首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 585 毫秒
1.
《Geodinamica Acta》2013,26(1-3):129-150
This work analyses a suite of relict tufa mounds generated by artesian karstic springs in Isona area (Spanish Pyrenees). Geological and geophysical data (seismics and vertical electrical resistivity soundings) indicate that the location of the discharge area in which the spring mounds formed was controlled by (1) a bulge in the axial zone of the anticline that affects the Areny-Montsec aquifer, with the consequent thinning of the overlying confining unit and (2) N-S and E-W trending extensional faults. These uncommon meteogene mounds occur in two stepped morphostratigraphic units that constitute the caprock of a mesa 9 km2 in area. The upper tufa complex is 47 m thick and has yielded several U/Th dates of >350 ka. The obtained U/Th ages for the mounds of lower tufa complex, 10 m thick, range from >350 to 214 ± 11 ka. The sedimentological analysis of the scarce exposures and electrical resistivity profiles show the same morphological and depositional components as those described in geothermal springs: (1) Cylindrical vents; (2) Pools fed by the vents and dammed by annular tufa barriers; (3) Tufa barriers (rimstones) constructed by overflowing waters through vertical accretion and progradation. These rimstones may have overhanging upflow sides. (4) Slope tufa facies with terracettes and microgours.  相似文献   

2.
Tufa domes and towers are common around the margins of Winnemucca Dry Lake, Nevada, USA, a desiccated sub‐basin of pluvial Lake Lahontan. A 2·5 m diameter concentrically‐layered tufa mound from the southern end of the playa was sampled along its growth axis to determine timing, rate and geochemical conditions of tufa growth. A radiocarbon‐based age model indicates an 8200‐year tufa depositional record that begins near the end of the Last Glacial Maximum (ca 23 400 cal yr bp ) and concludes at the end of the most recent Lahontan highstand (ca 15 200 cal yr bp ). Petrography, stable isotopes and major and minor elemental compositions are used to evaluate the rate and timing of tufa growth in the context of the depositional environment. The deposit built radially outward from a central nucleation point, with six decimetre‐scale layers defined by variations in texture. Two distinct tufa types are observed: the inner section is composed of two layers of thinolite pseudomorphs after ikaite, with the innermost layer comprised of very small pseudomorphs (<0·25 cm) and an outer layer composed of larger, ca 3 cm long pseudomorphs, followed by a transitional layer where thinolite pseudomorphs grade into calcite fans. The outer section consists of three distinct layers of thrombolitic micrite with a branching mesofabric. The textural change occurred as lake levels began to rise towards the most recent Lahontan highstand interval and probably was prompted by warming of lake waters caused by increased groundwater flux during highstand lake levels. The Mg/Ca and Sr/Ca variations suggest a warming trend in the tufa growth environment and may also reflect increasing growth rates of tufa associated with increased fluxes of groundwater. This systematic study of tufa deposition indicates the importance of the hydrology of the lacustrine tufa system for reconstructing palaeoenvironmental records, and particularly the interaction of ground and surface waters.  相似文献   

3.
The effect of changing palaeoclimate and palaeoenvironment on human evolution during the Pleistocene is debated, but hampered by few East African records directly associated with archaeological sites prior to the Last Glacial Maximum. Middle to Late Pleistocene deposits on the shoreline of eastern Lake Victoria preserve abundant vertebrate fossils and Middle Stone Age arte‐facts associated with riverine tufas at the base of the deposits, which are ideal for palaeoenvironmental reconstructions. New data from tufas identified on Rusinga Island and on the mainland near Karungu, Kenya are provided from outcrop, thin sections, mineralogical, stable isotopic and U‐series dating analyses. Tufa is identified in four sites: Nyamita (94·0 ± 3·3 and 111·4 ± 4·2 ka); Kisaaka, Aringo (455 ± 45 ka); and Obware. The age ranges of these tufa deposits demonstrate that spring‐fed rivers were a recurrent, variably preserved feature on the Pleistocene landscape for ca 360 kyr. Poor sorting of clastic facies from all sites indicates flashy, ephemeral discharge, but these facies are commonly associated with barrage tufas, paludal environments with δ13C values of ca 10‰ indicative of C3 plants and fossil Hippopotamus, all of which indicate a perennial water source. Other tufa deposits from Nyamita, Obware and Aringo have a mixed C3/C4 signature consistent with a semi‐arid C4 grassland surrounding these spring‐fed rivers. The δ18O values of tufa from Nyamita are on average ca 1‰ more negative than calcite precipitated from modern rainfall in the region, suggesting greater contribution of depleted monsoonal input, similar to the Last Glacial Maximum. Microdebitage and surface‐collected artefacts indicate that early modern humans were utilizing these spring‐fed rivers. The presence of spring?fed rivers would have afforded animals a reliable water source, sustaining a diverse plant and animal community in an otherwise arid environment.  相似文献   

4.
Carbon, oxygen and clumped isotope (Δ47) values were measured from lacustrine and tufa (spring)‐mound carbonate deposits in the Lower Jurassic Navajo Sandstone of southern Utah and northern Arizona in order to understand the palaeohydrology. These carbonate deposits are enriched in both 18O and 13C across the basin from east to west; neither isotope is strongly sensitive to the carbonate facies. However, 18O is enriched in lake carbonate deposits compared to the associated spring mounds. This is consistent with evaporation of the spring waters as they exited the mounds and were retained in interdune lakes. Clumped isotopes (Δ47) exhibit minor systematic differences between lake and tufa‐mound temperatures, suggesting that the rate of carbonate formation under ambient conditions was moderate. These clumped isotope values imply palaeotemperature elevated beyond reasonable surface temperatures (54 to 86°C), which indicates limited bond reordering at estimated burial depths of ca 4 to 5 km, consistent with independent estimates of sediment thickness and burial depth gradients across the basin. Although clumped isotopes do not provide surface temperature information in this case, they still provide useful burial information and support interpretations of the evolution of groundwater locally. The findings of this study significantly extend the utility of combining stable isotope and clumped isotope methods into aeolian environments.  相似文献   

5.
A relict mound of Holocene barite (BaSO4) tufa underlies the Flybye Springs, a small, barium‐rich, cold sulphur spring system in the Northwest Territories of Canada. The tufa is composed of relatively pure barite with ≤0·34 wt% Ca2+ and ≤0·77 wt% Sr2+. The mound is made up of coated bubble, raft, undulatory sheet, stromatolitic, coated grain and detrital conglomerate barite tufa. Although previously unreported in barite, these lithotypes are akin to facies found in many carbonate spring deposits. Raft and ooid‐coated grain tufa was formed via ‘inorganic’ barite precipitation in spring water ponds and tributaries where rapid oxidation of sulphide to sulphate established barite supersaturation. Undulatory sheet tufa may have formed by the reaction of dissolved barium with sulphate derived from the oxidation of extracellular polysaccharide‐rich colloidal sulphur films floating in oxygenated, barite‐saturated spring water ponds. Coated bubble, oncoid‐coated grain and stromatolitic tufa with filamentous microfossils was formed in close association with sulphur‐tolerant microbes inhabiting dysoxic and oxygenated spring water tributaries and ponds. Adsorption of dissolved barium to microbial extracellular polysaccharide probably facilitated the development of these ‘biogenic’ lithotypes. Detrital conglomerate tufa was formed by barite cementation of microdetrital tufa, allochthonous lithoclasts and organic detritus, including caribou hair. Biogenic textures, organic artefacts and microfossils in the Flybye barite tufa have survived diagenetic aggradational recrystallization and precipitation of secondary cements, indicating the potential for palaeoecological information to be preserved in barite in the geological record. Similarities between the Flybye barite tufa and carbonate spring deposits demonstrate that analogous textures can develop in chemical sedimentary systems with distinct mineralogy, biology and physiochemistry.  相似文献   

6.
《Sedimentology》2018,65(4):1331-1353
The Faxe Quarry in south‐east Denmark offers excellent exposures of Early Palaeocene, Danian deep‐water intercalated coral and bryozoan mounds that form complexes at least 40 m thick and a few kilometres wide along and over submarine highs. The coexisting coral and bryozoan mounds represent two different biogenic carbonate factories with a highly dynamic interplay during growth. The sedimentary facies, mound geometries and the density, diversity and palaeoecology of the associated benthic invertebrates and nannofossils allow recognition of six successive growth units. Unit 1 represents an outer shelf bryozoan mound belt characterized by an oligotrophic cool‐water nannofossil assemblage. Unit 2 comprises a mixed faunal assemblage of bryozoans and octocorals with an initial sparse colonization of hexacorals. The nannofossil assemblage records a decrease in diversity and an increase in warm water forms. Unit 3 marks the onset of dense colonization of the scleractinian coral Dendrophyllia candelabrum with associated low‐diversity macrofauna and nannofossil assemblages. Unit 4 represents the main coral build‐up phase with frame‐building hexacorals of Dendrophyllia and Faxephyllia associated with a high‐diversity invertebrate fauna, and relatively low‐diversity nannofossil assemblages. Unit 5 represents the late coral mound phase showing extensive lateral distribution and finally death and erosion of the coral mounds. This event was contemporaneous with a warming trend in the pelagic environment. The succeeding Unit 6 marks the burial and overgrowth of the coral mound complex by bryozoan‐rich sediments. The coral mound complex in the Faxe Quarry initiated and terminated in global nannofossil zone NP 3 and regional nannofossil zones NNT p2G–3 suggesting a mound growth duration of ca 300 kyr and a mean vertical accretion of the coral mound of 13 cm kyr−1. The mound complex probably serves as the best‐exposed analogue to modern deep and cold‐water coral mounds in the North Atlantic.  相似文献   

7.
Mounds that have formed around spring vents occur in a variety of environmental settings, many at sites generally difficult or inaccessible for sampling. In contrast, over 500 tufa mounds occur in the dry bed of Searles Lake, California. The mounds range from minor features to 45 m in height; most are 5 to 12 m high. These mounds, composed of calcite and aragonite, formed associated with spring vents in the Pleistocene lake bottom. Thus, analyses of these mounds in Searles Lake provide a model with regard to the origin and architecture of tufa mounds. The mounds consist of four distinctive tufa facies. The initial deposits consist of porous tufa, including the innermost (porous 1) and the outermost (porous 2) deposits, followed by nodular tufa, then columnar tufa, and laminated crusts. There are two simple sequences of tufa deposition. The first sequence is from porous 1 to nodular to laminated crusts and, finally, to porous 2. A second sequence consists of: porous 1 to columnar to laminated crusts and, lastly, to porous 2. Facies changes are a response to changes in environmental conditions from deep water (porous 1 facies) to an essentially dry lake phase (during and after the formation of laminated crusts facies), to deep water (porous 2 facies) and, at the present time, totally dry. The primary constituents that comprise the tufa deposits include thin laminae, pisoids, spherulites, peloids and stromatolite‐like crusts. On the microscopic scale, these constituents dominantly make up nano‐spheres, micro‐rods and rod‐like crystals, as well as other calcified bodies. These constituents are interpreted to be the calcified remains of bacterial bodies. These findings suggest that microbial participation in the construct of other mounds should be a major concern of investigation, both for terrestrial and extraterrestrial spring‐fed mounds.  相似文献   

8.
Stromatactis‐bearing mud‐mounds remain an enigmatic reef type despite being common in Palaeozoic ramp settings. Two well preserved Upper Devonian (Frasnian) mud‐mounds in the Mount Hawk Formation crop out side by side in the southern Rocky Mountains of west‐central Alberta and provide an opportunity to develop a new case study that can be compared with the other coeval examples, such as those well‐known ones in southern Belgium, as well as evaluate competing hypotheses for mud‐mound formation. The southern mud‐mound is 46·2 m thick and 38·6 m wide at the base, whilst the northern one is 53·3 m thick and 72·2 m wide at the base, and they exhibit three or four growth stages indicated by interfingering and onlapping geometries with flanking strata. The biota is diverse, but fossils only occupy 10·7% by volume, among which sponge spicules, echinoderms, ostracods, brachiopods and calcimicrobes belonging to Girvanella and Rothpletzella are the most common. Five microfacies are discriminated in the mud‐mounds: biomicrite, clotted micrite, spiculite, stromatolite and laminite, with clotted micrite comprising the largest proportion. There is no internal vertical or lateral palaeoecological zonation, and the presence of calcimicrobes and calcareous algae throughout indicates accretion entirely within the photic zone, in a deeper ramp setting seaward of a large carbonate platform to the east. Stromatactis is abundant and the cavities were mostly due to excavation by currents rather than physical collapse of spiculate siliceous sponges. Formation of lime mud involved a combination of multiple organisms, mechanisms and processes. Cyanobacteria were integral to mud‐mound frame‐building and accretion because they stabilized the surface, often permineralized to form Girvanella and provided organic matter that was decomposed by bacteria. This induced precipitation of micrite, forming early indurated rigid masses, evidenced by the presence of intraclasts, stromatactis cavities, isopachous marine cements, absence of bioturbation and rare synsedimentary brittle deformation. The same microbial components, invertebrate biota and clotted micrite occur in underlying strata, suggesting that there was a protracted period of potential mud‐mound initiation before the exact conditions arose to trigger it. The ramp setting, antecedent sea floor topography and relative sea‐level likely contributed together to control this. This study indicates that mud‐mound formation was controlled by a combination of processes, but they are essentially a microbial buildup.  相似文献   

9.
Perennially ice‐covered lakes can have significantly different facies than open‐water lakes because sediment is transported onto the ice, where it accumulates, and sand grains preferentially melt through to be deposited on the lake floor. To characterize the facies in these lakes, sedimentary deposits from five Antarctic perennially ice‐covered lakes were described using lake‐bottom observations, underwater video and images, and sediment cores. One lake was dominated by laminated microbial mats and mud (derived from an abutting glacier), with disseminated sand and rare gravel. The other four lakes were dominated by laminated microbial mats and moderately well to moderately sorted medium to very coarse sand with sparse granules and pebbles; they contained minor interstitial or laminated mud (derived from streams and abutting glaciers). The sand was disseminated or localized in mounds and 1 m to more than 10 m long elongate ridges. Mounds were centimetres to metres in diameter; conical, elongate or round in shape; and isolated or deposited near or on top of one another. Sand layers in the mounds had normal, inverse, or no grading. Nine mixed mud and sand facies were defined for perennially ice‐covered lakes based on the relative proportion of mud to sand and the style of sand deposition. While perennially ice‐covered lake facies overlap with other ice‐influenced lakes and glaciomarine facies, they are characterized by a paucity of grains coarser than granules, a narrow range in sand grain sizes, and inverse grading in the sand mounds. These facies can be used to infer changes in ice cover through time and to identify perennially ice‐covered lakes in the rock record. Ancient perennially ice‐covered lakes are expected on Earth and Mars, and their characterization will provide new insights into past climatic conditions and habitability.  相似文献   

10.
Abstract Cangrejo and Bulkhead Shoals are areally extensive, Holocene biodetrital mud‐mounds in northern Belize. They encompass areas of 20 km2 and 35 km2 in distal and proximal positions, respectively, on a wide and shallow‐water, microtidal carbonate shelf where storms are the major process affecting sediment dynamics. Sediments at each mound are primarily biodetrital and comprise part of a eustatically forced, dominantly subtidal cycle with a recognizable deepening‐upward transgressive systems tract, condensed section and shallowing‐upward highstand systems tract. Antecedent topographic relief on Pleistocene limestone bedrock also provided marine accommodation space for deposition of sediments that are a maximum of 7·6 m thick at Cangrejo and 4·5 m thick at Bulkhead. Despite differences in energy levels and location, facies and internal sedimentological architectures of the mud‐mounds are similar. On top of Pleistocene limestone or buried soil developed on it are mangrove peat and overlying to laterally correlative shelly gravels. Deposition of these basal transgressive, premound facies tracked the rapid rate of sea‐level rise from about 6400–6500 years BP to 4500 years BP, and the thin basal sedimentation unit of the overlying mound‐core appears to be a condensed section. Following this, the thick and complex facies mosaic comprising mound‐cores represents highstand systems tract sediments deposited in the last ≈ 4500 years during slow and decelerating sea‐level rise. Within these sections, there is an early phase of progradationally offlapping catch‐up deposition and a later (and current) phase of aggradational keep‐up deposition. The mound‐cores comprise stacked storm‐deposited autogenic sedimentation units, the upper bounding surfaces of which are mostly eroded former sediment–water interfaces below which depositional textures have largely been overprinted by biogenic processes associated with Thalassia‐colonized surfaces. Vertical stacking of these units imparts a quasi‐cyclic architecture to the section that superficially mimics metre‐scale parasequences in ancient rocks. The locations of the mud‐mounds and the tidal channels transecting them have apparently been stable over the last 50 years. Characteristics that might distinguish these mud‐mounds and those mudbanks deposited in more restricted settings such as Florida Bay are their broad areal extent, high proportion of sand‐size sediment fractions and relatively abundant biotic particles derived from adjoining open shelf areas.  相似文献   

11.
Chronological, sedimentological and geochemical analyses of a clastic infill from Kelly Hill Cave (5K1), Kangaroo Island, document a palaeoenvironmental record that spans from the Late Pleistocene to the middle Holocene. We AMS radiocarbon‐dated bone collagen and U–Th‐dated speleothem to determine that fossiliferous sediments were deposited between >20 ka and 7 ka ago. Most of the 15 sedimentary layers are dominated by sand‐ and silt‐sized quartz that is physically and geochemically comparable with surface soils in the Kelly Hill area. Late Pleistocene and Last Glacial Maximum strata are represented primarily by homogeneous, poorly sorted quartz‐rich sediments that contain little organic matter, but include a thin layer composed largely of silt‐sized clay pellets that resemble sediments deflated from playa lakes. Microstructures observed in petrographic slides indicate that, with the exception of one layer, all sediments experienced little reworking once deposited in the cave. Some layers display pedogenic microstructures such as redeposited clays and opaline silica infilling that indicate postdepositional modification; that is, cave‐floor soil development. Overlying Holocene‐aged sediments also consist mainly of quartz but have much greater organic matter content. Some of these sediments have been strongly influenced by re‐precipitated organic matter that appears to have been transported into the cave via vadose drip water. The presence of dissolved organic matter in soil/vadose waters suggests a high vegetation density and acidic soils, which are congruent with the more equitable climatic conditions characteristic of the Holocene. The sediments described here provide a valuable palaeoenvironmental record that will facilitate future interpretation of associated vertebrate fossils.  相似文献   

12.
During the Pleistocene, the Rhine glacier system acted as a major south–north erosion and transport medium from the Swiss Alps into the Upper Rhine Graben, which has been the main sediment sink forming low angle debris fans. Only some aggradation resulted in the formation of terraces. Optically stimulated luminescence (OSL) and radiocarbon dating have been applied to set up a more reliable chronological frame of Late Pleistocene and Holocene fluvial activity in the western Hochrhein Valley and in the southern part of the Upper Rhine Graben. The stratigraphically oldest deposits exposed, a braided-river facies, yielded OSL age estimates ranging from 59.6 ± 6.2 to 33.1 ± 3.0 ka. The data set does not enable to distinguish between a linear age increase triggered by a continuous autocyclical aggradation or two (or more) age clusters, for example around 35 ka and around 55 ka, triggered by climate change, including stadial and interstadial periods (sensu Dansgaard–Oeschger cycles). The braided river facies is discontinuously (hiatus) covered by coarse-grained gravel-rich sediments deposited most likely during a single event or short-time period of major melt water discharge postdating the Last Glacial Maximum. OSL age estimates of fluvial and aeolian sediments from the above coarse-grained sediment layer are between 16.4 ± 0.8 and 10.6 ± 0.5 ka, and make a correlation with the Late Glacial period very likely. The youngest fluvial aggradation period correlates to the beginning of the Little Ice Age, as confirmed by OSL and radiocarbon ages.  相似文献   

13.
14.
Here we present research on previously uninvestigated frost peat mounds occurring on a peat bog in the southern part of Hermansenøya, NW Svalbard. Detailed characteristics are given of the environmental conditions of the peat bog and of the morphological features and surface structure of the frost peat mounds, as well as an analysis of the internal structure of one mound. Three types of frost peat mounds have been distinguished: disc‐shaped mounds (low), mid‐sized mounds with gentle sides, and high mounds with steep sides. Radiocarbon dating of the peat within the frost peat mound performed for the first time on Svalbard and a detailed analysis of the deposits demonstrated that in the high mound (1.3 m) there is an ice‐peat core and peat cover without ice. There are three layers of peat of different ages separated by at least two hiatuses. A generalized history of the development of the peat bog from about 8 ka BP is established. The studied mound displays two development cycles unknown elsewhere. The older relict part of the peat mound was formed during a climatic cooling about 3.0–2.5 ka BP, while the younger part originated during the Little Ice Age (c. AD 1550–1850). Despite certain similarities of these mounds to some palsas, this term should not be applied to the mounds because they are smaller and their cores consist mostly of layers of massive injection ice, the presence of which indicates a pressurized system in their genesis.  相似文献   

15.
Sedimentology and budget of a Recent carbonate mound, Florida Keys   总被引:2,自引:0,他引:2  
The sedimentology of a Recent carbonate mound is investigated to further our understanding of mound building communities, surface and subsurface mound sediments, and the overall sediment budget of mounds. Nine sedimentary facies of the surface of Tavernier mound, Florida Keys are described. These sediments are composed of Neogoniolithon, Halimeda, Porites, mollusc and foraminiferal grains, and lime mud. Muds rich in aragonite and high magnesian calcite show little mineralogical variation over the mound surface. Geochemical evidence suggests that the mud is mainly formed from breakdown of codiacean algae and Thalassia blade epibionts. Production rates of the facies are established from in situ growth rate experiments and standing-crop surveys. Annual calcium carbonate production is c. 500gm-2, intermediate between reef and other bay and lagoonal environment production rates in the Caribbean. The internal structure of the mound, studied from piston cores and sediment probes, indicates that seven facies can be identified. Five of these can be related to the present-day facies, and occur in the upper part of the mound (gravel-mound stage). The remaining two facies, characterized by molluscs and aragonite-rich muds, occur in the lower part of the mound (mud-mound stage), and are most similar to facies from typical Florida Bay mud mounds. Mangrove peats within the mound indicate former intertidal areas and C14 dates from these peats provide a time framework for mound sedimentation. The mound appears to have formed because of an initial valley in the Pleistocene surface which accumulated mud in a shallow embayment during the Holocene transgression. A sediment budget for the mound is presented which compares production rates from present-day facies with subsurface sediment masses. During the mud mound stage production rates were similar to accumulation rates and the mound was similar to the present-day mounds of Florida Bay. During the gravel mound stage (3400 yr BP-present day), conditions were more normal marine and the establishment of Porites and Neogoniolithon on the mound increased production rates 10% over accumulation rates. This excess sediment is thought to be transported off the mound to the surrounding seabed. Models are proposed which divide carbonate mounds on the basis of internal versus external sediment supply. Comparisons are made with other Recent and ancient mounds. Similarities exist between the roles of the biotic components of late Palaeozoic mounds but major differences are found when structures and early diagenesis are compared.  相似文献   

16.
Bryozoan mounds from the middle Danian (Lower Palaeocene) of the Danish Basin represent a possibly new class of non‐cemented skeletal mounds. The sedimentology and palaeoecology of the mounds have recently been studied in detail. Three‐dimensional images of middle Danian bryozoan mound structures in the Limhamn limestone quarry, south‐west Sweden, obtained from combined reflected ground‐penetrating radar signals and outcrop analysis provide new information about the architecture and growth development of such mounds. The mounds are composed of bryozoan limestone and dark‐grey to black flint bands which outline mound geometries. Ground‐penetrating radar data sections are collected over a 120 m by 60 m grid of data lines with trace spacing of 0·25 m, providing a depth penetration of 7 to 12 m and a vertical resolution of ca 0·30 m. The ground‐penetrating radar images outline the geometry of the internal layering of the mounds which, typically, have widths and lengths of 30 to 60 m and heights of 5 to 10 m. Mound architecture and growth show great variability in the ground‐penetrating radar images. Small‐scale mound structures with a palaeorelief of only a few metres may constitute the basis for growth of larger mounds. The outermost beds of the individual mounds are commonly characterized by sub‐parallel to parallel reflections which have a circular to slightly oval appearance in map view. The mounds are mainly aggrading and do not show clear signs of pronounced lateral migration during growth, although some mound structures indicate a preferential growth direction towards the south. Growth patterns interpreted from the ground‐penetrating radar images suggest that the palaeocurrents in the study area may have shown great variability, even on a small scale. This observation is in contrast to results from studies of extensive, slightly older early Danian mound complexes exposed in coastal cliffs at Stevns Klint and Karlby Klint located 50 and 200 km away from the study area, respectively. At these locations the mounds show a remarkably uniform development and typically are asymmetrical, clearly showing migration directions towards the south. These differences in mound geometry may be the result of differences in the current systems and water depths that existed during formation of the early and middle Danian mounds, respectively. The mounds at Limhamn were located closer to the basin margin in shallower water than those at Stevns Klint and Karlby Klint. In addition, the difference in mound architecture may be due to the occurrence of non‐layered, irregular coral mounds intercalated with the bryozoan mounds at Limhamn.  相似文献   

17.
The large, extensive tufa deposits of the semi‐arid Naukluft Mountains, Namibia are potentially important palaeoenvironmental indicators in an area with few proxy records. Tufas are reliable indicators of increased moisture availability, and have been shown to be amenable to 234U–230Th dating, although two challenges are detrital contamination and open‐system behaviour. Densely cemented tufa facies are good candidates for dating, minimising these problems. We report attempts to date five densely‐cemented units, which are only found rarely within the Naukluft deposits. We applied a detailed methodology using multiple subsample analysis, measurement of insoluble residues, application of ‘isochron’ mixing lines, and attempted open‐systems modelling, alongside observations of micromorphology and cathodoluminescence in order to assess the validity of any obtained dates. Surprisingly, densely cemented tufas were found not always to be suitable for dating. Two units contained detrital contamination, which could not be corrected for using a single leachate correction or ‘isochron’ methods. Two units contained ‘excess 230Th’. This could result under a closed‐system if initial (234U/238U) was sufficiently high. Alternatively this may be the result of open‐system behaviour, and loss of uranium, or incorporation of initial unsupported 230Th, which render samples unsuitable for 234U–230Th dating. Micromorphological appearance and cathodoluminescence behaviour are used to explore these possibilities. This study exemplifies the need for careful sample selection, and highlights the importance of analysing multiple subsamples from any tufa sample. The detailed methodology applied proves to be a powerful tool for identifying the range of problems that can be encountered when selecting suitable candidate samples for successful dating. It also shows that semi‐arid tufa sequences may contain very little material suitable for dating. A reliable age of c 80 ka was obtained for a banded unit within a large fluvial barrage, with less reliable dates suggesting tufa deposition during times since >350 ka through to the late Holocene. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The Darwin Mounds are small (up to 70 m in diameter), discrete cold‐water coral banks found at c. 950 m water depth in the northern Rockall Trough, north‐east Atlantic. Formerly described in terms of their genesis, the Darwin Mounds are re‐evaluated here in terms of mound growth processes based on 100 and 410 kHz side‐scan sonar data. The side‐scan sonar coverage is divided into a series of acoustic facies representing increasing current speed and sediment transport/erosion from south to north: pockmark facies, ‘mounds within depressions’ facies, Darwin Mound facies, stippled seabed facies and sand wave facies. Mound morphometric changes are quantified and show a south‐to‐north divergence from an inherited morphology, reflecting the outline of coral‐colonized fluid escape structures, to developed, downstream elongated, elevated mound forms. It is postulated that increasing current speeds and bedload sand transport favour mound growth and development by a process of enhanced sand sedimentation within mounds due to current deceleration by frictional drag around coral colonies. Comparisons are made with similar growth processes attributed to comparably sized cold‐water coral mounds in the Porcupine Seabight, offshore Ireland.  相似文献   

19.
Hydrochemical studies of the Plitvice Lakes and their tributaries (Croatia/Yugoslavia) were coupled with micromorphological investigations on carbonate lake sediments and recent travertines. Karst springs discharge water from aquifers in Triassic and Jurassic dolomites and limestones and collect in lakes, which are ponded behind accreting travertine dams. Waters at springs have a high CO2 partial-pressure (greater than 7000 ppm) and are slightly undersaturated with respect to calcite (saturation index less than —0·03). CO2 partial pressure is quickly reduced in swift running streams, leading to very high supersaturation with carbonate minerals (saturation indices between 0·74 and 0·53). Calcite deposition, however, is restricted to the lake bottoms (formation of lake marl) and to the tufa dams. The annual carbonate precipitating capacity of the system based on water balance and downstream loss of dissolved ions is estimated to be on the order of 10 000 t CaCO3 as cascade deposits (tufa dams) or as micrite in lakes behind the travertine dams. The initial stages of travertine formation as a result of morphological, biological, and chemical factors are (i) moss settling on small ridges in the creek courses, (ii) epiphytes (diatoms and cyanobacteria) settling on the moss surface, (iii) micrite particles resuspending from lake bottoms and being trapped on mucous excretions from bacteria and diatoms, and (iv) inorganic calcite precipitating as sparite at nucleation sites provided by these crystal seeds. Geochemical studies of the lake marl and tufa dams show that amino acids are dominated by aspartic acid. Carbohydrates come from structural polysaccharides of diatoms. The sticky excretions, rich in aspartic acid, are necessary for the initiation of calcite precipitation. They may be a response of algal and bacterial metabolism to environmental stress by either nutrient depletion or high calcium concentrations in ambient waters. The formation of tufa and micrite (lake marl) appears to be initiated by localized biological factors and is not governed by mere calcite supersaturation of the water. Oligotrophy may be an essential precondition for the formation of fresh water carbonate deposits.  相似文献   

20.
Cold‐water coral mound morphology and development are thought to be controlled primarily by current regime. This study, however, reveals a general lack of correlation between prevailing bottom current direction and mound morphology (i.e. footprint shape and orientation), as well as current strength and mound size (i.e. footprint area and height). These findings are based on quantitative analyses of a high‐resolution geophysical dataset collected with an Autonomous Underwater Vehicle from three cold‐water coral mound sites at the toe of slope of Great Bahama Bank. The three sites (80 km2 total) have an average of 14 mounds km?2, indicating that the Great Bahama Bank slope is a major coral mound region. At all three sites living coral colonies are observed on the surface of the mounds, documenting active mound growth. Morphometric analysis shows that mounds at these sites vary significantly in height (1 to 83 m), area (81 to 6 00 000 m2), shape (mound aspect ratio 0·1 to 1) and orientation (mound longest axis 0 to 180°). The Autonomous Underwater Vehicle measured bottom current data depict a north–south flowing current that reverses approximately every six hours. The tidal nature of this current and its intermittent deviations during reversals are interpreted to contribute to the observed mound complexity. An additional factor contributing to the variability in mound morphometrics is the sediment deposition rate that varies among and within sites. At most locations sedimentation rate lags slightly behind mound growth rate, causing mounds to develop into large structures. Where sedimentation rates are higher than mound growth rates, sediment partially or completely buries mounds. The spatial distribution and alignment of mounds can also be related to gravity mass deposits, as indicated by geomorphological features (for example, slope failure and linear topographic highs) in the three‐dimensional bathymetry. In summary, variability in sedimentation rates, current regime and underlying topography produce extraordinarily high variability in the distribution, development and morphology of coral mounds on the Great Bahama Bank slope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号