首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of analysis of spectral observations of two Ellerman bombs (EB-1 and EB-2), which were formed and have evolved in the area of emerging magnetic flux in active region (AR) NOAA 11024, are presented. Spectral data with high spatial and temporal (approximately 3 s) resolution were obtained using the THEMIS French–Italian solar telescope on July 4, 2009. The observation duration was 20 min. The spectral region of λ ≈ 630 nm with photospheric lines forming in a wide altitude range (neutral iron lines Fe I λ 630.15, 630.25, and 630.35 nm and titanium line Ti I λ 630.38 nm) was examined. The brightness of EB-1 decreased in the process of observations, while the brightness of EB-2 increased. The profiles of metal lines determined at different stages of EBs evolution were asymmetric. This asymmetry was more pronounced in lines that had formed in the lower photospheric layers and often had profiles with several components. The half-width of profiles increased with a reduction in their central depth. The variation of central intensities of Fraunhofer lines in the spectra of EBs and their vicinity at different stages of EB evolution was analyzed. The EBs formed in intergranular lanes. An increase in the core intensity of all the studied photospheric lines was correlated spatially with an increase in the wings intensity of the Hα line. Brightness variations at all photospheric levels were of an oscillatory nature with an interval of 1–5 min. The observed temporal variations of Fraunhofer line intensities in the spectra of the studied AR section suggest that the emergence of the new magnetic flux induced consecutive magnetic reconnections in the EB-1 region, the excitation propagated along a magnetic loop and initiated the formation of EB-2, and the two bombs then evolved as a physically connected pair.  相似文献   

2.
The results of analyzing variations in the line-of-sight (LOS) velocities in the solar loop at photospheric and chromospheric levels in the region of emerging magnetic flux for the evolving active region NOAA 11024 are reported. The analysis combines the data of multiwave spectropolarimetric observations that were carried out on July 4, 2009, (Tenerife, Spain) using THEMIS solar telescope and the data obtained with GOES, SOHO, and STEREO cosmic satellites. A complex sequence of active events has been studied: formation of the Ellerman bomb, B1 X-ray microflare, and four chromospheric surges that were formed as a result of magnetic reconnection caused by new emerging magnetic flux. The Ellerman bomb was formed in the vicinity of a growing pore. Variations in the velocity V LOS of the EB had an oscillation character for chromosphere and photosphere. Before the microflare, the average velocities of the upward and downward plasma fluxes in one leg of the magnetic loop were nearly the same—26 km/s. During the microflare, the velocity V LOS of the ascending and descending flows increased up to ?33 and 50 km/s, respectively. Variations in line-of-sight velocity of a plasma in the second leg of the magnetic loop correlated well with variations of V LOS in the region of microflare, but they occurred 1.5 minutes later. During the time of observations, four chromospheric ejections of matter were formed and three of them occurred in the region of Ellerman’s bomb formation. Sharp variations in the soft X-ray intensity occurred during these ejections. At photospheric level, variations in the line-of-sight velocity of plasma in the legs of the loop occurred in the opposite direction. In the region of the first leg, velocity V LOS diminished from ?1.8 to ?0.4 km/s, while the velocity increased from ?0.6 to ?2.6 km/s in the region of the second leg.  相似文献   

3.
Observations indicate that Ellerman bombs (EBs) and chromospheric microflares both occur in the lower solar atmosphere,and share many common features,such as temperature enhancements,accompanying jet-like mass motions,short life-time,and so on.These strongly suggest that EBs and chromospheric microflares could both probably be induced by magnetic reconnection in the lower solar atmosphere.With gravity,ionization and radiation considered,we perform two-dimensional numerical simulations of magnetic reconnecti...  相似文献   

4.
We present results of the study of chromospheric and photospheric line-of-sight velocity fields in the young active region NOAA 11024. Multi-layer, multi-wavelength observational data were used for the analysis of the emerging flux in this active region. Spectropolarimetric observations were carried out with the telescope THEMIS on Tenerife (Canary Islands) on 4 July 2009. In addition, space-borne data from SOHO/MDI, STEREO and GOES were also considered. The combination of data from ground- and space-based telescopes allowed us to study the dynamics of the lower atmosphere of the active region with high spatial, spectral, and temporal resolutions. THEMIS spectra show strong temporal variations of the velocity in the chromosphere and photosphere for various activity features: two pores, active and quiet plage regions, and two surges. The range of variations of the chromospheric line-of-sight velocity at the heights of the formation of the Hα core was extremely large. Both upward and downward motions were observed in these layers. In particular, a surge with upward velocities up to ?73 km?s?1 was detected. In the photosphere, predominantly upward motions were found, varying from ?3.1 km?s?1 upflows to 1.4 km?s?1 downflows in different structures. The velocity variations at different levels in the lower atmosphere are compatible with the emergence of magnetic flux.  相似文献   

5.
An observational program at the Sacramento Peak Observatory in 1965 provided high-dispersion spectra of the solar chromosphere in several spectral regions simultaneously. These regions included various combinations of the spectral lines Hα, Hβ and H?, the D3-line of Hei, the infrared triplet of Oi, and the H- and K-lines and the infrared triplet of Caii. With the use of an image slicer the observations were made simultaneously at two heights in the solar chromosphere separated by several thousand kilometers. From these data we draw the following conclusions:
  1. Emission of different lines arises in the same chromospheric features. The intensity ratio of lines of different elements varies significantly from spicule to spicule. For the H- and K-lines of ionized calcium, this ratio remains constant, independent of wavelength throughout the line, overall intensity, and height in the chromosphere. Two rare-earth lines in the wing of the H-line show no spicular structure at all.
  2. The line-of-sight velocities of many features reverse as a function of time, although most spicules show velocities in only one direction. The simultaneous spectra at two heights show most spicules to have the same line-of-sight velocity at both. There may be an additional class of features, mostly rapidly moving, whose members have line-of-sight velocities that increase with height. These features comprise perhaps 10% of the total. Velocity changes occur simultaneously, to within 20 sec, at two heights separated by 1800 km, indicating velocities of propagation of hundreds of km/sec. The velocity field of individual features is often quite complicated; many spectral features are inclined to the direction of dispersion, implying that differential mass motions are present.
  3. The existence of anomalously broad H and K profiles is real. Even with high dispersion and the best seeing, such profiles are not resolved into smaller features. The central reversal in K, H and Hα appears to remain unshifted when the wings are displaced in wavelength, indicating that the reversal is non-spicular.
  相似文献   

6.
The properties of Ellerman bombs (EBs), small-scale brightenings in the Hα line wings, have proved difficult to establish because their size is close to the spatial resolution of even the most advanced telescopes. Here, we aim to infer the size and lifetime of EBs using high-resolution data of an emerging active region collected using the Interferometric BIdimensional Spectrometer (IBIS) and Rapid Oscillations of the Solar Atmosphere (ROSA) instruments as well as the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We develop an algorithm to track EBs through their evolution, finding that EBs can often be much smaller (around 0.3″) and shorter-lived (less than one minute) than previous estimates. A correlation between G-band magnetic bright points and EBs is also found. Combining SDO/HMI and G-band data gives a good proxy of the polarity for the vertical magnetic field. It is found that EBs often occur both over regions of opposite polarity flux and strong unipolar fields, possibly hinting at magnetic reconnection as a driver of these events.The energetics of EB events is found to follow a power-law distribution in the range of a nanoflare (1022?25 ergs).  相似文献   

7.
Semiempirical models of the photosphere of an Ellerman bomb in the NOAA 11024 active region were obtained using profiles of Stokes parameters I, Q, U, and V of photospheric lines. Spectropolarimetric observations were conducted using the French–Italian THEMIS telescope (Tenerife, Spain). The SIR inversion code [28] was used in the modeling. The models have two components: a magnetic flux tube and nonmagnetic surroundings. The dependences of temperature, magnetic field strength, inclination of the magnetic field vector, and line-of-sight velocity in the tube on the optical depth were obtained. The models demonstrate that the thermodynamic parameters of the Ellerman bomb photosphere differ considerably from those of the quiet photosphere. The temperature in the tube model varied nonmonotonically with height and deviated by up to 700–900 K from its values for the quiet photosphere. Downflows were observed in the lower and the upper photospheric layers. The line-of-sight velocity in the upper layers of the photosphere was as high as 17 km/s. The magnetic field strength in the models varied from 0.1–0.13 T in the lower photospheric layers to 0.04–0.07 T in the upper ones. The physical state of the photosphere did change in the course of observations.  相似文献   

8.
Chromospheric line-of-sight velocities are investigated in a small pore and its vicinity on the part of the active region NOAA 11024 with a size of 5″. We used Hα spectra of the active region and undisturbed atmosphere obtained with the French–Italian solar telescope THEMIS (Tenerife, Spain). Significant line-of-sight velocity time variations are found. At the beginning of the observations, the investigated region consisted of two areas of oppositely directed flows. The first area had a bright point in the vicinity of the pore and the second area covered the pore. There were upflows in the former and downflows in the latter. Oppositely directed flows appeared in both areas 2.7 min after the start of observations. In the part of the active region with a length of 2Mm, two oppositely directed flows within the same resolution elements, the so-called dual flows, were observed. The size of the area occupied by the dual flows varied quickly. The area shifted toward the pore. The velocity of upflows and downflows reached 25 km/s. The downflows in the first area lasted only for approximately 1 min. Upflows in the second area gradually covered the pore and lasted for 2 min. The resulting velocity field distribution can be due to a new small-scale magnetic flux emergence.  相似文献   

9.
Nindos  Alexander  Zirin  Harold 《Solar physics》1998,182(2):381-392
We studied the properties and proper motions of Ellerman bombs (EBs) around a sunspot in a mature active region using high-resolution off-band H filtergrams together with nearly simultaneous magnetograms. Sixty-four percent of the EBs (class I) did not correspond accurately to enhanced magnetic field elements while the rest corresponded well to such elements (class II), which all were moving magnetic features (MMFs). We studied the lifetimes, shapes and dimensions, contrasts and time profiles of the EBs. These properties were essentially the same for both classes, in agreement with previous authors. Class I EBs did not move but class II EBs tracked the MMFs well, with horizontal proper motions up to a maximum of 1.1 km s–1 and their velocity pattern was similar to the velocity pattern of the MMFs.  相似文献   

10.
A microflare or a group of Ellerman bombs was found to be associated with several points of white-light enhancements. These points had similar sizes as facular points (d 0.3 arc sec). Temporal evolution of these activities is described. Origins of these activities are discussed to be deeply seated excess heating in chromospheric and photospheric levels.  相似文献   

11.
A developing active region near the center of the solar disk was observed for 80 min at the center and the wings of H. Ellerman bombs lying both below an Arch Filament System and near sunspots were studied at H - 1.0 Å and H - 0.75 Å. We determined their average contrast, lifetime, size and we studied their flux as a function of time. We found evidence that the size of Ellerman bombs increases with height. The time curves of flux provide evidence for both impulsive and gradual energy release. Under the AFS the Ellerman bombs form a cellular pattern with a characteristic size of 3.1 × 103 km. Fifty percent of the bombs appear and disappear in pairs, possibly associated with bipolar emerging magnetic flux tubes.  相似文献   

12.
The dynamical mass of a star cluster can be derived from the virial theorem, using the measured half-mass radius and line-of-sight velocity dispersion of the cluster. However, this dynamical mass may be a significant overestimation of the cluster mass if the contribution of the binary orbital motion is not taken into account. Here, we describe the mass overestimation as a function of cluster properties and binary population properties, and briefly touch on the issue of selection effects. We find that for clusters with a measured velocity dispersion of σ los?10 km?s?1 the presence of binaries does not affect the dynamical mass significantly. For clusters with σ los?1 km?s?1 (i.e., low-density clusters), the contribution of binaries to σ los is significant, and may result in a major dynamical mass overestimation. The presence of binaries may introduce a downward shift of Δlog?(L V /M dyn)=0.05–0.4 (in solar units) in the log?(L V /M dyn) versus age diagram.  相似文献   

13.
Spectra of an Ellerman bomb in the NOAA 11024 active region were obtained in spectropolarimetric observations with the French–Italian THEMIS telescope (Tenerife, Spain). The variations of profiles of the Stokes parameters I, Q, U, and V of photospheric lines were analyzed. The chosen lines had different intensities and magnetic-field sensitivities. It was found that the photospheric line profiles in the Ellerman bomb spectra differed greatly from the profiles for the quiet photosphere outside the active region. The Stokes I profiles of photospheric lines in the Ellerman bomb spectra were much weaker. The largest values of the Stokes parameters Q, U, and V were derived for the Fe I λ 630.25 nm magnetosensitive line. The Stokes parameter V was the highest in the central region of the Ellerman bomb, while the maximum Q and U parameters were observed at one of the edges of the Ellerman bomb. It follows from the comparison of the Stokes parameters for the Ellerman bomb and microflares that the Q, U, and V parameters for the bomb are much higher than those for flares.  相似文献   

14.
张萍  方成 《天文学进展》2011,(4):357-370
随着观测的时间分辨率和空间分辨率的提高,近年来已发现和仔细研究了很多小尺度的太阳活动现象.它们的物理过程同复杂激烈的爆发现象有许多共同之处,因而可以为研究有复杂结构的激烈爆发现象(如耀斑和日冕物质抛射等)提供重要线索;同时,它们对太阳大气的加热可能有重要贡献,因而对理解太阳大气的加热机制有重要意义.太阳小尺度活动现象可...  相似文献   

15.
Observations are reported of two, possibly three, distinct wave systems in the Hα chromosphere.
  1. Velocity films show waves propagating predominantly outwards along mottles and fibrils from as close as 2000 km to the network axis at velocities of the order of 70 km s-1. The line-of-sight component of the velocity amplitude is estimated to be typically 5 km s-1. The velocities are accompanied by propagating intensity fluctuations. The system is interpreted as one of basically Alfvén waves. Similar waves are observed propagating predominantly outwards along superpenumbral fibrils radiating from a small sunspot.
  2. The velocities in the chromospheric granulation undergo fluctuations of an oscillatory character but without any observable horizontal propagation. The intensities show a close correlation with the velocities, maximum intensity occurring about T/4 after maximum downward velocity. The period is variable across the surface (2.5 min upwards). The intensity-velocity correlation is characteristic of a standing compressional wave.
  3. Intensity cinefilms at Hα line centre show in places a horizontal drift of the chromospheric granulation pattern at about 12 km s-1 without any accompanying vertical velocity fluctuations. It is not known whether this is due to a gas stream at sonic velocities, or to a horizontally propagating sound wave.
The Alfvén wave system is shown to make a significant contribution to coronal heating. Whether the velocity fluctuations in the chromospheric granulation also make an important contribution depends on whether there are upwardly propagating or standing waves; this is not yet established despite the intensity-velocity correlation.  相似文献   

16.
Chromosphere layers of solar flares were investigated according to the observed profiles of the Hα line. A two-strand flare was observed on September 4, 1990. Spectra were obtained with the ATsU-26 solar horizontal telescope at Terskol Peak Observatory (3100 m). Spectra photometry is performed for two bright nodes of one strand of the flare. Some profiles are superposed to the ejection. The observed profiles are characterized by high emissions in the wings of the Hα line (up to 10–12 Å) under relatively low intensity in the center of Hα (r = 0.35–0.6). To explain such profile behavior we calculated flare models with two or three components. Separate components of the model correspond to unresolved details in the flare area and therefore the averaged profile is calculated. Emission in the far wings is explained by model components with deep heating of chromosphere layers. These occupy 5–12% of the total area. Noticeable emission asymmetry is explained by ray velocities of up to 70 km/s and more. The models are determined by agreement of the observed and calculated profiles. We processed several photometric profiles for seven observations. The temperature in the models with deep heating in the lower cromosphere is increased by 1000–2500 K with respect to the model with an undisturbed chromosphere VAL-C. The second feature of the observed profiles is their high asymmetry and shift with respect to the undisturbed profiles. This can be explained by the opposite motion of the material. We revealed that for the most of the profiles the line-of-sight velocities were directed to the observer in the upper chromosphere (10–100 km/s) and from the observer in the lower chromosphere (5–20 km/s).  相似文献   

17.
We studied changes in thermodynamic parameters of the chromosphere at the initial stage of the two-ribbon solar flare accompanied by a surge that occurred on September 4, 1990. The inhomogeneous semiempirical models of the flare chromosphere and surge are constructed for four observation moments. The spectra were obtained with the ATsU-26 horizontal solar telescope of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine (Terskol Peak). Photometric transections of the spectra passed through two bright kernels of one of the flare ribbons and through the surge. The comparison of the observed profiles of the line Hα in the solar active and quiet-Sun regions reveals the substantial emission in the line wings (up to 1–1.2 nm) with a residual intensity of 0.6–0.77 at the center of the line profiles. Calculations within the two-component models of the chromosphere have shown that this may be the evidence of the existence of the details (unresolved by the telescope and occupying 5–12% of the total area) with a deep heating of the chromosphere layers. A strong asymmetry of the line profiles and the shift with respect to the line profile for the quiet-Sun region are explained by peculiarities of the line-of-sight velocity distribution over the height. It is found that the motion is directed to the observer in the upper chromosphere (10–30 km/s) and from the observer in the lower chromosphere (5–20 km/s) for the larger part of the active region under study. According to the models calculated for the surge, the line-of-sight velocities reach a value of 70 km/s.  相似文献   

18.
Ellerman bombs, also called moustaches, are transient brightenings at tiny (< 1 arc sec) points in the lower chromosphere whose spectra are characterized by elongated emission wings on the hydrogen Balmer lines. Babin and Koval recently found linear polarization as high as 20% in bombs, but no physical process that could produce such a high degree of polarization was suggested. A new observational study of polarization in Ellerman bombs is reported here. Images of 32 bombs were obtained with a digital video system viewing the Sun through a 6 Å filter at the Sacramento Peak Vacuum Tower Telescope. A novel polarizing beamsplitter divided each image into two interleaved polarized components which passed simultaneously through a single set of optics and were separated only during data analysis. The sensitivity threshold of the measurements was 1%. In 4 cases out of 32, linear polarization above 2% was detected. The higher incidence of > 2% polarization reported by Babin and Koval is not confirmed.  相似文献   

19.
Based on our H α interferometry and 21-cm and CO observations, we analyze the structure and kinematics of the interstellar medium around the stars WR 134 and WR 135. We conclude that the HI bubble found here previously is associated with WR 135, not with WR 134. High-velocity motions of ionized gas that can be interpreted as expansion of the gas swept up by the stellar wind with a velocity up to 50–80 km s?1 are observed around both stars. The line-of-sight velocity field of the ionized hydrogen in the Cygnus arm is shown to agree with the large-scale line-of-sight velocity distribution of the CO emission.  相似文献   

20.
We analyzed the monochromatic Hα and spectral (within a range of 6549–6579 Å) observational data for the 2B/X6.9 flare of August 9, 2011, that produced emission in the optical continuum. The morphology and evolution of the Hα flare and the position, time evolution, spectrum, and energetics of the white-light flare (WLF) kernels were studied. The following results were obtained: the flare erupted in the region of collision of a new and rapidly growing and propagating magnetic flux and a preexisting one. This collision led to a merger of two active bipolar regions. The white-light flare had a complex structure: no less than five kernels of continuum emission were detected prior to and in the course of the impulsive flare phase. Preimpulsive and impulsive white-light emission kernels belonged to different types (types II and I, respectively) of white-light flares. A close temporal agreement between the white-light emission maxima and the microwave emission peak was observed for the impulsive white-light emission kernels. The maximum flux, luminosity, and total energy emitted by the brightest impulsive WLF kernel equaled 1.4 × 1010 ergs cm?2 s?1, 1.5 × 1027 ergs/s, and 5 × 1029 ergs, respectively. The Hα profiles within the impulsive WLF kernels had broad wings (with a total extent of up to 26 Å and a half-width of up to 9 Å) and self-reversed cores. The profiles were symmetrical, but were shifted towards the red side of the spectrum. This is indicative of a downward motion of the entire emitting volume with a radial velocity of several tens of km/s. The intensity pattern in the wings did not correspond to the Stark one. The profiles were broadened by nonthermal turbulent motions with velocities of 150–300 km/s. The observed Hα profiles were analyzed and compared in their features to the profiles calculated for an intense heating of the chromosphere by nonthermal electrons accompanied by the development of a chromospheric condensation propagating downward. We came to the conclusion that the analyzed flare exhibited spectral features that may not be readily explained within the framework of chromosphere heating by a beam of nonthermal electrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号