首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 718 毫秒
1.
温度对青藏高原高寒灌丛CO2通量日变化的影响   总被引:1,自引:0,他引:1  
应用涡度相关技术连续监测的CO2通量及温度数据(2003年1月1日至2004年12月31日),分析了青藏高原高寒灌丛净生态系统CO2交换(NEE)日变化与温度之间的关系.结果表明:1)在暖季夜间(21:00至次日06:00时)温度与NEE变化呈显著正相关关联,而白昼(07:00~20:00时)NEE变化与温度无显著关联;2)在冷季不论夜间还是白昼,NEE变化均与温度密切相关,温度是决定冷季高寒灌丛生态系统CO2交换的主要因素.在全球气候变暖背景下,青藏高原气候变化呈现出冬季增温率明显高于春、夏季特征,未来气候变暖导致的增温效应可能会加速青藏高原高寒灌丛生态系统CO2排放,使其作为碳汇的能力而减弱.  相似文献   

2.
西宁地区大气中黑碳气溶胶浓度的观测研究   总被引:7,自引:1,他引:6  
对2005年9月至2007年7月在西宁获得的黑碳气溶胶(BC)浓度观测资料及气象观测资料进行了分析. 结果表明, 受当地冬季取暖和冬季逆温出现频率高的影响, BC浓度的月际变化规律明显, 且变化幅度大, BC浓度高值出现在每年10月至次年1月;低值出现在5-8月;日平均浓度为4 240.1 ng·m-3, 其变化范围为957.5~11 045.5 ng·m-3. 受局地人为活动和大气垂直对流扩散等影响, BC浓度日变化表现出明显的双峰值特征, BC高浓度出现在7:00~12:00和18:00~24:00, 而低浓度一般出现在14:00~17:00和02:00~05:00时段. 与相距90 km的瓦里关全球本底站相比, 西宁BC日平均浓度偏高约13倍, 且月际变化差异大, 但与国内部分城市相比还是较低(除西藏拉萨外).  相似文献   

3.
<正>大气颗粒物作为大气环境的固相组成部分,与大气环境问题密切相关,尤其是硫酸盐颗粒物,与酸雨、酸雾等形成与人体健康都有直接的关系。目前,大气颗粒物是大多数城市的空气首要污染物,其中以总悬浮颗粒物TSP(空气动力学直径小于或等于100μm)为主,研究其理化性质及硫酸盐硫同位素组成的变化特征,有助于研究TSP的来源及其主要组分的形成机制。TSP样品采集于2012年12月(冬季)和2013年08月(夏季),分昼(07:00~19:00)夜(19:00~07:00)  相似文献   

4.
内蒙古乌海粉尘浓度时空分布及影响因素探析   总被引:1,自引:0,他引:1  
于2018年1月与7月采用流动监测法,对内蒙古乌海粉尘颗粒物进行采集,结合监测站数据,研究乌海不同粒径粉尘浓度时空分布规律及影响因素。结果表明:乌海市冬春季粉尘污染远远高于夏秋季,春季污染最严重,夏季污染相对较轻。PM2.5污染最严重月份为3月,PM10污染最严重月份为4月。一天中粉尘浓度峰值出现在10:00—12:00,谷值出现在16:00—18:00。空间上东部粉尘浓度高值区以条带状分布,中南部和西部以点源放射状向周围扩散。不同土地利用类型内部粉尘浓度特征均不同。工矿用地和城镇内部浓度高于有林地和未利用地,耕地和水体内部浓度最低;工矿用地是乌海市粗颗粒粉尘的主要来源,城镇是乌海夏季细颗粒粉尘的主要来源,水体、耕地和有林地可明显降低空气中颗粒物浓度。总悬浮颗粒物(total suspended particulate,TSP)和不同粒径颗粒物(particulate matter,PM),包括PM10、PM2.5、PM1等粉尘浓度与风速、湿度呈正相关,与温度、海拔呈负相关,其中气压是影响TSP浓度的最主要因素,湿度是影响PM1-10的最主要因素。不同粒径粉尘浓度受到归一化指数、气象、地形等多因素综合制约,单一条件对大气粉尘影响有限。  相似文献   

5.
为研究宿南矿区祁东煤矿煤层气地质和地球化学特征及影响因素,在样品采集和测试基础上对含气量及组分进行测定,并探讨了影响因素。结果表明:煤层气组分以CH4为主,含量为62.14%~98.0%(平均含量为87.57%);次为CO2和N2,含量分别为0.00~8.63%(平均含量为4.08%)和0.15%~30.17%(平均含量为9.21%)。甲烷浓度与含气量成正比,与N2浓度成反比。含气量随埋深增加而增加,但甲烷浓度变化不明显。另外,甲烷浓度和含气量与煤层厚度、顶板厚度呈弱正相关关系。含气量与水分关系为弱负相关,与灰分和挥发分为弱正相关。  相似文献   

6.
利用低温预浓缩-GC/MSD研究了广州市大气中痕量的一氯二氟甲烷(HCFC-22),并且将其变化特征与SO2、NO2和可吸入颗粒物(PM10)等一般空气污染物进行了比较.结果表明,广州市大气中HCFC-22的年平均浓度值是一些全球本底站观测值的3倍左右,表明广州存在较强的HCFC-22排放源,可能与HCFC-22作为制冷剂在城区较大量使用有关.广州市HCFC-22呈现出夏秋季高、冬春季低的特征,这主要与HCFC-22排放的季节性差异有关.而广州市大气一般空气污染物SO2、NOx、PM10和CO的浓度水平则与HCFC-22相反,呈现夏秋季低、冬春季高的特征,主要受扩散条件与季风影响.HCFC-22日变化幅度在夏季远大于冬季,变化规律整体与SO2、NOx和PM10大致相似,夏季呈双峰特征,冬季则呈单峰特征,但与常规污染物不同的是,夏季HCFC-22在17:00~20:00家用空调使用高峰期呈现异常高值.  相似文献   

7.
峰丛洼地表层岩溶动力系统季节变化规律   总被引:8,自引:0,他引:8  
峰丛洼地表层岩溶动力系统与土壤CO2密切相关.土壤CO2体积分数变化受气温和降雨影响, 其季节变化特征表现为: 冬季的波谷、夏季的波峰交替出现, 秋季出现次波谷和次波峰.受降雨影响, 表层岩溶动力系统运行强度春、夏季较强, 秋、冬季较弱.从冬至夏, 在土壤CO2逐渐增多时, 系统溶解、转移碳的能力也逐渐增强.在土壤CO2和温度双重支配下, 系统由冬季的沉积趋势转为春、夏季的溶解趋势.   相似文献   

8.
开展大九湖湿地生态系统CH4通量研究,对深入了解碳循环机制、科学经营以及准确评估湿地生态系统碳收支等方面具有重要意义.以湖北省神农架林区大九湖亚高山泥炭湿地为研究区域,采用涡度相关法对CH4通量进行原位连续观测,分析了泥炭湿地CH4通量变化特征及其影响因素.结果表明,大九湖泥炭湿地在2015年8月至2016年5月期间表现为CH4的源,日通量均值为15.57 nmol·m-2·s-1.CH4通量具有“夜间极大值”(2:00或22:00) 和“三峰模式”(6:00、12:00和22:00) 两种昼夜变化规律;CH4通量具有明显季节变化规律,8月释放最多(36.46 nmol·m-2·s-1),3月释放最少(3.92 nmol·m-2·s-1).相关性分析表明,大九湖泥炭湿地CH4通量受空气温度(Ta)、土壤温度(Ts)、土壤含水量(SWC)和摩擦风速(U*)的共同影响;不同时间尺度上,各影响因子与CH4通量的相关性有所差异.曲线拟合得出,CH4通量与Ta和Ts呈指数增长趋势,与SWC呈二次曲线关系.   相似文献   

9.
基于南昌温室气体站2018年12月~2020年11月连续在线监测的CH4浓度数据,对大气CH4浓度变化及区域输送进行研究,结果表明:研究期间南昌站大气CH4的平均浓度为2389×10-9,CH4浓度日变化呈现夜间高、白昼低的特征,夏、秋季大气CH4浓度高于冬、春季,春季振幅最小(404×10-9),秋季振幅最大(621×10-9)。大气CH4浓度年内变化呈现双峰曲线, 3月、11月为谷值, 9月、12月为峰值。2020年大气CH4浓度比2019年同期低。ENE风向的CH4浓度较高,在夏季高达3064×10-9。混合单粒子拉格朗日综合轨迹(HYPLIT)模型聚类分析表明,春、秋季大气CH4浓度主要受中长距离气团输送的影响,夏季主要受短距离气团输送的影响,冬季受短距离和长距离气团输送的共同影响。  相似文献   

10.
虽然神农架大九湖泥炭湿地的甲烷排放特征、土壤微生物群落组成已有一些研究,但是关于微生物群落与甲烷排放量的关系及影响的研究不多.采用涡度相关法和高通量测序技术,探讨2016年3月~2017年2月微生物对大九湖泥炭湿地CH4通量排放的影响.结果表明,大九湖泥炭湿地研究期间表现为CH4的源,年总排放量5 566.27 mg·m-2,日平均排放速率10.96 nmol·m-2·s-1;春、夏、秋、冬四季的平均通量分别为12.06、22.47、3.02、2.92 nmol·m-2·s-1;研究区优势菌为泉古菌(54.6%)、广古菌(18.9%)、酸杆菌(12.6%)等.对不同季节样品Shannon指数进行单因素分析,p值为0.000 127,分析结果表明:CH4月通量变化均呈明显的倒“U”型;夏季CH4通量最高,冬季最低;不同季节的微生物群落物种多样性存在显著差异;夏季、冬季微生物群落组成与CH4通量分别呈显著正相关、显著负相关;未鉴别出的菌群和俭菌总门与CH4通量呈极显著正相关关系,泉古菌门与CH4通量呈极显著负相关关系.   相似文献   

11.
为科学认识淄博市区大气颗粒物污染状况,探讨颗粒物的污染水平和元素在颗粒物中的分布与分配特征,对颗粒物中元素的来源进行分析。于2015年冬季和夏季期间分别布设45个和16个采样点采集悬浮颗粒物(TSP)、PM10及PM2.5样品,分析了颗粒物和18种元素(或化合物)的质量浓度。结果表明:1)大气颗粒物中冬季TSP、PM10及PM2.5的质量浓度均值高于夏季;PM10和PM2.5质量浓度均超过国家标准,其中冬季PM2.5质量浓度是标准限值的1.96倍。2)不同粒径的颗粒物中元素质量分数差别显著,As、Cd、Cr、Cu、Ni、Pb、Zn等多数重金属元素主要富集在PM2.5中,且PM2.5约占PM10的65%(冬季)和73%(夏季)。3)颗粒物PM2.5中Al2O3、CaO、Fe2O3、K2O、MgO等氧化物主要受土壤扬尘控制;As、Cd、Hg、Pb、Se、Zn等元素主要源于人为污染;Se的富集因子最高,反映了PM2.5污染主要来源于燃煤;Co、Cu、Ni、Na2O受土壤扬尘和人类活动的共同作用,而Cr具有混合污染的特点。  相似文献   

12.
苏志华  韩会庆  陈波 《中国岩溶》2020,39(3):442-452
选取贵阳市10个空气质量监测站发布的PM2.5、PM10、SO2、NO2、CO和O3实时浓度数据,通过时间序列分析法和插值法研究贵阳市大气污染物的时空变化和复合污染特征。结果表明:(1)贵阳市2014-2018年主要污染物PM2.5和PM10的年平均浓度逐渐下降,光化学污染物O3年平均浓度有所增加,空气质量逐渐转好,环境治理取得明显效果;(2)2018-2019自然年PM2.5、PM10、NO2和O3在春季污染最严重,SO2和CO在冬季污染最严重,反映出污染源、阶段性燃料燃烧和二次离子生成等因素对不同污染物的影响不同;(3)PM2.5和PM10日变化特征为“午峰晚峰”型,峰值发生的时间因季节而异,主要由不同季节人类作息的起止时间不同所致,O3日变化为单峰型,夜间O3浓度较低,从早晨8:00点开始随着太阳辐射的增大和温度的升高,在15:00-16:00点左右达到峰值;(4)PM2.5的空间分布呈现出部分郊区和工业区较高,市中心居民区较低的特征,指示城市建设向郊区推进。O3浓度呈现出市区低、郊区高的空间分布特征,反映郊区植被覆盖好,释放的天然源VOCs促进了O3生成;(5)主要污染物O3与颗粒物PM2.5和PM10在春季造成的复合污染最为严重,在夏季O3与PM10造成一定程度的复合污染,在秋冬季O3浓度最低,O3与颗粒物不产生复合污染;一天之内同一时刻O3与颗粒物不会产生叠加从而造成复合污染。   相似文献   

13.
本文以四川盆地西北盆缘的广元、绵阳、德阳、成都、雅安为研究对象,探究2015~2019年5大城市空气质量及大气气溶胶污染特征变化规律,以期为深入揭示四川盆地城市大气气溶胶污染特征提供参考。通过对环境监测站实时数据,使用SPSS21.0软件进行数据分析得出成都、德阳、绵阳3城市因人为污染贡献较大和四川盆地封闭的地形的原因导致的PM2.5、PM10、NO2、O3污染相对较重,雅安、广元因人为污染贡献小、有利于污染物扩散的风向因而空气质量良好。整体上PM2.5、PM10、SO2、NO2均表现为夏季低、冬季高,而O3具有相反的季节变化特征。SO2、NO2、PM2.5、PM10与相对湿度、降水量、平均气温均呈负相关关系,而与平均气压呈正相关关系。  相似文献   

14.
Entrainment rate refers to the ratio of surrounding air quality to air quality involved in rising unit distance, including turbulent entrainment and dynamic entrainment, which are applied to the boundary layer parametrization of convective clouds, the improvement of numerical model, the observation of cloud droplet spectral dispersion and the study of tropical cyclones.Based on the daily data at 07:00 and 19:00 every 10 m of five stations such as Minqin, Yuchong, Pingliang, Yinchuan and Yan'an from May to September during 2006-2016, combined with the daily observation data on the ground, the Entrainment Rates(ER) of different heights were calculated, and the relationships between ER and height in different regions, precipitation as well as monsoon during the monsoon period were further obtained. The main results were as follows: The ER was proportional to air temperature and saturated water vapor pressure, but inversely proportional to relative humidity. The relative humidity threshold of cloud was 65%. The higher the relative humidity threshold was, the lower the cloud height of different orders of precipitation was, and the cloud height was higher with the increase of rainfall. ER had obvious diurnal changes and regional differences: It was obviously smaller at 07:00 than at 19:00 from ground to 3 km, which weakened with the increase of height in the near surface , but strengthened with the increase of height above 500 m; From small to large, the monsoon affected area, the monsoon swing area and the non-monsoon area were in turn, and there was no regional difference above 3 km. ER was closely related to the intensity and property of precipitation in monsoon period. The ER weakened with the enhancement of rain intensity from near ground to below 600 m, but strengthened with the enhancement of rain intensity from 500 m to 2~3 km.From near ground to below 700 m, the ER of stable precipitation was strong, but that of convective precipitation was strong above 700 m. The convective precipitation had big saturated water vapor pressure and strong ER , while the stable precipitation had big saturated water vapor density, rich water vapor but weak ER. The relationship between ER and monsoon as well as its duration: From no monsoon to monsoon ER was weakened, the strongest maximum height was also decreasing. There was no significant difference in the duration of ER between the non-monsoon area and the monsoon affected area, but the longer the monsoon swing area lasted in the near ground layer, the smaller the ER was, while the opposite was at 1~2 km in the high altitude. The relationship between ER and the APO monsoon intensity index showed that: At 07:00, the ER strengthened with height from near ground to below 800 m, but weakened with height above 800 m,and the monsoon intensity was not related to the ER. At 19:00, the ER strengthened with the height near ground but weakened with the height above 300 m, and the stronger the monsoon was, the smaller the ER was. The ER weakened with the decrease of boundary layer height.  相似文献   

15.
河套干旱地区夏季边界层结构特征观测分析   总被引:2,自引:0,他引:2  
崔洋  常倬林  桑建人  左河疆 《冰川冻土》2015,37(5):1257-1267
利用2013年夏季7月爱尔达K/LLX802J型机动式边界层风廓线雷达获取的三维风场资料和银川站高空气象探测资料,对河套干旱地区夏季边界层日变化特征进行了分析.结果表明:爱尔达K/LLX802J型机动式风廓线雷达能较好的反映并分辨出夏季河套干旱地区边界层内大气湍流和风场的演变过程.夏季7月河套干旱地区边界层高度白天平均为2127.2 m,夜间平均为1760.7 m,白天边界层高度比夜间平均高366.5 m.河套干旱区夏季地表非绝热加热对边界层的影响主要集中在800 m以下,800~2000 m高度边界层则主要受昼夜交替和大尺度天气系统的影响.夏季7月河套干旱地区边界层风速在300 m以下随高度增加而增大,离地500 m以下边界层易在北京时间07:00-11:00和18:00-21:00时段发生风速切变;300 m以下边界层白天盛行西南偏南风、夜间盛行南风,300~2000 m高度边界层白天和夜间均盛行东南风;离地300 m以下边界层易在夜间21:00-23:00时出现风向切变.夏季7月白天河套干旱地区边界层大气垂直速度在300 m高度以下随高度增加而增大,由0.3 m·s-1增大到0.6 m·s-1,夜间边界层大气垂直速度在200 m高度以下随高度增大而增大;300 m高度以上边界层大气垂直速度无论昼夜随高度变化均较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号