首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palynological and sedimentological analyses of a sedimentary sequence sampled at Hauterive/Rouges‐Terres, Lake Neuchâtel (Switzerland) provide documentation of changes in vegetation and lake‐level during the Bølling, Younger Dryas and Preboreal pollen zones, and have allowed a comparison with sequences covering the same period from other sites located in the western part of the Swiss Plateau. The Juniperus–Hippophaë zone (regional pollen assemblage zone (RPAZ) CHb‐2, first part of the Bølling, ca. 14 650–14 450 cal. yr BP) was characterised by a generally low lake‐level. A weak rise occurred during this zone. The Juniperus–Hippophaë to Betula zone transition coincided with a lake‐level lowering, interrupted by a short‐lived but marked phase of higher lake‐level recorded at the neighbouring site of Hauterive‐Champréveyres, but not present at Hauterive/Rouges‐Terres owing to an erosion surface. Shortly after the beginning of the Betula zone (RPAZ CHb‐3, second part of the Bølling, ca 14 450–14 000 cal. yr BP), a marked rise in lake‐level occurred. It was composed of two successive periods of higher level, coinciding with high values of Betula, separated by a short episode of relatively lower lake‐level associated with raised values in Artemisia and other non‐arboreal pollen. The last part of RPAZ CHb‐3 saw a fall in lake‐level. The lower lake‐levels during RPAZ CHb‐2 to early RPAZ CHb‐3 can be correlated with the abrupt warming at the beginning of the Greenland Interstadial (GI) 1e thermal maximum. The successive episodes of higher lake‐level punctuating the GI 1e might be linked to the so‐called Intra‐Bølling Cold Oscillations identified from several palaeoclimatic records in the North Atlantic area, and also documented in oxygen‐isotope data sets from Swiss Plateau lakes. The Hauterive/Rouges‐Terres lake‐level record provides evidence for marked climatic drying through the second part of the Younger Dryas event (GS1), during the GS1–Preboreal (RPAZ CHb‐4b–4c) transition (except for a rise at ca. 11 450–11 400 cal. yr BP), and at the RPAZ CHb‐4c–5 (Preboreal–Boreal) transition, following the Preboreal Oscillation (after 11 150 cal. yr BP). The Preboreal Oscillation coincided with higher lake‐levels, its end being followed by a rapid expansion of Corylus, Quercus, Ulmus and Tilia. The Hauterive/Rouges‐Terres lake‐level record suggests that radiocarbon plateau at 12 600, 10 000 and 9500 14C yr BP corresponded to periods of generally lower lake‐level. This suggests that an increase in solar activity may have contributed to both climatic dryness and a decrease in atmospheric radiocarbon content. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
A chironomid–July air temperature inference model based on chironomid assemblages in the surface sediments of 81 Swiss lakes was used to reconstruct Late Glacial July air temperatures at Lac Lautrey (Jura, Eastern France). The transfer‐function was based on weighted averaging–partial least squares (WA‐PLS) regression and featured a leave‐one‐out cross‐validated coefficient of determination (r2) of 0.80, a root mean square error of prediction (RMSEP) of 1.53 ° C, and was applied to a chironomid record consisting of 154 samples covering the Late Glacial period back to the Oldest Dryas. The model reconstructed July air temperatures of 11–12 ° C during the Oldest Dryas, increasing temperatures between 14 and 16.5 ° C during the Bølling, temperatures around 16.5–17.0 ° C for most of the Allerød, temperatures of 14–15 ° C during the Younger Dryas and temperatures of ca. 16.5 ° C during the Preboreal. The Lac Lautrey record features a two‐step July air temperature increase after the Oldest Dryas, with an abrupt temperature increase of ca. 3–3.5 ° C at the Oldest Dryas/Bølling transition followed by a more gradual warming between ca. 14 200 and 13 700 BP. The transfer‐function reconstructs a less rapid cooling at the Allerød/Younger Dryas transition than other published records, possibly an artefact caused by the poor analogue situation during the earliest Younger Dryas, and an abrupt warming at the Younger Dryas/Holocene transition. During the Allerød, two centennial‐scale 1.5–2.0 ° C coolings are apparent in the record. Although chronologically not well constrained, the first of these cold events may be synchronous with the beginning of the Gerzensee Oscillation. The second is inferred just before deposition of the Laachersee tephra at Lac Lautrey and is therefore coeval with the end of the Gerzensee Oscillation. In contrast to the Greenland oxygen isotope records, the Lac Lautrey palaeotemperature reconstruction lacks a clearly defined Greenland Interstadial (GI) event 1d and the decreasing temperature trend during the Bølling/Allerød Interstadial. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake‐level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial–early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north‐central Italy). On the basis of an age–depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas–Bølling warming event was dated to ca. 14 560 cal. yr BP and the Younger Dryas event to ca. 12 700–11 650 cal. yr BP. Four sub‐millennial scale cooling phases were recognised from pollen data at ca. 14 300–14 200, 13 900–13 700, 13 400–13 100 and 11 350–11 150 cal. yr BP. The last three may be Mediterranean equivalents to the Older Dryas (GI‐1d), Intra‐Allerød (GI‐1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice‐core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra‐Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake‐level record shows that the sub‐millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2 ka cold reversal. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
We present a Lateglacial and early Holocene chironomid‐based July air temperature reconstruction from Foppe (1470 m a.s.l.) in the Swiss Southern Alps. Our analysis suggests that chironomid assemblages have responded to major and minor climatic fluctuations during the past 17 000 years, such as the Oldest Dryas, the Younger Dryas and the Bølling/Allerød events in the Lateglacial and the Preboreal Oscillation at the beginning of the Holocene. Quantitative July air temperature estimates were produced by applying a combined Norwegian and Swiss temperature inference model consisting of 274 lakes to the fossil chironomid assemblages. The Foppe record infers average July air temperatures of ca. 9.9 °C during the Oldest Dryas, 12.2 °C during most of the Bølling/Allerød and 11.1 °C for the Younger Dryas. Mean July air temperatures during the Preboreal were 14 °C. Major temperature changes were observed at the Oldest Dryas/Bølling (+2.7 °C), the Allerød/Younger Dryas (?2 °C) and the Younger Dryas/Holocene transitions (+3.9 °C). The temperature reconstruction also shows centennial‐scale coolings of ca. 0.8–1.4 °C, which may be synchronous with the Aegelsee (Greenland Interstadial 1d) and the Preboreal Oscillations. A comparison of our results with other palaeoclimate records suggests noticeable temperature gradients across the Alps during the Lateglacial and early Holocene. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The presence of marl deposits belonging to the Lateglacial period in a former lake basin at Lundin Tower in Fife, Scotland has allowed palaeoenvironmental investigations by means of carbonate δ13C and δ18O, and organic matter δ13C, in addition to palynology. The variations that emerge reveal strong similarities between the pollen and isotope records and these are interpreted as reflecting climatic shifts. The classic Late-glacial pattern of Oldest Dryas–Bølling–Older Dryas–Allerød–Younger Dryas may be evident and other climatic oscillations are shown to have occurred not only during the Allerød but also in the Preboreal. The problem of the time discordance between isotopic change and pollen representation is addressed through explanations involving lags in plant colonization. A comparison of the δ18O records from 43 sites across Europe reveals two different regional patterns, which raises fundamental questions over the nature of Late-glacial palaeoclimates.  相似文献   

6.
The history of the Lateglacial and Preboreal sedimentary succession from the Store Slotseng kettle hole basin, SW Denmark is presented. A tephrostratigraphical and multi‐proxy investigation of the sediments, including stable isotope geochemistry, reveals small‐ and large‐scale changes in the surrounding environment through time. Three distinct tephra horizons are observed. Two of them are identified as the Preboreal Hässeldalen Tephra and the Younger Dryas Vedde Ash. The third was deposited around the Pre‐Bølling/Bølling transition. The Preboreal sediments record two significant decreases in authigenic carbonate content. Using tephrostratigraphy the lower one is identified as occurring during the Preboreal Oscillation, while the upper one is contemporaneous with the Rammelbeek Phase, which by some is recognised above the Preboreal Oscillation. This period has not previously been observed in this region. The discovery of the Hässeldalen Tephra in the Store Slotseng basin expands the known southwestern limit of the ash cloud, and increases the area for potential future observations. The Hässeldalen Tephra (c. 11.3 cal. ka BP) was deposited just prior to the Preboreal Oscillation and as such has a large potential for precise correlation and characterization of this short climatic perturbation.  相似文献   

7.
Stable oxygen and carbon isotope data from a lacustrine sequence at Grænge, southeast Denmark, revealed distinct cnvironmental changes related to Late Weichselian climatic development in the region. Comparison of isotopic records obtained from sedimentary carbonates and freshwater molluscs enabled reconstruction of changes in the lacustrine environment. The degree of thermal and chemical stratification of the lake was evaluated and supported by pollen data from an earlier study of the site. During the Allerød interstadial, dimictic and stagnant conditions characterized the lake, whereas the stratification was disturbed during thc Younger Dryas stadial probably as a result of deforestation and increased wind impact. The origin of sedimentary carbonates was examined by mineralogic and morphologic studies. A considerable input of clastics and detrital carbonates, associated with pronounced enrichment of 18O and 13C. wds recorded in the Younger Dryas sediments indicating soil degradation and increased erosion. A climatic warming preceding the Pleis-tocene/Holocene boundary is clearly reflected in the different stable isotope records and in the lithostratigraphy.  相似文献   

8.
Cores and outcrops from the southern shore of Lake Biel were studied to reconstruct the nearshore environment of the lake between ca. 12000 and 5000 yr BP. Core correlations were established by lithostratigraphical and pollen analytical correlations. From the Allerød to the Preboreal time quiet hydrodynamic conditions favoured the deposition of lake marl in the littoral zone and peat on the shore. Between the Preboreal(?) and the Atlantic the littoral zone shows a higher hydrodynamic environment with allochthonous material, whereas peat and clay layers are recorded from the shore. During the Older Atlantic severe erosional episodes caused the erosion of Boreal, Preboreal and Younger Atlantic layers. The previously described long hiatus between the Allerød and the Boreal time can now be connected with these erosional episodes. From Younger Atlantic to Subboreal time the littoral zone displays quiet conditions again with sedimentation of lake marl. On the basis of these results a lake level curve for Lake Biel is proposed: high lake level stands can be traced during the Allerød, Boreal, Older Atlantic and Younger Atlantic biozones; low lake level stands are found during the Allerød, Younger Dryas, Preboreal and Older Atlantic biozones.  相似文献   

9.
Northern Folgefonna (c. 23 km2), is a nearly circular maritime ice cap located on the Folgefonna Peninsula in Hardanger, western Norway. By combining the position of marginal moraines with AMS radiocarbon dated glacier‐meltwater induced sediments in proglacial lakes draining northern Folgefonna, a continuous high‐resolution record of variations in glacier size and equilibrium‐line altitudes (ELAs) during the Lateglacial and early Holocene has been obtained. After the termination of the Younger Dryas (c. 11 500 cal. yr BP), a short‐lived (100–150 years) climatically induced glacier readvance termed the ‘Jondal Event 1’ occurred within the ‘Preboreal Oscillation’ (PBO) c. 11 100 cal. yr BP. Bracketed to 10 550–10 450 cal. yr BP, a second glacier readvance is named the ‘Jondal Event 2’. A third readvance occurred about 10 000 cal. yr BP and corresponds with the ‘Erdalen Event 1’ recorded at Jostedalsbreen. An exponential relationship between mean solid winter precipitation and ablation‐season temperature at the ELA of Norwegian glaciers is used to reconstruct former variations in winter precipitation based on the corresponding ELA and an independent proxy for summer temperature. Compared to the present, the Younger Dryas was much colder and drier, the ‘Jondal Event 1’/PBO was colder and somewhat drier, and the ‘Jondal Event 2’ was much wetter. The ‘Erdalen Event 1’ started as rather dry and terminated as somewhat wetter. Variations in glacier magnitude/ELAs and corresponding palaeoclimatic reconstructions at northern Folgefonna suggest that low‐altitude cirque glaciers (lowest altitude of marginal moraines 290 m) in the area existed for the last time during the Younger Dryas. These low‐altitude cirque glaciers of suggested Younger Dryas age do not fit into the previous reconstructions of the Younger Dryas ice sheet in Hardanger. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Results from detailed pollen and 18O/16O studies on two sediment profiles from small Swiss lakes are reported. 18O/16O records in lacustrine carbonate contain paleoclimatic information because they reflect mainly the isotope ratio in rain and snow which is correlated to temperature. Several transitions between different climatic periods determined palyno-logically are also indicated by marked changes in the isotope ratios in both profiles, namely the transitions Oldest Dryas - Bøiling and Allerød - Younger Dryas - Preboreal. 18o/16O was 2 to 3 %0 lower during Younger Dryas than during the adjacent periods, corresponding to a temperature drop of a few degrees Centigrade according to a tentative estimate.  相似文献   

11.
A mean varve thickness curve has been constructed for a part of the Swedish varve chronology from the northwestern Baltic proper. The mean varve thickness curve has been correlated with the δ18O record from the GRIP ice-core using the Younger Dryas–Preboreal climate shift. This climate shift was defined by pollen analyses. The Scandinavian ice-sheet responded to a warming at the end of the Younger Dryas, ca. 10995 to 10700 clay-varve yr BP. Warming is recorded as a sequence of increasing mean varve thickness and ice-rafted debris suggesting intense calving of the ice front. The Younger Dryas–Preboreal climatic shift is dated to ca. 10650 clay-varve yr BP, about 40 yr after the final drainage of the Baltic Ice Lake. Both the pollen spectra and a drastic increase in varve thickness reflect this climatic shift. A climate deterioration, correlated with the Preboreal oscillation, is dated to ca. 10440 to 10320 clay-varve yr BP and coincides with the brackish water phase of the Yoldia Sea stage. The ages of the climatic oscillations at the Younger Dryas–Preboreal transition show an 875 yr discrepancy compared with the GRIP record, suggesting a large error in the Swedish varve chronology in the part younger than ca. 10300 clay-varve yr BP. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
High‐resolution gravity cores and box cores from the North Icelandic shelf have been studied for palaeoceanographic history based on lithological and biostratigraphical foraminiferal data. Results from two outer shelf cores covering the last 13.6 k 14C yr BP are presented in this paper. The sediments accumulated in north–south trending basins on each side of the Kolbeinsey Ridge at water depths of ca. 400 m. Sedimentation rates up to 1.5 m kyr−1 are observed during the Late‐glacial and Holocene. The Vedde and Saksunarvatn tephras are present in the cores as well as the Hekla 1104. A new tephra, KOL‐GS‐2, has been identified and dated to 13.4 k 14C yr BP, and another tephra, geochemically identical to the Borrobol Tephra, has been found at the same level. At present, the oceanographic Polar Front is located on the North Icelandic shelf, which experiences sharp oceanographic surface boundaries between the cold East Icelandic Current and the warmer Irminger Current. Past changes in sedimentological and biological processes in the study area are assumed to be related to fluctuations of the Polar Front. The area was deglaciated before ca. 14 kyr BP, but there is evidence of ice rafting up to the end of the GS‐1 (Greenland Stadial 1, Younger Dryas) period, increasing again towards the end of the Holocene. Foraminiferal studies show a relatively strong GS‐2 (pre‐13 kyr BP) palaeo‐Irminger Current, followed by severe cooling and then by unstable conditions during the remainder of the GI‐1 (Greenland Interstadial 1, Bølling–Allerød) and GS‐1 (Younger Dryas). Another cooling event occurred during the Preboreal before the Holocene current system was established at about 9 kyr BP. After a climatic optimum between 9 and 6 kyr BP the climate began to deteriorate and fluctuate. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Chironomids and pollen were studied in a radiocarbon-dated sediment sequence obtained from a former lake near the Maloja Pass in the Central Swiss Alps (1865 m a.s.l.) to reconstruct the Lateglacial environment. Pollen assemblages imply a vegetation development around the Maloja Pass from shrub tundra at the beginning of the Allerød to coniferous forest during the early Holocene with a lowering of the timberline during the Younger Dryas. Chironomid assemblages are characterized by several abrupt shifts in dominant taxa through the Lateglacial. The occurrence of taxa able to survive hypoxia in the second part of the Allerød and during the Preboreal, and their disappearance at the onset of the Younger Dryas cold phase suggest summer thermal stratification and unfavourable hypolimnetic oxygen conditions in the palaeo-lake during the warmer periods of the Lateglacial interstadial and early Holocene. Mean July air temperatures were reconstructed using a chironomid-temperature transfer function from the Alpine region. The pattern of reconstructed temperature changes agrees well with the Greenland δ18O record and other Lateglacial temperature inferences from Central Europe. The inferred July temperatures of ca 10.0 °C during most of the Allerød were slightly lower than modern values (10.8 °C) and increased up to ca 11.7 °C (i.e., above present-day values) at the end of the Allerød. The first part of the Younger Dryas was colder (ca 8.8 °C) than the second part (ca 9.8 °C). During most of the Preboreal, the temperatures persisted within the limits of 13.5–14.5 °C (i.e., ca 3 °C above present-day values). The amplitudes of temperature changes at the Allerød–Younger Dryas–Preboreal transitions were ca 3.5–4.0 °C. The temperature reconstruction also shows three short-lived cooling events of ca 1.5–2.0 °C, which may be attributed to the centennial-scale Greenland Interstadial events GI-1d and GI-1b, and the Preboreal Oscillation.  相似文献   

14.
Oxygen-isotope profiles for the Late-Glacial carbonate sediments from Red Bog and adjacent Lough Gur in County Limerick in western Ireland are readily correlated with the classical hiozones delineated on pollen diagrams for the same cores. The estimated summer temperatures of the Bølling/Allerød were as high as those in the early Holocene and are correlated with increasing Milankovitch summer insolation. This warm phase was abruptly terminated in the Younger Dryas cold episode by a depletion of 4% in δ18O, suggesting a summer atmospheric temperature decrease of about 12°C, comparable to that inferred from fossil beetle data. The Younger Dryas phase is attributed to a major cooling of the sea-surface temperature by a postulated discharge of icebergs similar to that of the Heinrich events, for the icebergs were much more effective than simple meltwater in cooling the sea surface and thus the climate over Europe. Shorter-term cool phases (Older Dryas. Gerzensee. Preboreal oscillation) are also recognized.  相似文献   

15.
This paper presents the first chironomid‐inferred mean July air temperature reconstruction for the Late‐glacial in Britain. The reconstruction suggests that the thermal maximum occurred early in the interstadial, with temperatures reaching about 12°C. There was then a gradual downward trend to about 11°C, punctuated by four distinct cold oscillations of varying intensity. At the beginning of the Younger Dryas, mean July temperatures fell to about 7.5°C but gradually increased to about 9°C before a rapid rise at the onset of the Holocene. The chironomid‐inferred temperature curve agrees closely, both in general trends and in detail, with the GRIP ice‐core oxygen‐isotope curve. The reconstructed temperatures are 2–4°C lower than coleopteran‐inferred temperatures but are closer to those inferred from plant macrofossils and glacial equilibrium‐line altitudes during the Younger Dryas. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
The occurrence of an early Preboreal climatic cooling/oscillation (PBO) in lacustrine and glacial records from northwest Europe, Iceland and Greenland is reviewed and documented. The often subtle response of the proxy records to this oscillation, in combination with its short duration, make it difficult to detect. Owing to its chronostratigraphic position between the 10000–9900 and 9600–9500 14C plateaux (c. 11300–11150 calendar yr BP) it is also difficult to 14C date with precision. We find that the vegetation response to the PBO varies between sites and regions. In contrast to the pioneer vegetation in Iceland and southern Sweden, the expanding birch–pine forest in Germany–Denmark was more susceptible to deteriorating growing conditions. The combined lacustrine, tree-ring and glacial records imply that the PBO was characterised by cool and humid conditions throughout northwestern and central Europe. This is documented by vegetation changes, decreased aquatic production, increased soil erosion, increased 2H and 13C content in tree-rings, readvances or stillstands of the ice sheet in Norway and Finland, and ingression of brackish water into the Baltic. Icelandic proxy records from lake sediments and glacial moraines imply cooler conditions than during the previous Preboreal period, but not as extreme as during the Younger Dryas. Greenland records suggest that the early Preboreal was characterised by ice readvances, as an effect of cool climate and increased precipitation (in relation to the Younger Dryas). It was not until the end of the PBO that climate was warm enough to melt the land-based ice sheet. This Preboreal oscillation, found on both sides of the Nordic Seas, is interpreted as an effect of increased freshwater forcing on the thermohaline circulation in the Nordic Seas, which is implied by a simultaneous and distinct rise in the atmospheric 14C/12C ratio. A slow-down of the thermohaline circulation may temporarily have pushed the Polar Front further south. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
Lake-level fluctuations in the Jura mountains (France) during the Younger Dryas and the early Holocene are reconstructed using sedimentological analyses. Major transgressive phases culminated just before the Laacher See tephra deposition, at the beginning of the Younger Dryas, between 9000 and 8000 BP and between 7000 and 6000 BP. The Younger Dryas appears to be characterized by increasing dryness. Other major lowering phases occurred during the middle Allerød and during the Preboreal. A transgressive event developed between c . 9700 and 9500 BP. These palaeohydrological changes can be related to climatic oscillations reconstructed from pollen and isotopic records in Swiss lakes, from glacier movements and timberline variations in the Alps, and from isotopic records in the Greenland ice sheet.  相似文献   

18.
A south‐east Australian speleothem stable isotope record displaying an apparent cooling synchronous with the northern hemisphere Younger Dryas climate event (12.9–11.7 ka) has significantly influenced scientific thinking on the climatic response of the southern hemisphere following the Last Glacial Maximum. This is one of very few records displaying such a response, and yet the cooling was inferred from substantial extrapolation between just three uranium‐series ages. Technological advances since then have produced major improvements in both the spatial resolution and the accuracy of uranium‐series geochronologies. Re‐analysis of this sample has yielded ages of 7.96 ± 0.36 to 7.69 ± 0.33 ka for the interval previously inferred to span the Younger Dryas, and reveals a substantial hiatus in deposition from 6.93 ± 0.64 to 1.83 ± 0.16 ka. These data not only refute the original evidence for an inter‐hemispheric synchroneity of the Younger Dryas but also reject any evidence for neoglacial conditions at 3 ka. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A lake sediment record from the Friedländer Groβe Wiese in northeast Germany was studied to reconstruct summer temperature changes associated with changes in vegetation development during the Weichselian Lateglacial. The record was analysed for pollen, chironomids, and oxygen and carbon isotopes of lake marl. The combination of radiocarbon dates, the presence of the Laacher See Tephra and correlation of lithological and palynological changes with other records from the region indicated that the record encompassed the Allerød to the early Holocene. Pollen assemblages reflect development of birch and later pine‐dominated forests during the Allerød, comparable to other sites in the region. Chironomid‐inferred mean July air temperatures (C‐IT) for this period range between ~14.0 and 14.8°C. A temporary decrease in C‐IT of ~1°C, a negative shift in the isotope records, and a minor decline of birch may correspond to Greenland Interstadial 1b. Even though the transition to the Younger Dryas appears to be affected by reworking and redeposition processes, a drop in C‐IT to ~11.1°C is reconstructed for the later part of the Younger Dryas, while it appears that pine locally persisted in the region. Comparison with a nearby pollen record further indicates a local expansion of wetland grasses during this period. At the transition to the Holocene, C‐IT increased to ~15.7°C, while birch and pine forests re‐expanded. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
An integrated interpretation of on‐ and offshore stratigraphical records at Leirfjorden, north Norway, reveals new aspects of the area's palaeoenvironmental history. The study is based on marine sparker data and well‐exposed sections on land that were analysed for their sediment facies, mineralogy and fossil assemblages. Existing research and new radiocarbon dates provide a chronological framework for the interpretation. The late Younger Dryas Nordli substage type locality in the Leirfjorden catchment is revised and found to reflect local glacial activity, maybe a collapse of stagnant ice rather than glacier advance, while late Younger Dryas to Preboreal glacier re‐advances south of Leirfjorden and near Ranfjorden are here named the Bardal substage. The stratigraphical record includes pre‐Younger Dryas, valley‐crossing, glacial striae and old till with provenance of resistant bedrock typical of more elevated mountain areas. It differs from younger till units representing topographically controlled glacier movement. Part of the Leirfjorden fjord‐valley system is located between the main glacial and fluvial drainage paths affecting the sediment supply. As a result, highstand deposits are indistinct and fluvial sediments form only a minor part of the forced‐regressive systems tract. Instead, the valley fill overlying till and subtill sediments is dominated by the deglacial transgressive tract and a forced‐regressive systems tract with composite marine deposits and various marine erosion surfaces. A special event bed is interpreted as a possible tsunami deposit caused by seismicity and/or mass‐wasting in the fjord following glacier retreat. The study highlights the stratigraphical complexity of interconnected fjord and sound systems in a low accretion setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号