首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The New Zealand continental terrace is mantled mainly by terrigenous and biogenic sediments associated with subordinate but locally important authigenic, volcanogenic and residual components. Modern terrigenous sands and muds prevail off Westland and Hawkes Bay—Wairarapa where tectonically rising landmasses, several major rivers and few coastal sediment traps ensure deliverance of much sediment to the terrace. Relict terrigenous sands and gravels typically occur in zones where modern sedimentation is low like the middle and outer continental shelf off Otago—Canterbury and Waikato—Taranaki. Relict sediments are commonly associated with biogenic sands and gravels which also dominate the terrigenous-starved shelves around northernmost and southernmost New Zealand, and much of the continental slope. Shelf biogenic components are mainly molluscan, bryozoan and foraminiferal clasts, whereas on the slope foraminifers and calcareous nannoplankton prevail. Both glauconite, the main authigenic component, and residual sediments occur on those shelves and upper slopes receiving little modern terrigenous sediment. Volcanogenic grains are prominent in sediments on the eastern terrace marginal to the Central Volcanic Region of the North Island.Typically, terrigenous shelf sediments off the North Island and northeast South Island have been reworked from older sediments or derived directly from volcanic rocks or both. Around the remainder of the South Island a metamorphic and plutonic-derived assemblage prevails. Sediment dispersal is along the shelf primarily under the influence of storm-driven and tidal currents with semi-permanent ocean currents having little effect. Beyond the shelf, dispersal appears to be mainly downslope, partly through redepositional mechanisms including gravity slumps and turbidity currents.  相似文献   

2.
Concentrations of selected heavy metals (Cr, Cu, Ni, Pb and Zn) from surface sediments, suspended particulate matter and settling particles in the southern Barcelona continental margin were studied in order to evaluate the environmental impact of the anthropogenic metals discharged by the Llobregat River in this Mediterranean area. The temporal variation of heavy metals discharged by this river onto the continental shelf is clearly related to the river water flow. Part of the fine sediment and associated heavy metals transported by the Llobregat River during periods of low river flow accumulate on the river bed, and they are totally removed and discharged onto the Barcelona continental shelf during sporadic river water flow increases. Metals produce significant anomalies of chromium (×2.5), copper (×3.4) and zinc (×3.7) in the surface sediments of the Llobregat prodelta and tend to be transported along the continental shelf following the mean flow. Metals associated with the finest suspended flocs transferred to the slope are controlled by the shelf-slope density front and are transported along slope by the general geostrophic current, instead of accumulating and becoming concentrated in the slope bottom sediments. Settling particulate matter collected in sediment traps on the Barcelona continental slope offshore of the shelf-slope front shows low heavy metal concentrations except in a few sediment trap samples that are significantly metal-enriched in chromium (×4.5) and zinc (×6.8). This enrichment is associated with very short and sporadic river flow increases and is only recorded inside the Foix submarine canyon, which acts as a preferential conduit for the shelf-slope sediment transfer.  相似文献   

3.
Continental shelf systems are highly dynamic sedimentary environments, where sediments from biogenic production as well as from terrigenous sources are redistributed in the shelf depositional system, and partly exported off the shelf to the slope and the deep sea. The Golfe d’Arguin (Mauritania, NW Africa) is dominated by such redistribution processes, involving clastic silt imported as dust from the Sahara desert and biogenic carbonates of marine origin. Indeed, surface-sediment grain size and mineralogy show a clear north–south partitioning of sediment type. Fine material is winnowed from the northern part of the gulf, and transported toward the southern part off the Banc d’Arguin, where coarse silt settles on the outer shelf and upper slope, at least down to 600 m water depth. Particles of the fine silt fraction, estimated in terms of eolian material collected aboard the research vessel, are thought to be exported further offshore as they correspond to grain sizes previously reported from adjacent deep-sea sediments. These findings suggest that the interpretation of dust records from the continental slope and rise off NW Africa must consider reworking and partitioning processes active on the Mauritanian shelf.  相似文献   

4.
南海西部表层沉积中的钙质超微化石   总被引:8,自引:0,他引:8  
分析研究了南海西部308个表层沉积样品中的钙质超微化石,发现除一个样品外,所有样品均含有钙质超微化石,但相对丰度相差悬殊,在0-1725个范围内变化。钙质超微化石在平面上的分布具有较明显的分区性,可划分为3个区。超微化石组合与南海其它地区超微化石组合面貌相似,由15属23种组成,以Gephyrocapsa oceanica,G.spp.(small),Emiliania huxleyi和Florisphaera profunda为优势种,占90%以上,其中Florisphaera profunda为绝对优势种。本调查区超微化石的分布受多种因素的综合影响,重点讨论了水深、陆源物质的稀释作用、碳酸盐的溶解作用以及重力流的沉积作用等因素对超微化石分布的影响,并根据超微化石的分布推断碳酸盐临界补偿深度(CCrD)约为3100m,碳酸盐补偿深度(CCD)大于4300m。  相似文献   

5.
A series of elongated hills on the outer continental shelf off northern Israel, between 100 and 120 m, rise several meters above their surroundings. They have steep escarpments seaward and gradual slopes landward. The escarpments are commonly covered by colonies of sponges. The biogenic cover is normally 1.0–1.5 m thick. The gentle slopes commonly consist of soft, unconsolidated sediment, although some bedrock outcrops occur. Stratification patterns along these outcrops suggest calcareous eolianite (“kurkar”). Coquina was encountered in several sites at the base of the biogenic cover, built of fragments of shells not observed at the present depth. The eolianite, coquina, and steep escarpments suggest a late Pleistocene nearshore terrace.  相似文献   

6.
The flux and compositions of solvent-extractable lipid fractions were measured in particulate matter collected periodically by moored sediment traps in the Santa Monica Basin from 1985–1988. The purpose was to assess the compositional changes during settling, the carbon dynamics in the basin and to estimate the impacts of energy-related by-products on the surface sediments. Sediment traps recorded consistently high lipid fluxes in the eastern slope relative to the central basin, reflecting elevated terrigenous carbon inputs possibly from land-based human activities. Generally, lipid fluxes decrease offshore but increase vertically with water depth below 500m, implying lateral transport of particles. The steep decline of flux in the top 500m of the water is related to the rapid decomposition and mineralization of the marine-derived cellular carbon compounds. Less than 5% of the marine lipid components reach the seabed. In contrast, preferential preservation of terrigenous lipid is clearly evident from the chemistry of deeper traps and surface sediments.The lateral transport of particles is reflected in the presence of higher plant-derived lignin phenols and sewage-derived coprostanol and epicoprostanol in the deep trap material as well as in surface sediment throughout the basin. Petroleum triterpanes characteristic of natural seepage also permeates through the entire basin. Based on the data collected from both the trap particulte matter and surface sediments, a carbon budget for the Santa Monica Basin has been constructed.  相似文献   

7.
断陷盆地陡坡带扇三角洲模拟及沉积动力学分析   总被引:11,自引:0,他引:11  
通过水槽实验模拟断陷盆地陡坡带扇三角洲的形成过程及其发育,剖析其沉积动力机制和内部结构特征.结果表明,扇三角洲平原、前缘斜坡和前扇三角洲3个亚相沉积动力机制不同,导致各相带的扇面坡度和粒度分布特征明显不同.扇三角洲平原以水流推力作用为主,沉积物以滚动、跳跃方式搬运,粒度最粗;前缘斜坡以重力作用为主,沉积物顺坡向下滚动、沉积,粒度略细,且具有明显的正粒序特征;前扇三角洲以浮力作用为主,沉积物为悬移质沉降,粒度最细.整体上,扇三角洲的形成是一个沉积物不断前积和垂向加积的过程,湖平面变化不同,二者作用强度不同,致使扇体形态有所差异,但扇面各部分基本维持相对固定的坡度,且沉积物的整体粒度分布趋势一致.  相似文献   

8.
Abstract

Fine‐grained sedimentary deposits on the Kodiak continental shelf and upper slope comprise three distinct compositional types: terrigenous mud, diatomrich mud, and ash‐rich sandy mud. The sediment types can be distinguished on the basis of geotechnical properties as well as by composition. The terrigenous mud has properties largely within the normal range for fine‐grained marine sediment, except for the low compressibility of many samples. This sediment underlies the walls of canyons that incise the upper slope, and analyses of undrained static and cyclic loading indicate potential instability in the steepest areas. The diatom‐rich mud has high water content, plasticity index, and compression index but low grain specific gravity. The ash‐rich sandy mud is nonplastic and has low water content and compressibility. It has high drained and undrained static strength but is extremely weakened by cyclic loading. Extensive deposits of sedimentary bedrock and coarsegrained glacial sediment in the region apparently are relatively stable, but low sediment strength or high compressibility may be encountered at the local sites of soft sedimentary deposits.  相似文献   

9.
Seawater along the southern margin of the Cretan Sea (May 1994–September 1995) has been found to have light transmission values ranging from 79% to 94%, corresponding to SPM values ranging from 1.5 mg l−1 to 0.2 mg l−1. The highest SPM concentrations (mostly of terrigenous origin) were found close to the sea-bed over the shelf-break and upper slope. The origins of SPM in the surface waters (<150 m) is principally biogenic. The occurrence of nepheloid layers at intermediate depths within the upper water column is mostly a result of density stratification. The dynamics of SPM distributions are governed by the 2-gyre system which induces a general onslope flow; and so inhibits the seaward dispersion of the relatively more turbid coastal/shelf waters. This is in agreement with the virtual absence of suspensates of terrigenous origin offshore of the shelf-break. Near bottom nepheloid layers (BNL) and detached intermediate nepheloid layers occur in the vicinity of the shelf-break and over upper slope region; these may be explained by resuspension induced by near-bed current activity and breaking of internal waves. High concentrations of SPM near the seabed may be caused by anthropogenic (trawling) activity. Occasionally, the formation of BNL may result from local seismic activity resulting in gravity-driven mass movements.  相似文献   

10.
The morphology of the Gulf of Oman Basin, a 3,400 m deep oceanic basin between Oman and southern Pakistan and southern Iran, ranges from a convergent margin (Makran margin) along the north side, a passive type (Oman margin) along the south side, translation types along the basin's west (Zendan Fault-Oman Line) and east (Murray Ridge) sides and a narrow continental rise and a wide abyssal plain in the centre of the basin. Sediment input into the basin during the Late Quaternary has been mainly from the north as a result of the uplift of the Coast Makran Mountains in the Late Miocene-Pliocene. Today most of this detritrus is deposited on the shelf and upper continental slope and perched basins behind the fold/fault ridges on the lower slope. The presence of fans and channels on the continental rise on the north side of the basin indicate, however, that continental derived debris was, and possibly is, being transported to the deep-sea by turbidity currents via gaps in the ridges on the lower slope. In addition to land derived terrigenous sediments, the basin deposits also contain biogenic (organic matter and calcium carbonate), eolian detritus and hydrates and authigenic carbonates from the tectonic dewatering of the Makran accretionary wedge. The eolian sediment is carried into the Gulf of Oman Basin from Arabia and the Mesopotamia Valley by the northwesterly Shamal winds. This type of detritus was particularly abundant during the glacial arid periods 21,000–20,000 and 11,000 (Younger Dryas) years ago when exposure of the Persian (Arabian) Gulf increased the area of dust entrainment and shifted the position of the source of the eolian sediments closer to the basin.  相似文献   

11.
利用Minolta CM-2002光谱光度计对南黄海陆架136个短柱样品20~25cm段的沉积物进行了颜色反射率数据测量,通过化学元素、粒度、磁化率等来确定影响沉积物颜色反射率变化的成分和因素,介绍了反射率光谱的一阶导数和因子分析的方法。分析结果表明,南黄海陆架沉积物颜色反射率受控于沉积物中的铁氧化物、有机质以及粘土矿物和钙质生物碎屑含量。主因子F1指示氧化环境,并与陆源物质相关,F2指示弱氧化环境,F3指示弱还原环境,主因子的波长范围分别是405~445 nm和495~595 nm,605~695 nm,445~485 nm。  相似文献   

12.
Sedimentological and geochemical investigations of 45 box cores collected in various morphological settings of the Cap-Ferret Canyon (Bay of Biscay) are presented to document accurately present-day sedimentary processes on the eastern Atlantic continental slope. The magnitude and variations through time and space of the canyon's channelling or sinking effect on fine-grained particles behaviour in comparison with sediment flux across the continental margin was particularly considered and discussed:1. All the parameters (grain-size, carbonate and water content, major and trace elements), measured both in surface sediment and downcore, demonstrate that the characteristics at the sediment interface vary with water depth and with the morphological setting.2. Surface sediment is generally coarser-grained, more terrigenous and deposited at higher rate in the canyon than outside. The terrigenous particle supply must be preferentially directed and trapped within the canyon's depression due to present-day dynamic conditions.3. The downcore gradients reflected in grain-size variations yield information on settling processes. The coarse-grained population has the characteristics of a winnowed sediment similar to those on the outer shelf, while the fine-grained population has grain-size spectra very similar to the present-day fine-grained suspensions.4. The carbonate particles are partly derived from direct pelagic production (distinct grain-size distribution) and, like terrigenous grains, are partly reworked (similar downslope decrease in the coarse grained fraction). The relatively low CaCO3 content observed in the canyon, and its downward increase up to values observed at shallower depths, may result from a channelling of terrigenous suspensions within the canyon.5. At the present high sea-level stand, the canyon should become a trap for sediments without much gravity remobilisation, as indicated by a lack of sedimentary structures in box cores. However, a simple increase in sediment trapping can hardly account for the downcore gradients observed in the box cores. These trends, which are observed on other continental margins (Monaco et al., 1993, Journées spécialisées de la Soc. Géol. France: Géosciences Marines, 16–17 December 1994, Abstract p. 83.), indicate a probable increase in terrigenous supplies and/or in settling energy.  相似文献   

13.
Sediment samples were collected at stations along cross-shelf transects in Onslow Bay, North Carolina, during two cruises in 1984 and 1985. Station depths ranged from 11 to 285 m. Sediment chlorophyll a concentrations ranged from 0·06 to 1·87 μg g−1 sediment (mean, 0·55), or 2·6–62·0 mg m2. Areal sediment chlorophyll a exceeded water column chlorophyll a a at 16 of 17 stations, especially at inshore and mid-shelf stations. Sediment ATP concentrations ranged from 0 to 0·67 μg g−1 sediment (mean, 0·28). Values for both biomass indicators were lowest in the depth range including the shelf break (50–99 m). Organic carbon contents of the sediments were uniformly low across the shelf, averaging 0·159% by weight. Photography of the sediments revealed extensive patches of microalgae on the sediment surface.Our data suggest that viable benthic microalgae occur across the North Carolina continental shelf. The distribution of benthic macroflora on the North Carolina shelf indicates that sufficient light and nutrients are available to support primary production out to the shelf break. Frequent storm-induced perturbations do not favour settling of phytoplankton, an alternative explanation for the presence of microalgal pigments in the sediments. Therefore, we propose that a distinct, productive benthic microflora exists across the North Carolina continental shelf.  相似文献   

14.
P.J Ramsay 《Marine Geology》1994,120(3-4):225-247
The geostrophic current-controlled northern Zululand shelf displays a unique assemblage of interesting physical, sedimentological and biological phenomena. The shelf in this area is extremely narrow (3 km) and is characterised by submarine canyons, coral reefs, and steep gradients on the continental slope. Three submarine canyons occur in the study area and are classified as mature- or youthful-phase canyons depending on the degree to which they breach the shelf. These canyons originated as mass-wasting features which were exploited by palaeo-drainage during sea-level regressions. Shelf lithology is dominated by a series of coast-parallel patch coral reefs which have colonised beachrock and aeolianite sequences that extend semi-continuously from −5 to −95 m, and delineate late Pleistocene palaeocoastline events. The unconsolidated sediment on the shelf is either shelf sand (mainly terrigenous quartz grains) or bioclastic sediment. Large-scale subaqueous dunes commonly form in the unconsolidated sediment on the outer-shelf due to the Agulhas Current flow. These dunes occur as two distinct fields at depths of −35 to −70 m; the major sediment transport direction is towards the south, but occasional bedload parting zones exist where the bedform migration direction changes from south to north.  相似文献   

15.
Results are presented from particle flux studies using sediment trap and current meter moorings along a transect at the European continental margin at 49°N within the EU-funded Ocean Margin Exchange (OMEX) project. Two moorings were placed, at the mid- and outer slope in water depths of 1500 and 3660 m, with traps at 600 and 1050 m and at 580, 1440 and 3220 m, respectively. Residual currents at the mid-slope follow the slope contour, whereas seasonal off-slope flow was registered at the outer slope. At 600 m on the slope fluxes are similar to those in the abyssal North Atlantic. The flux of all components (bulk dry weight, particulate organic and inorganic carbon, lithogenic matter and opal) increased with water depth. Highest fluxes were recorded at 1440 m at the outer slope, where off-slope residual currents mediate particle export. The injection of biogenic and lithogenic particles below the depth of winter mixing results in the export of particles from shallower waters. Calculated lateral fluxes of particulate organic carbon exceed the primary flux by over a factor of 2 at 1440 m on the outer slope. Estimated lateral fluxes of suspended particulate matter in the water column and intermediate nepheloid layers at the outer slope are potentially large compared to sinking fluxes measured by sediment traps. A comparison is made of particle flux at three continental margin sites and two sites in the adjacent open North Atlantic, from which it is seen that bulk and organic matter flux increases exponentially with proximity to the shelf break. The percentage contribution of particulate organic carbon to biogenic fluxes increases from a mean of 5.7% in the abyssal N. Atlantic to 13.9% at the continental margins.  相似文献   

16.
A high-resolution marine geophysical study was conducted during October-November 2006 in the northern Gulf of Aqaba/Eilat, providing the first multibeam imaging of the seafloor across the entire gulf head spanning both Israeli and Jordanian territorial waters. Analyses of the seafloor morphology show that the gulf head can be subdivided into the Eilat and Aqaba subbasins separated by the north-south-trending Ayla high. The Aqaba submarine basin appears starved of sediment supply, apparently causing erosion and a landward retreat of the shelf edge. Along the eastern border of this subbasin, the shelf is largely absent and its margin is influenced by the Aqaba Fault zone that forms a steep slope partially covered by sedimentary fan deltas from the adjacent ephemeral drainages. The Eilat subbasin, west of the Ayla high, receives a large amount of sediment derived from the extensive drainage basins of the Arava Valley (Wadi ’Arabah) and Yutim River to the north–northeast. These sediments and those entering from canyons on the south-western border of this subbasin are transported to the deep basin by turbidity currents and gravity slides, forming the Arava submarine fan. Large detached blocks and collapsed walls of submarine canyons and the western gulf margin indicate that mass wasting may be triggered by seismic activity. Seafloor lineaments defined by slope gradient analyses suggest that the Eilat Canyon and the boundaries of the Ayla high align along north- to northwest-striking fault systems—the Evrona Fault zone to the west and the Ayla Fault zone to the east. The shelf–slope break that lies along the 100 m isobath in the Eilat subbasin, and shallower (70–80 m isobaths) in the Aqaba subbasin, is offset by approx. 150 m along the eastern edge of the Ayla high. This offset might be the result of horizontal and vertical movements along what we call the Ayla Fault on the east side of the structure. Remnants of two marine terraces at 100 m and approx. 150 m water depths line the southwest margin of the gulf. These terraces are truncated by faulting along their northern end. Fossil coral reefs, which have a similar morphological appearance to the present-day, basin margin reefs, crop out along these deeper submarine terraces and along the shelf–slope break. One fossil reef is exposed on the shelf across the Ayla high at about 60–63 m water depth but is either covered or eroded in the adjacent subbasins. The offshore extension of the Evrona Fault offsets a fossil reef along the shelf and extends south of the canyon to linear fractures on the deep basin floor.  相似文献   

17.
《Marine Geology》2001,172(3-4):265-285
Studies of latest Quaternary continental slope sediments at two localities on the east Australian margin have revealed markedly different responses to late Quaternary sea level fluctuations. Offshore of Noosa, in the sub-tropics, the sediment is predominantly a mixture of fine metastable carbonate, siliciclastic material, and pelagic carbonate. Important features of the stratigraphy include a siliciclastic-dominated facies deposited relatively slowly during the last glacial lowstand (sedimentation rate ≤8 cm/ka), and a calcareous facies, rich in metastable carbonate, deposited more rapidly during the late post-glacial transgression (sedimentation rates 15–24 cm/ka). Highstand and transgressive sedimentation rates are greater than lowstand rates by a factor of 2.5–6 due to increased shelf carbonate productivity after flooding of the mid-shelf. Off Sydney, in temperate latitudes, continental slope sediment is largely a mixture of fine siliciclastic material and pelagic carbonate. Mean sedimentation rates range from 2 to 5 cm/ka over the last four oxygen isotope stages, with mean glacial/interstadial rates higher than Holocene rates by a factor of ∼1.36. This largely reflects the transfer of siliciclastic mud from the shelf to the slope during sea level regression. In both localities, facies changes on the slope are not related to specific sea level states (e.g. lowstand facies, transgressive facies, etc.), but reflect instead the interaction of changing sea level with shelf morphology.  相似文献   

18.
Five depositional bodies occur within the Quaternary deposits of the northwestern Alboran Sea: Guadalmedina-Guadalhorce prodelta, shelf-edge wedges, progradational packages, Guadiaro channel-levee complex, and debris flow deposits. The sedimentary structure reflects two styles of margin growth characterized: 1) by an essentially sediment-starved outer, shelf and upper slope and by divergent slope seismic facies; 2) by a prograding sediment outer shelf, and parallel slope seismic facies. Eustatic oscillations, sediment supply, and tectonic tilting have controlled the type of growth pattern, and the occurrence of the depositional bodies. Debris flows were also controlled locally by diapirism.  相似文献   

19.
东海陆架冰后期潮流沙脊地貌与内部结构特征   总被引:14,自引:0,他引:14  
印萍 《海洋科学进展》2003,21(2):181-187
东海陆架以宽平的地形、充分的陆源沉积物供应、快速沉降和强动力场为特征,中外陆架发育大规模潮流沙脊地貌。潮流沙脊走向大致为NW—SE向分布,与区域潮流主方向一致或成较小交角。东海陆架冰后期潮流沙脊以不对称横剖面为特征,陡坡倾向SW。沙脊内部发育典型的高角度前积斜层理,倾向与沙脊横剖面陡坡方向一致。这些斜层理可以划分为高达4组不同特征的组合,分别代表潮流沙脊发育的不同阶段,对应于冰后期海平面上升的不同时期。东海陆架潮流沙脊主体形成于冰后期海侵阶段,目前仍然受到陆架潮流场的影响,沙脊顶部为再沉积活动层。  相似文献   

20.
Resuspension, transport, and deposition of sediments over the continental shelf and slope are complex processes and there is still a need to understand the underlying spatial and temporal dynamical scales. As a step towards this goal, a two-dimensional slice model (zero gradients in the alongshore direction) based on the primitive flow equations and a range of sediment classes has been developed. The circulation is forced from rest by upwelling or downwelling winds, which are spatially uniform. Results are presented for a range of wind speeds and sediment settling speeds. Upwelling flows carry fine sediments (low settling speeds) far offshore within the surface Ekman layer, and significant deposition eventually occurs beyond the shelf break. However, coarser sediments quickly settle out of the deeper onshore component of the circulation, which can lead to accumulation of bottom sediments within the coastal zone. Downwelling flows are more effective at transporting coarse sediments off the shelf. However, strong vertical mixing at the shelf break ensures that some material is also carried into the surface Ekman layer and returned onshore. The concentrations and settling fluxes of coarse sediments decrease offshore and increase with depth under both upwelling and downwelling conditions, consistent with trends observed in sediment trap data. However, finer sediments decrease with depth (upwelling) or reach a maximum around the depth of the shelf break (downwelling). It is shown that under uniform wind conditions, suspended sediment concentrations and settling fluxes decay offshore over a length scale of order τs/ρf|ws|, where τs is the wind stress, ρ the water density, f the Coriolis parameter, and ws is the sediment settling velocity. This scaling applies to both upwelling and downwelling conditions, provided offshore transport is dominated by wind-driven advection, rather than horizontal diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号