple model realizations required to undertake uncertainty analysis. Furthermore, it is possible that precision gained by running fine scale models is smoothed out when treating models probabilistically. The aim of this paper is to determine the level of spatial complexity that is required when making probabilistic flood inundation predictions. The Imera basin, Sicily is used as a case study to assess how changing the spatial resolution of the hydraulic model LISFLOOD‐FP impacts on the skill of conditional probabilistic flood inundation maps given model parameter and boundary condition uncertainties. We find that model performance deteriorates at resolutions coarser than 50 m. This is predominantly caused by changes in flow pathways at coarser resolutions which lead to non‐stationarity in the optimum model parameters at different spatial resolutions. However, although it is still possible to produce probabilistic flood maps that contain a coherent outline of the flood extent at coarser resolutions, the reliability of these maps deteriorates at resolutions coarser than 100 m. Additionally, although the rejection of non‐behavioural models reduces the uncertainty in probabilistic flood maps the reliability of these maps is also reduced. Models with resolutions finer than 50 m offer little gain in performance yet are more than an order of magnitude computationally expensive which can become infeasible when undertaking probabilistic analysis. Furthermore, we show that using deterministic, high‐resolution flood maps can lead to a spurious precision that would be misleading and not representative of the overall uncertainties that are inherent in making inundation predictions. Copyright © 2015 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

20.
We consider two sources of geology‐related uncertainty in making predictions of the steady‐state water table elevation for an unconfined aquifer. That is the uncertainty in the depth to base of the aquifer and in the hydraulic conductivity distribution within the aquifer. Stochastic approaches to hydrological modeling commonly use geostatistical techniques to account for hydraulic conductivity uncertainty within the aquifer. In the absence of well data allowing derivation of a relationship between geophysical and hydrological parameters, the use of geophysical data is often limited to constraining the structural boundaries. If we recover the base of an unconfined aquifer from an analysis of geophysical data, then the associated uncertainties are a consequence of the geophysical inversion process. In this study, we illustrate this by quantifying water table uncertainties for the unconfined aquifer formed by the paleochannel network around the Kintyre Uranium deposit in Western Australia. The focus of the Bayesian parametric bootstrap approach employed for the inversion of the available airborne electromagnetic data is the recovery of the base of the paleochannel network and the associated uncertainties. This allows us to then quantify the associated influences on the water table in a conceptualized groundwater usage scenario and compare the resulting uncertainties with uncertainties due to an uncertain hydraulic conductivity distribution within the aquifer. Our modeling shows that neither uncertainties in the depth to the base of the aquifer nor hydraulic conductivity uncertainties alone can capture the patterns of uncertainty in the water table that emerge when the two are combined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号