首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Carbonate δ13C values provide a useful monitor of changes in the global carbon cycle because they can record the burial ratio of organic to carbonate carbon. The most pronounced isotope excursions in the geologic record occur during the Neoproterozoic and have assumed a central role in the interpretation of biogeochemical events preceding the Ediacaran and Cambrian radiations. The most profound negative carbon isotope excursion is best recorded in the Ediacaran-aged Shuram Formation of Oman and has potential equivalents worldwide including the Wonoka Formation of South Australia and other sections in China, India, Siberia, Canada, Scandinavia and Brazil. All these excursions are less well understood than those in the Phanerozoic because of their unusual magnitude, long duration (> 1 Ma) and the difficulty in correlating Neoproterozoic basins to confirm independently that they do indeed record global change in the mixed ocean reservoir. Alternatively, these δ13C anomalies could reflect diachronous diagenetic processes. Currently none of these excursion are firmly time constrained and critical to their interpretation is a coherent reproducibility and synchroneity at the global ocean scale. Here we use available strontium isotope record as an independent chronometer to test the timing and synchroneity of the Shuram δ13C and its potential equivalents. The use of the 86Sr/87Sr ratio allows the reconstruction of a coherent, global δ13C record calibrated independently against time. The calibrated δ13C curve indicates that the Shuram negative anomaly spans several tens of millions of years and reaches values below −10‰. This carbon isotopic anomaly therefore represents a meaningful oceanographic event that fundamentally challenges our understanding of the carbon cycle as defined in the Phanerozoic.  相似文献   

2.
In an effort to constrain the mechanism of dolomitization in Neogene dolomites in the Bahamas and improve understanding of the use of chemostratigraphic tracers in shallow‐water carbonate sediments the δ34S, Δ47, δ13C, δ18O, δ44/40Ca and δ26Mg values and Sr concentrations have been measured in dolomitized intervals from the Clino core, drilled on the margin of Great Bahama Bank and two other cores (Unda and San Salvador) in the Bahamas. The Unda and San Salvador cores have massively dolomitized intervals that have carbonate associated sulphate δ34S values similar to those found in contemporaneous seawater and δ44/40Ca, δ26Mg values, Sr contents and Δ47 temperatures (25 to 30°C) indicating relatively shallow dolomitization in a fluid‐buffered system. In contrast, dolomitized intervals in the Clino core have elevated values of carbonate associated sulphate δ34S values indicating dolomitization in a more sediment‐buffered diagenetic system where bacterial sulphate reduction enriches the residual in 34S, consistent with high sediment Sr concentrations and low δ44/40Ca and high δ26Mg values. Only dolomites associated with hardgrounds in the Clino core have carbonate associated δ34S values similar to seawater, indicating continuous flushing of the upper layers of the sediment by seawater during sedimentary hiatuses. This interpretation is supported by changes to more positive δ44/40Ca values at hardground surfaces. All dolomites, whether they formed in an open fluid‐buffered or closed sediment‐buffered diagenetic system have similar δ26Mg values suggesting that the HMC transformed to dolomite. The clumped isotope derived temperatures in the dolomitized intervals in Clino yield temperatures that are higher than normal, possibly indicating a kinetic isotope effect on dolomite Δ47 values associated with carbonate formation through bacterial sulphate reduction. The findings of this study highlight the utility of applying multiple geochemical proxies to disentangle the diagenetic history of shallow‐water carbonate sediments and caution against simple interpretations of stratigraphic variability in these geochemical proxies as indicating changes in the global geochemical cycling of these elements in seawater.  相似文献   

3.
This paper reports the results of a detailed isotopic (Sm–Nd, Pb–Pb, and δ34S) and geochemical studies of Neoproterozoic metasedimentary rocks from the Patom and Bodaibo domains of the Baikal–Patom belt (northern Transbaikalia). It was shown that the metasedimentary rocks of these domains are strongly variable in their geochemical and isotope geochemical characteristics. Regular variations in these characteristics were observed, and their correlation with the main stages of the evolution of the sedimentary paleobasin in the Neoproterozoic was established.  相似文献   

4.
We propose a detailed δ13C curve for the Vendian and Lower Cambrian (Tommotian) strata of the central Siberian Platform. Two positive carbon isotope excursions identified near the base of the Yuryakh Formation (up to 5.5) and in the lower Bilir Formation (up to 5‰) are assigned to the lowermost and middle Tommotian, respectively. This correlation is supported by paleontological data, specific 87Sr/86Sr values (0.70845-0.70856), and similar C isotope record in coeval Early Cambrian basins. The documented minor vertical oscillations (a few meters) of these isotope excursions relative to the formation boundaries in remote boreholes is presumably caused by the spatiotemporal migration of facies. A high-amplitude negative δ13C excursion (-8 to -11) in the upper Nepa Regional Stage putatively corresponds to the global Shuram-Wonoka negative carbon isotope excursion (Middle Ediacaran). Carbonates of the lower Nepa Regional Stage (Besyuryakh Formation) demonstrate positive δ13C values (up to 5) and minimum 87Sr/86Sr ratios of 0.70796-0.70832. The C and Sr isotope record of the Nepa Regional Stage provides its robust correlation with the Dal’nyaya Taiga and Zhuya Groups of the Patom Foredeep. Micropaleontological data herein reported and glacial diamictites documented at the base of the Vendian sedimentary cover both in the central Patom Foredeep and on its periphery suggest a full stratigraphic volume of the Ediacaran System in the most stratigraphically complete sections of the central Siberian Platform.  相似文献   

5.
《International Geology Review》2012,54(14):1720-1731
The origin of the Bayan Obo ore deposit, the largest REE deposit in the world, has long been debated and various hypotheses have been proposed. Among them is that the Bayan Obo ore deposit is correlated with and has the same origin as the Sailinhudong micrite mound in the southern limb of the Bayan Obo synclinorium. To test this model, the Bayan Obo ore deposit and the Sailinhudong micrite mound are systematically compared for their geological features, elemental geochemistry, and C, O, and Mg isotopic geochemistry. We show that the Bayan Obo ore deposit and the Sailinhudong micrite mound are both calcareous, lens-like in shape, lack bedding features, and are both hosted in a sedimentary formation that consists of clastic sediments and carbonates, unconformably overlying the Archaean–Palaeoproterozoic crystalline basement. However, their geochemical characteristics differ markedly. Compared with the Sailinhudong micrite carbonates, the Bayan Obo ore-hosting dolomite marbles are strongly enriched in LREEs, Ba, Th, Nb, Pb, and Sr, and have very different (PAAS)-normalized REE patterns. Sailinhudong micrite carbonates have higher δ13CPDB and δ18OSMOW values, falling into the typical sedimentary field, but the Bayan Obo ore-hosting dolomites are isotopically intermediate between primary igneous carbonatite and typical sedimentary limestone. The δ26 Mg values of the Sailinhudong micrite carbonates are lighter than those of normal Mesoproterozoic sedimentary dolostone, while those of the Bayan Obo ore-hosting dolomite marble are isotopically heavier, similar to δ26 Mg of mantle xenoliths and Bayan Obo intrusive carbonatite. We conclude that the Bayan Obo ore deposit is not correlated with the Sailinhudong micrite mound; it is neither a micrite mound nor an altered micrite mound.  相似文献   

6.
The reliability of δ13C trends in Neoproterozoic carbonate-dominated successions for regional and global chemostratigraphic correlation is discussed. In the light of recent findings of a predominantly non-marine rare earth element and yttrium signature in most Neoproterozoic carbonates and a comparatively short oceanic residence time of carbon, trends towards enrichment in 13C seen in many of these carbonates are considered to reflect facies variations rather than temporal signals of ocean chemistry. Positive δ13CCarb excursions are explained by elevated bioproductivity and/or increased evaporation in shallow marine, near-coastal, temporarily restricted depositional environments. Examples are provided that illustrate that C isotope trends can be highly ambiguous temporal markers and are in the absence of other chemostratigraphic data, such as Sr isotope ratios, and radiometric age control of only limited use for stratigraphic correlation. The overall enrichment in 13C recorded by most Neoproterozoic carbonates, except for those in close stratigraphic proximity to glacial deposits, is suggested to reflect a dominance of microbially mediated carbonate formation in the Neoproterozoic. This might explain why C isotope chemostratigraphy in Neoproterozoic successions is less reliable than in Phanerozoic successions in which carbonates are, with only few exceptions, biogenic products of shelly fossils.  相似文献   

7.
In the last ten years, with important discoveries from oil and gas exploration in the Dabashan foreland depression belt in the borderland between Shanxi and Sichuan provinces, the relationship between the formation and evolution of, and hydrocarbon accumulation in, this foreland thrust belt from the viewpoint of basin and oil and gas exploration has been studied. At the same time, there has been little research on the origin of fluids within the belt. Based on geochemical system analysis including Z values denoting salinity and research on δ13C, δ18O and 87Sr/86Sr isotopes in the host rocks and veins, the origin of paleofluids in the foreland thrust belt is considered. There are four principal kinds of paleofluid, including deep mantle-derived, sedimentary, mixed and meteoric. For the deep mantle-derived fluid, the δ13C is generally less than ?5.0‰PDB, δ18O less than -10.0‰PDB, Z value less than 110 and 87Sr/86Sr less than 0.70600; the sedimentary fluid is mainly marine carbonate-derived, with the δ13C generally more than ?2.0‰PDB, δ18O less than ?10.0‰PDB, Z value more than 120 and 87Sr/86Sr ranging from 0.70800 to 0.71000; the mixed fluid consists mainly of marine carbonate fluid (including possibly a little mantle-derived fluid or meteoric water), with the δ13C generally ranging from ?2.0‰ to ?8.0‰PDB, δ18O from ?10.0‰ to ?18.0‰ PDB, Z value from 105 to 120 and 87Sr/86Sr from 0.70800 to 0.71000; the atmospheric fluid consists mainly of meteoric water, with the δ13C generally ranging from 0.0‰ to ?10.0‰PDB, δ18O less than ?8.0‰PDB, Z value less than 110 and 87Sr/86Sr more than 0.71000. The Chengkou fault belt encompasses the most complex origins, including all four types of paleofluid; the Zhenba and Pingba fault belts and stable areas contain a simple paleofluid mainly of sedimentary type; the Jimingsi fault belt contains mainly sedimentary and mixed fluids, both consisting of sedimentary fluid and meteoric water. Jurassic rocks of the foreland depression belt contain mainly meteoric fluid.  相似文献   

8.
Sedimentary-exhalative (sedex) ore deposits were formed by discharge of metal-rich brines into ancient ocean basins. Chemical, isotopic, and geologic data from several Paleozoic sedex districts suggest that the brine discharges also supplied enormous quantities of radiogenic Sr and biolimiting nutrients to the oceans. Seven middle Paleozoic sedex events appear to coincide with short-duration positive excursions (“spikes”) in the global marine Sr-isotope record that are not explained by current oceanic models. These strong temporal correlations, combined with mass balance evidence and oceanographic modeling, suggest the flux of radiogenic Sr-rich sedex brines may have been sufficient to cause these prominent spikes. If these sedex hydrothermal events are recorded in the secular record, then the 87Sr/86Sr record may provide a unique tool for ore genesis studies and for assessing the mineral potential of sedimentary basins of different ages.The apex of these enigmatic 87Sr/86Sr spikes correlate with global δ13C and δ18O spikes, periods of global anoxia, deposition of metal-rich black shales, deposition of ironstones, climate change, metal-induced malformation (teratology) of marine organisms and significant mass extinctions. While the relationships among these phenomena remain poorly understood and diverse models for these events have been proposed, most invoke an increased flux of biolimiting nutrients resulting in ocean eutrophication. Evidence that the flux of key biolimiting nutrients and metals contained in sedex brines may have been equivalent to or surpass that of the total modern riverine flux to the ocean suggests that these sedex brine exhalations may have triggered global chemical and biological events.  相似文献   

9.
The oxygen content of the Earth's surface environment is thought to have increased in two broad steps: the Great Oxygenation Event (GOE) around the Archean–Proterozoic boundary and the Neoproterozoic Oxygenation Event (NOE), during which oxygen possibly accumulated to the levels required to support animal life and ventilate the deep oceans. Although the concept of the GOE is widely accepted, the NOE is less well constrained and its timing and extent remain the subjects of debate. We review available evidence for the NOE against the background of major climatic perturbations, tectonic upheaval related to the break-up of the supercontinent Rodinia and reassembly into Gondwana, and, most importantly, major biological innovations exemplified by the Ediacarian Biota and the Cambrian ‘Explosion’.Geochemical lines of evidence for the NOE include perturbations to the biogeochemical cycling of carbon. Generally high δ13C values are possibly indicative of increased organic carbon burial and the release of oxidative power to the Earth's surface environment after c. 800 Ma. A demonstrably global and primary record of extremely negative δ13C values after about 580 Ma strongly suggests the oxidation of a large dissolved organic carbon pool (DOC), the culmination of which around c. 550 Ma coincided with an abrupt diversification of Ediacaran macrobiota. Increasing 87Sr/86Sr ratios toward the Neoproterozoic–Cambrian transition indicates enhanced continental weathering which may have fuelled higher organic production and burial during the later Neoproterozoic.Evidence for enhanced oxidative recycling is given by the increase in sulfur isotope fractionation between sulfide and sulfate, exceeding the range usually attained by sulfate reduction alone, reflecting an increasing importance of the oxidative part in the sulfur cycle. S/C ratios attained a maximum during the Precambrian–Cambrian transition, further indicating higher sulfate concentrations in the ocean and a transition from dominantly pyrite burial to sulfate burial after the Neoproterozoic. Strong evidence for the oxygenation of the deep marine environment has emerged through elemental approaches over the past few years which were able to show significant increases in redox-sensitive trace-metal (notably Mo) enrichment in marine sediments not only during the GOE but even more pronounced during the inferred NOE. In addition to past studies involving Mo enrichment, which has been extended and further substantiated in the current review, we present new compilations of V and U concentrations in black shales throughout Earth history that confirm such a rise and further support the NOE. With regard to ocean ventilation, we also review other sedimentary redox indicators, such as iron speciation, molybdenum isotopes and the more ambiguous REE patterns. Although the timing and extent of the NOE remain the subjects of debate and speculation, we consider the record of redox-sensitive trace-metals and C and S contents in black shales to indicate delayed ocean ventilation later in the Cambrian on a global scale with regard to rising oxygen levels in the atmosphere which likely rose during the Late Neoproterozoic.  相似文献   

10.
Combined stable isotope (δ18O and δ13C) and trace element (Mg, Sr) geochemistry from bulk tufa calcite and ostracod shell calcite from an early Holocene British tufa reveal clear records of Holocene palaeoclimatic change. Variation in δ18O is caused principally by change in the isotopic composition of Holocene rainfall (recharge), itself caused mainly by change in air temperature. The δ13C variability through much of the deposit reflects increasing influence of soil‐zone CO2, owing to progressive woodland soil development. Bulk tufa Mg/Ca and Sr/Ca are controlled by their concentrations in the spring water. Importantly, Mg/Ca ratios are not related to δ18O values and thus show no temperature dependence. First‐order sympathetic relationships between δ13C values and Mg/Ca and Sr/Ca are controlled by aquifer processes (residence times, CO2 degassing and calcite dissolution/reprecipitation) and probably record intensity of palaeorainfall (recharge) effects. Stable isotope records from ostracod shells show evidence of vital effects relative to bulk tufa data. The ostracod isotopic records are markedly ‘spiky’ because the ostracods record ‘snapshots’ of relatively short duration (years), whereas the bulk tufa samples record averages of longer time periods, probably decades. The δ18O record appears to show early Holocene warming, a thermal maximum at ca. 8900 cal. yr BP and the global 8200 yr BP cold event. Combined δ13C, Mg/Ca and Sr/Ca data suggest that early Holocene warming was accompanied by decreasing rainfall intensity. The Mg/Ca data suggest that the 8200 yr BP cold event was also dry. Warmer and wetter conditions were re‐established after the 8200 yr BP cold event until the top of the preserved tufa sequence at ca. 7100 cal. yr BP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
The magma–ore deposit relationship of most low-sulfidation epithermal ore deposits is still unclear, partly because many stable isotopic studies of such deposits have indicated the predominance of meteoric waters within hydrothermal fluids. However, it is certainly true that hydrothermal systems are ultimately driven by magmatic intrusions, and epithermal gold deposits might therefore be produced by magmatic activity even in deposits having has no obvious links to a magma. We re-examine the genesis of two typical low-sulfidation epithermal gold deposits, the Kushikino and Hishikari deposits, using structural simulations and isotope data.Many epithermal gold deposits including the Kushikino and Hishikari deposits have been discovered in Kyushu, southwestern Japan. The Kushikino deposit comprises fissure-filling veins within Neogene andesitic volcanics that overlie unconformably Cretaceous sedimentary basement. The veins consist of gold- and silver-bearing quartz and calcite with minor amounts of adularia, sericite and sulfides. Although carbon and oxygen isotopic data for the veins indicate a meteoric origin of the ore fluid, finite element simulations suggest that the vein system might have formed in direct response to magma intrusion. In particular, geophysical data suggest that intruding magma has uplifted the basement rocks, thereby producing fractures and veins and a positive Bouguer anomaly, and providing the heat necessary to drive an ore-forming hydrothermal system.The second component of this study has been to investigate the nature and evolution of the Kushikino and Hishikari epithermal systems. Isotope data document the geochemical evolution of the hydrothermal fluids. We conclude that the existence of sedimentary basement rocks at depth might have affected the strontium and carbon isotopic ratios of the Kushikino and Hishikari ore fluids. The 87Sr/86Sr ratios and δ13C–δ18O trend reveal that major ore veins in the Hishikari deposit can be distinguished from shallow barren veins. It was suggested isotopically that fluids responsible for the barren veins in nearby shallow and barren circulation systems were only controlled by the shallow host rocks. Such multi-isotope systematics provide a powerful tool with which to determine the center of hydrothermal activity and thereby document the evolution of hydrothermal fluids.  相似文献   

12.

This study uses carbon isotope chemostratigraphy to propose an age for the Success Creek Group and Crimson Creek Formation in the absence of any direct radiometric dates, palaeomagnetic or reliable palaeontological data. The δ13C values were determined for the least‐altered dolomite samples. Suitable samples were selected on the basis of grainsize, cathodoluminescence petrography, most enriched δ18O values (> 2%o) low Mn/Sr ratios and low Fe and Mn concentrations. The average least‐altered, most 13C‐enriched dolomicrite samples in the youngest (No. 1) dolomite horizon are + 4.6%o. This is typical of Neoproterozoic (but not Cambrian) carbonates. The δ13C values of all dolomite samples in the succession are significantly positive (up to + 7.5%o) and the excursion characteristic of the Proterozoic/Cambrian boundary has not been observed. The lack of negative δ13C values in all dolomite samples studied also suggests an absence of correlatives of Sturtian and Varanger tillites in the dolomite successions. The δ13C values in all three dolomite horizons suggest a Neoproterozoic age between about 820 to 570 Ma (Cryogenian to Neoproterozoic III) on the current global compilation carbon isotope curves. This age for the Success Creek Group and Crimson Creek Formation, inferred from carbon isotope chemostratigraphy, can be substantiated by other evidence. The age of the Renison dolomites is constrained by K‐Ar dates of 708 ± 6 Ma from detrital muscovite in the underlying Oonah Formation and 588 ± 8 and 600 ± 8 Ma from doleritic rock in a lithostratigraphic equivalent of the Crimson Creek Formation from the Smithton Basin. Furthermore, acritarchs and the stromatolite Baicalia cf. B. burra also suggest a Neoproterozoic rather than Cambrian age.  相似文献   

13.
The snowball Earth hypothesis: testing the limits of global change   总被引:10,自引:0,他引:10  
The gradual discovery that late Neoproterozoic ice sheets extended to sea level near the equator poses a palaeoenvironmental conundrum. Was the Earth's orbital obliquity > 60° (making the tropics colder than the poles) for 4.0 billion years following the lunar‐forming impact, or did climate cool globally for some reason to the point at which runaway ice‐albedo feedback created a `snowball' Earth? The high‐obliquity hypothesis does not account for major features of the Neoproterozoic glacial record such as the abrupt onsets and terminations of discrete glacial events, their close association with large (> 10‰) negative δ13C shifts in seawater proxies, the deposition of strange carbonate layers (`cap carbonates') globally during post‐glacial sea‐level rise, and the return of large sedimentary iron formations, after a 1.1 billion year hiatus, exclusively during glacial events. A snowball event, on the other hand, should begin and end abruptly, particularly at lower latitudes. It should last for millions of years, because outgassing must amass an intense greenhouse in order to overcome the ice albedo. A largely ice‐covered ocean should become anoxic and reduced iron should be widely transported in solution and precipitated as iron formation wherever oxygenic photosynthesis occurred, or upon deglaciation. The intense greenhouse ensures a transient post‐glacial regime of enhanced carbonate and silicate weathering, which should drive a flux of alkalinity that could quantitatively account for the world‐wide occurrence of cap carbonates. The resulting high rates of carbonate sedimentation, coupled with the kinetic isotope effect of transferring the CO2 burden to the ocean, should drive down the δ13C of seawater, as is observed. If cap carbonates are the `smoke' of a snowball Earth, what was the `gun'? In proposing the original Neoproterozoic snowball Earth hypothesis, Joe Kirschvink postulated that an unusual preponderance of land masses in the middle and low latitudes, consistent with palaeomagnetic evidence, set the stage for snowball events by raising the planetary albedo. Others had pointed out that silicate weathering would most likely be enhanced if many continents were in the tropics, resulting in lower atmospheric CO2 and a colder climate. Negative δ13C shifts of 10–20‰ precede glaciation in many regions, giving rise to speculation that the climate was destabilized by a growing dependency on greenhouse methane, stemming ultimately from the same unusual continental distribution. Given the existing palaeomagnetic, geochemical and geological evidence for late Neoproterozoic climatic shocks without parallel in the Phanerozoic, it seems inevitable that the history of life was impacted, perhaps profoundly so.  相似文献   

14.
《Precambrian Research》2002,113(1-2):43-63
Carbon, oxygen and strontium isotope compositions of carbonate rocks of the Proterozoic Vindhyan Supergroup, central India suggest that they can be correlated with the isotope evolution curves of marine carbonates during the latter Proterozoic. The carbonate rocks of the Lower Vindhyan Supergroup from eastern Son Valley and central Vindhyan sections show δ13C values of ∼0‰ (V-PDB) and those from Rajasthan section are enriched up to +2.8‰. In contrast, the carbonate rocks of the Upper Vindhyan succession record both positive and negative shifts in δ13C compositions. In the central Vindhyan section, the carbonates exhibit positive δ13C values up to +5.7‰ and those from Rajasthan show negative values down to –5.2‰. The δ18O values of most of the carbonate rocks from the Vindhyan Supergroup show a narrow range between –10 and –5‰ (V-PDB) and are similar to the ‘best preserved’ 18O compositions of the Proterozoic carbonate rocks. In the central Vindhyan and eastern Son Valley sections, carbonates from the Lower Vindhyan exhibit best-preserved 87Sr/86Sr compositions of 0.7059±6, which are lower compared to those from Rajasthan (0.7068±4). The carbonates with positive δ13C values from Upper Vindhyan are characterized by lower 87Sr/86Sr values (0.7068±2) than those with negative δ13C values (0.7082±6). A comparison of C and Sr isotope data of carbonate rocks of the Vindhyan Supergroup with isotope evolution curves of the latter Proterozoic along with available geochronological data suggest that the Lower Vindhyan sediments were deposited during the Mesoproterozoic Eon and those from the Upper Vindhyan represent a Neoproterozoic interval of deposition.  相似文献   

15.
Peter K. Swart 《Sedimentology》2015,62(5):1233-1304
Stable carbon and oxygen isotopes (δ18O and δ13C values) and trace elements have been applied to the study of diagenesis of carbonate rocks for over 50 years. As valuable as these insights have been, many problems regarding the interpretation of geochemical signals within mature rocks remain. For example, while the δ18O values of carbonate rocks are dependent both upon the temperature and the δ18O value of the fluid, and additional information including trace element composition aids in interpreting such signals, direct evidence of either the temperature or the composition of the fluids is required. Such information can be obtained by analysing the δ18O value of any fluid inclusions or by measuring the temperature using a method such as the ‘clumped’ isotope technique. Such data speak directly to a large number of problems in interpreting the oxygen isotope record including the well‐known tendency for δ18O values of carbonate rocks to decrease with increasing age. Unlike the δ18O, δ13C values of carbonates are considered to be less influenced by diagenesis and more a reflection of primary changes in the global carbon cycle through time. However, many studies have not sufficiently emphasized the effects of diagenesis and other post‐depositional influences on the eventual carbon isotopic composition of the rock with the classic paradigm that the present is the key to the past being frequently ignored. Finally, many additional proxies are poised to contribute to the interpretation of carbonate diagenesis. Although the study of carbonate diagenesis is at an exciting point with an explosion of new proxies and methods, care should be taken to understand both old and new proxies before applying them to the ancient record.  相似文献   

16.
To enable quality control of measurement procedures for determinations of Mg isotope amount ratios, expressed as δ26Mg and δ25Mg values, in Earth‐surface studies, the δ26Mg and δ25Mg values of eight reference materials (RMs) were determined by interlaboratory comparison between five laboratories and considering published data, if available. These matrix RMs, including river water SLRS‐5, spring water NIST SRM 1640a, Dead Sea brine DSW‐1, dolomites JDo‐1 and BCS‐CRM 512, limestone BCS‐CRM 513, soil NIST SRM 2709a and vegetation NIST SRM 1515, are representative of a wide range of Earth‐surface materials from low‐temperature environments. The interlaboratory variability, 2s (twice the standard deviation), of all eight RMs ranges from 0.05 to 0.17‰ in δ26Mg. Thus, it is suggested that all these materials are suitable for validation of δ26Mg and δ25Mg determinations in Earth‐surface geochemical studies.  相似文献   

17.
238 marine carbonate samples were collected from seven sedimentary sections ofthe entire late Palaeozoic (Permian, Carboniferous and Devonian) in the Upper Yangtze Plat-form, southwest China. Based on the absence of cathodoluminescence and very low Mn (gener-ally<50 ppm) contents of the samples, it is thought that they contain information on the orig-inal sea water geochemistry. The results of isotopic analyses of these samples are presented interms of δ~(13)C and ~(87)Sr/~(86)Sr ratios versus geological time. The strontium data, consistent withother similar data based on samples from North America, Europe, Africa and other areas inAsia, support the notion of a global consistency in strontium isotope composition of marinecarbonates. The strontium data exhibit three intervals of relatively low ~(87)Sr/~(86)Sr ratios in thelate Middle Devonian to early Late Devonian, Early Carboniferous and Early Permian, corre-sponding to global eustatic high sea level stands. The lowest ~(87)Sr/~(86)Sr ratio recorded in theLate Permian was probably caused by substantial basalt eruptions in the Upper Yangtze Plat-form at the time. Three corresponding periods of relatively high δ~(13)C values at roughly the samethe intervals were caused by a relatively high rate of accumulation of organic carbon duringsea level rises at these times. The deposition of coal was probably responsible for the increaseof sea water δ~(13)C at other times. The δ~(13)C values drop dramatically near theDevonian/Carboniferous, Carboniferous/Permian and Permian/Triassic boundaries, con-sistent with other similar data, which further support the notion that geological time boundariesare associated with mass extinction and subsequent rejuvenation.  相似文献   

18.
Three Holocene tufas from Gran Canaria volcanic island were studied with the aim of deciphering their sedimentary evolution through space and time. Las Temisas tufa (south-eastern arid part of the island) is dominantly composed of oncoids, intraclasts, phytoclasts, coated stems, minor thin stromatolites, and a high amount of siliciclastics. It was deposited in a fluvial system with variable flow velocities and palustrine conditions areas, which alternated with high energy events. Azuaje tufa (northern humid part of the island) is composed of coated stems, stromatolites, oncoids and phytoclasts, with relatively low amounts of siliciclastics, suggesting slow-flowing and palustrine conditions and a relatively low incidence of (high energy) floodings. Los Berrazales tufa (north-west of Gran Ganaria, the most humid one), is mainly composed of coated stems and crystalline crusts, formed in a laminar flow regime. Dominant clastic sedimentation in Las Temisas and high calcite growth rates in Los Berrazales led to a poor development of stromatolites in comparison with Azuaje. Las Temisas and Azuaje deposits have similar upward evolution with decreasing trend in siliciclastics and increasing trend in carbonates. However, Las Temisas has higher siliciclastic and lower phytoclastic contents suggesting a less vegetated area and more arid climate than in the other deposits. Additionally, tufas record local events common in volcanic terrains. Azuaje presents three units bounded by erosive discontinuities, which reveal significant erosion by enhanced runoff that could be caused by loss of vegetation due to wildfires related to volcanic eruptions at headwaters. Las Temisas record a possible interruption in sedimentation represented by aligned boulders due to rockfalls from the hillsides. These deposits formed from waters with similar chemistry providing to the carbonates their similar signals in δ13C–δ18O stable isotopes and 87Sr/86Sr ratios like that of the volcanic rocks. This work shows how, in volcanic areas, tufas are unique archives of the climate, vegetation and volcanic-related processes, because all imprint the sedimentary regime of tufa deposition.  相似文献   

19.
Stable chlorine isotopes are useful geochemical tracers in processes involving the formation and evolution of evaporitic halite. Halite and dissolved chloride in groundwater that has interacted with halite in arid non-marine basins has a δ37Cl range of 0 ± 3‰, far greater than the range for marine evaporites. Basins characterized by high positive (+1 to +3‰), near-0‰, and negative (−0.3 to −2.6‰) are documented. Halite in weathered crusts of sedimentary rocks has δ37Cl values as high as +5.6‰. Salt-excluding halophyte plants excrete salt with a δ37Cl range of −2.1 to −0.8‰. Differentiated rock chloride sources exist, e.g. in granitoid micas, but cannot provide sufficient chloride to account for the observed data. Single-pass application of known fractionating mechanisms, equilibrium salt-crystal interaction and disequilibrium diffusive transport, cannot account for the large ranges of δ37Cl. Cumulative fractionation as a result of multiple wetting-drying cycles in vadose playas that produce halite crusts can produce observed positive δ37Cl values in hundreds to thousands of cycles. Diffusive isotope fractionation as a result of multiple wetting-drying cycles operating at a spatial scale of 1–10 cm can produce high δ37Cl values in residual halite. Chloride in rainwater is subject to complex fractionation, but develops negative δ37Cl values in certain situations; such may explain halite deposits with bulk negative δ37Cl values. Future field studies will benefit from a better understanding of hydrology and rainwater chemistry, and systematic collection of data for both Cl and Br.  相似文献   

20.
Rare earth element (REE) and strontium isotope data (87Sr/86Sr) are presented for hydromagnesite and surface waters that were collected from Dujiali Lake in central Qinghai-Tibet Plateau (QTP), China. The goal of this study is to constrain the solute sources of hydromagnesite deposits in Dujiali Lake. All lake waters from the area exhibit a slight LREE enrichment (average [La/Sm]PAAS = 1.36), clear Eu anomalies (average [Eu/Eu*]PAAS = 1.31), and nearly no Ce anomalies. The recharge waters show a flat pattern (average [La/Sm]PAAS = 1.007), clear Eu anomalies (average [Eu/Eu*] PAAS = 1.83), and nearly no Ce anomalies (average [Ce/Ce*]PAAS = 1.016). The REE+Y data of the surface waters indicate the dissolution of ultramafic rock at depth and change in the hydrogeochemical characteristics through fluid-rock interaction. These data also indicate a significant contribution of paleo-groundwater to the formation of hydromagnesite, which most likely acquired REE and Sr signatures from the interaction with ultramafic rocks. The 87Sr/86Sr data provide additional insight into the geochemical evolution of waters of the Dujiali Lake indicating that the source of Sr in the hydromagnesite does not directly derive from surface water and may have been influenced by both Mg-rich hydrothermal fluids and meteoric water. Additionally, speciation modeling predicts that carbonate complexes are the most abundant dissolved REE species in surface water. This study provides new insights into the origins of hydromagnesite deposits in Dujiali Lake, and contributes to the understanding of hydromagnesite formation in similar modern and ancient environments on Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号