首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mineralogical and chemical analysis of Late Pennsylvanian and Early Permian paleosols from the eastern shelf of the Midland basin, north-central Texas, USA, are used to test hypothesized climate change in Late Paleozoic western equatorial Pangea, previously defined independently on the bases of sedimentologic and paleontologic proxies and climate models. The <0.2-μm size phyllosilicate fraction in the studied paleosols exhibits down-profile trends in mineralogy and chemical composition that are consistent with modern weathering profiles suggesting a dominantly pedogenic origin. A stratigraphic trend from kaolinite-dominated profiles in Upper Pennsylvanian paleosols to profiles dominated by smectite and hydroxy-interlayered 2:1 phyllosilicates in Lower Permian paleosols indicates a relatively rapid decrease in soil weathering and leaching in the latest Pennsylvanian followed by a more gradual decrease in leaching throughout the Early Permian. The chemical composition (cation ratios and exchange capacity) of these phyllosilicates further corroborates this shift toward less intensive leaching, presumably in response to climate change from humid to progressively more arid conditions.The phyllosilicates in the <0.2-μm size fraction and contemporaneous pedogenic calcites from the Permo-Pennsylvanian paleosols exhibit a long-term stratigraphic increase in their δ18O values of as much as ∼3.2‰ and ∼5.2‰, respectively. This long-term trend is consistent with a transition throughout the latest Pennsylvanian through Early Permian toward progressively more evaporatively enriched soil waters. Superimposed on the long-term trend is an apparent rapid enrichment (1.5 to 2‰) in phyllosilicate δ18O values immediately above the Pennsylvanian-Permian boundary. Observed oxygen isotope fractionation between the phyllosilicates and calcites within individual paleosols indicate isotopic disequilibrium between mineral pairs. This is attributed to a minor detrital component in the pedogenic clay-dominated phyllosilicate fraction coupled with the effects of seasonality of mineral formation. Inferred δ18O compositions of Late Paleozoic meteoric water (−2‰ to +4‰) are compatible with less intensive soil leaching under conditions of increasing aridity, possibly coupled with a shift in local precipitation from a continental source to a marine source.  相似文献   

2.
我国红壤现代成土过程和发育年龄的初步研究   总被引:20,自引:0,他引:20       下载免费PDF全文
赵其国 《第四纪研究》1992,12(4):341-351
作者通过长期定位观察,对我国不同植被和不同母质发育红壤的现代成土过程进行了动态和定量研究,进一步阐明了我国红壤现代成土过程的特点。此外,运用参数和计算机模拟方法得出四种不同母质发育红壤的发育年龄,并与过去地质方面的研究结果进行对比。这项研究对进一步探讨红壤发育与第四纪的关系有重要意义。  相似文献   

3.
The study of soil weathering processes College of Resources and Environment, rates and the associated influencing factors is crucial for understanding of the feedbacks between soil and environment, which will provide a basis for predicting soil behavior and evolution trend in the ecosystem under natural and anthropogenic forcings. This is also important for the effective management of soil resources. This article reviewed the methods for measuring soil weathering rates (including simulating leaching experiment, model calculation, isotope technique, element depletion and geochemical mass balance) and the influencing factors (including climate, organism, parent material, relief, time and human activities). In view of the serious degradation of soil resources, we proposed the challenge and opportunity of the research of soil weathering. The future study should focus on the critical processes, rates and the associated environmental thresholds of soil weathering under varying natural conditions and intensive human perturbations, including the establishment of the quantitative relationship between the weathering rates calculated by different methods, the analysis and interpretation of synergistic effects among multiple influencing factors, and the modeling and prediction of changing tendency of weathering rates under the impacts of both climatic changes and human activities, in order to guide the sustainable management of soil resource and mitigation of global change.  相似文献   

4.
Early (>3 Gy) wetter climate conditions on Mars have been proposed, and it is thus likely that pedogenic processes have occurred there at some point in the past. Soil and rock chemistry of the Martian landing sites were evaluated to test the hypothesis that in situ aqueous alteration and downward movement of solutes have been among the processes that have transformed these portions of the Mars regolith. A geochemical mass balance shows that Martian soils at three landing sites have lost significant quantities of major rock-forming elements and have gained elements that are likely present as soluble ions. The loss of elements is interpreted to have occurred during an earlier stage(s) of weathering that may have been accompanied by the downward transport of weathering products, and the salts are interpreted to be emplaced later in a drier Mars history. Chemical differences exist among the sites, indicating regional differences in soil composition. Shallow soil profile excavations at Gusev crater are consistent with late stage downward migration of salts, implying the presence of small amounts of liquid water even in relatively recent Martian history. While the mechanisms for chemical weathering and salt additions on Mars remain unclear, the soil chemistry appears to record a decline in leaching efficiency. A deep sedimentary exposure at Endurance crater contains complex depth profiles of SO4, Cl, and Br, trends generally consistent with downward aqueous transport accompanied by drying. While no model for the origin of Martian soils can be fully constrained with the currently available data, a pedogenic origin is consistent with observed Martian geology and geochemistry, and provides a testable hypothesis that can be evaluated with present and future data from the Mars surface.  相似文献   

5.
Various human footprints on the flux of biogenic greenhouse gases from permafrost-affected soils in Arctic and boreal domains in Russia are considered. Tendencies of significant growth or suppression of soil CO2 fluxes change across types of human impact. Overall, the human impacts increase the mean value and variance of local soil CO2 flux. Human footprint on methane exchange between soil and atmosphere is mediated by drainage. However, all the types of human impact suppress the sources and increase sinks of methane to the land ecosystems. N2O flux grew under the considered types of human impact. Based on the results, we suggest that human footprint on soil greenhouse gases fluxes is comparable to the effect of climate change at an annual to decadal timescales.  相似文献   

6.
Stable iron isotope ratios in three soils (two Podzols and one Cambisol) were measured by MC-ICPMS to investigate iron isotope fractionation during pedogenic iron transformation and translocation processes under oxic conditions. Podzolization is a soil forming process in which iron oxides are dissolved and iron is translocated and enriched in the subsoil under the influence of organic ligands. The Cambisol was studied for comparison, representing a soil formed by chemical weathering without significant translocation of iron. A three-step sequential extraction procedure was used to separate operationally-defined iron mineral pools (i.e., poorly-crystalline iron oxides, crystalline iron oxides, silicate-bound iron) from the soil samples. Iron isotope ratios of total soil digests were compared with those of the separated iron mineral pools. Mass balance calculations demonstrated excellent agreement between results of sequential extractions and total soil digestions. Systematic variations in the iron isotope signature were found in the Podzol profiles. An enrichment of light iron isotopes of about 0.6‰ in δ57Fe was found in total soil digests of the illuvial Bh horizons which can be explained by preferential translocation of light iron isotopes. The separated iron mineral pools revealed a wide range of δ57Fe values spanning more than 3‰ in the Podzol profiles. Strong enrichments of heavy iron isotopes in silicate-bound iron constituting the residue of weathering processes, indicated the preferential transformation of light iron isotopes during weathering. Iron isotope fractionation during podzolization is probably linked to the ligand-controlled iron translocation processes. Comparison of iron isotope data from eluvial and illuvial horizons of the Podzol profiles revealed that some iron must have been leached out of the profile. However, uncertainties in the initial iron content and iron isotopic composition of the parent materials prevented thorough mass balance calculations of iron fluxes within the profiles. In contrast to the Podzol profiles, the Cambisol profile displayed uniform δ57Fe values across soil depth and showed only a small enrichment of light iron isotopes of about 0.4‰ in the poorly-crystalline iron oxide pool extracted by 0.5 M HCl. This work demonstrates that significant iron isotope fractionations can occur during pedogenesis in oxic environments under the influence of organic ligands. Our findings provide new insights into fractionation mechanisms of iron isotopes and will help in the development of stable iron isotopes as tracers for biogeochemical iron cycling in nature.  相似文献   

7.
本文利用1∶50000遵义市、遵义县两幅区域地质调查成果等资料,对该区地层岩石及其风化土壤中环境微量元素地球化学背景、各时代地层岩石及其风化土壤环境微量元素分布特征及地球化学异常作了分析总结.进而作出了该区岩石及土壤的环境微量元素质量评述.重点认为,微量元素在土壤中的含量分区与成土母岩地层的平面分布关系十分密切,地层及岩性因素是土壤中元素分布的主导因素,从而形成了自然的土壤地球化学分区;区内存在三类土壤元素地球化学异常:一是由某些地层岩石风化而成(主要类型),二是由地质构造及热液蚀变导致(次要类型), 三是由矿产开发等人类活动造成(应高度关注的类型);应当辩证看待微量必需元素的高背景地层及地球化学异常层,通过合理利用它们来为人类服务.  相似文献   

8.
黑色页岩的资源功能和环境效应   总被引:15,自引:2,他引:13  
利用ICP—MS等分析技术对典型黑色页岩的微量元素及P、S等组分进行了分析,探讨了黑色页岩的化学特征、风化机制和微量元素富集特征,阐明了黑色页岩的资源功能和环境效应。结果表明,黑色页岩不但富含多种矿产资源,产有大型、超大型多金属矿床,而且可用作复合化肥以改良土壤。同时,黑色页岩因风化分解释放CO2、产生酸性矿排水、释出重金属元素等而可能对环境产生严重影响,引起环境问题。开发利用黑色页岩不但要充分认识其资源功能特征,拓宽其应用途径,而且要特别注意其可能引发的环境问题。  相似文献   

9.
针对偏远山区素填土公路在落石冲击下易产生大面积凹陷破坏的问题,提出运用预应力加筋土路堤解决的方法。为了探究预应力加筋土路堤在落石冲击下的变形性能、力学响应规律和荷载传递机制,设计并实施了落石冲击作用下预应力加筋土路堤和素填土路堤对比模型试验。试验发现:预应力加筋土路堤中形成的凹坑尺寸明显小于素填土路堤,体现了预应力加筋土路堤良好的抗冲击变形性能;随着冲击次数的增加,路堤刚度逐渐增加,导致路堤内部冲击附加应力时程曲线逐渐由“抛物线型单峰”转变为“双峰”分布,且预应力加筋土路堤工况中“双峰”的出现早于素填土路堤;落石在预应力加筋土路堤中的冲击力持续作用时间小于其在素填土路堤中的持续作用时间,且分布更趋均匀,更有利于冲击荷载的扩散;随着冲击次数的增加,预应力加筋土路堤内部冲击力传递率呈先增加后减小的变化趋势,与筋材变形规律一致。结合Levenberg-Marquardt优化算法得到了关于凹坑尺寸和冲击次数的预测方法,可为预应力加筋土路堤在崩塌灾害多发地区的工程应用提供借鉴,为工程预警提供参考。  相似文献   

10.
Markus Wagner 《GeoJournal》2005,62(3-4):91-113
In semi-arid orographic left tributaries of the Kali Gandaki at the northern and western flank of the Nilgiri Himal, glacio-geomorphological and pedological investigations were carried out on prehistoric moraines. Geomorphological relief analysis was derived from other literature and the own fieldwork of the author. The resulting glacial chronology was used as benchmark to explore the limits of different pedological dating methods regarding the degree of soil development. These methods are based on iron fractionation, total element contents and particle size distribution. In general the different glacial stages are mirrored correctly in the relative graduation of soil development. The ratio of well crystallised pedogenic iron-oxides to the total iron content and the ratio fine clay to total clay are most suitable, because they are almost independent from existing changes in the lithological composition. The total element based weathering indices are less suitable, because they react highly sensitive to the geology dependent shift to higher carbonate contents. Most of the grain size based weathering indices are inapplicable because of the typically high textural variability within till deposits.  相似文献   

11.
Markus Wagner 《GeoJournal》2005,63(1-4):91-113
In semi-arid orographic left tributaries of the Kali Gandaki at the northern and western flank of the Nilgiri Himal, glacio-geomorphological and pedological investigations were carried out on prehistoric moraines. Geomorphological relief analysis was derived from other literature and the own fieldwork of the author. The resulting glacial chronology was used as benchmark to explore the limits of different pedological dating methods regarding the degree of soil development. These methods are based on iron fractionation, total element contents and particle size distribution. In general the different glacial stages are mirrored correctly in the relative graduation of soil development. The ratio of well crystallised pedogenic iron-oxides to the total iron content and the ratio fine clay to total clay are most suitable, because they are almost independent from existing changes in the lithological composition. The total element based weathering indices are less suitable, because they react highly sensitive to the geology dependent shift to higher carbonate content. Most of the grain size based weathering indices are inapplicable because of the typically high textural variability within till deposits.  相似文献   

12.
中国黄土和阿拉斯加黄土磁化率气候记录的两种模式探讨   总被引:29,自引:16,他引:29  
在中国和中欧黄土-古土壤研究中发现的磁化率与成壤作用(或古气候温湿程度)的正相关性已被第四纪科学家广泛认识,并应用于古气候研究中.成壤过程形成的亚铁磁性矿物被认为是古土壤磁化率增加的主要原因;然而,这一模式并不一定适用于其他黄土沉积地区,如阿拉斯加和西伯利亚黄土沉积显示了一个完全相反的磁化率行为,即在黄土层获高磁化率值而在古土壤层获低磁化率.这种相反的关系过去被解释为磁化率反映的是与风动力吹来的亚铁磁性矿物的含量,即与风速或风力大小有关.本研究发现阿拉斯加黄土与古土壤的磁性矿物性质有明显差异,不仅仅是粒径的大小,还有磁性矿物的种类即矿物相的差别.这一证据很难单纯以风力强度的大小来解释,意味着阿拉斯加古土壤的低磁化率至少部分是在成壤过程中亚铁磁性矿物发生改变(如溶解)而造成,表明阿拉斯加黄土和中国黄土的磁化率与古气候记录可能存在两种模式,即氧化和还原条件下的成土模式.黄土磁化率在不同的气候(温度湿度)条件下有着不同的对应关系:在低降水量、高蒸发量的干旱氧化成壤条件下,利于亚铁磁性矿物的生成,其磁化率与古气候的关系呈正相关,如中国和中亚黄土;在高纬高湿的还原成壤条件下,亚铁磁性矿物会被破坏被分解,其磁化率与古气候呈负相关关系,如阿拉斯加黄土.如果成壤条件在氧化和还原之间来回变换,那么就很难找到两者之间的联系.因此,将磁化率应用于古气候的重建时要加倍的小心.  相似文献   

13.
The chemical leaching method is used for a systematic analysis of distribution characteristics of acid-soluble and acid-insoluble REE and other trace elements from the Luochuan loess deposits. The study shows that the acid-insoluble phase in loess and palaeosol is a stable component of old aeolian dusts and is characteristic of the provenance; the acid-soluble phase is the unstable component in the weathering pedogenic process and reflects rock-forming features after accumulation of aeolian dusts. The acid-insoluble REE and acid-soluble Sr and Pb can be used as geochemical indicators respectively to trace the provenance characteristics and the weathering pedogenic process.  相似文献   

14.
Cenozoic atmospheric circulation, climatic changes, sedimentation and weathering over the Indian sub-continent were mainly influenced by the northward drift of the Indian Plate, the shrinking Paratethys, India-Asia collision and the rise of the Himalayas. This study is aimed at exploring the fluvial sedimentary record of the north-west part of the Himalayan Foreland Basin to interpret weathering and pedogenesis during early Oligocene to Mid-Miocene time. Palaeopedological investigation of a 3.1 km thick succession from Kangra sub-basin of the Himalayan Foreland Basin shows that the lower 2 km part of the succession is characterized by the red (10R hue) and the upper 1.1 km part of the succession by the yellow (2.5Y hue) palaeosols with varying intensity of weathering and pedogenesis. The association of sedimentary rocks and pedogenic expression in palaeosols indicate four (Type-A to Type-D) pedofacies in the entire Oligocene–Miocene succession. The pedofacies are defined by a decrease in the intensity of palaeopedogenic development from strongly-developed palaeopedofeatures in Type-A, moderately-developed palaeopedofeatures in Type-B, weakly-developed palaeopedofeatures in Type-C and to the only incipient stage of palaeopedogenesis in Type-D pedofacies. The palaeolatitudinal shift during the convergence of the Indian Plate played a major role in weathering and palaeopedogenesis with the inception of seasonality during the early Oligocene, which is demonstrated by the formation of the red palaeosols with pedogenic CaCO3 and vertic features in tropical conditions. The transition to yellow palaeosols at about 20 Ma is marked by increased humidity, rapid aggradation, pronounced uplift and enhanced erosion of the hinterland. These yellow palaeosols are characterized by the abundance of weakly-developed Bw and Bss horizons, pure clay pedofeatures and absence of any pedogenic CaCO3 during short pedogenic intervals in subtropical conditions.  相似文献   

15.
There is agreement that ultrafine maghemite grains (<100 nm) are responsible for the magnetic enhancement of Chinese loess. Recent studies show that grain size distribution of ultrafine pedogenic maghemite grains within the aeolian sequences on the central Chinese Loess Plateau deposited in the last 8 Ma is consistent. However, whether the observed grain size distribution of ultrafine pedogenic maghemite grains can be observed in the western Chinese Loess Plateau and modern soils is not entirely clear. Here we find that young surface soil samples across the Chinese Loess Plateau and early Neogene loessic soils from the western Chinese Loess Plateau also show consistent grain size distribution with that of ultrafine pedogenic maghemite grains on the central Chinese Loess Plateau. The fact that young surface soil samples show apparent magnetic enhancement suggests that the ultrafine pedogenic maghemite grains derive from oxidation of ultrafine magnetite grains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Systematic variations in soil characteristics related to degree of soil profile development in part of the Middle Gangetic Plain suggest a soil chronoassociation similar to the soil chronosequences observed on some river terrace formed by tectonic uplift. This chronoassociation has five members QG1 to QG5, the youngest being QG1 (< 500 yr BP). Variations in degree of horizon differentiation, profile thickness, clay accumulation, plasma separation, argillan thickness, weathering stage and day mineralogy have been used to determine the degree of soil development.
Pedogenic processes active in these soils are decalcification, translocation of clay, sesquioxide and organic matter, plasma separation and weathering of minerals. The amount and variability of clay minerals are significantly related to the type and duration of pedogenesis in different parts of the area. The oldest soils with pedogenic calcite (10 000 yr BP) developed during a dry period. Since 8000 yr BP climatic conditions of higher rainfall and better drainage have prevailed in the area.
Neotectonic movements have tilted the Gandak megafan block and have caused shifting of the Gandak river to the east about 105 km from its original course, leaving behind numerous channels, ponds, lakes and other features of impeded drainage.  相似文献   

17.
Abundant Lower Cretaceous (Berriasian–Hauterivian) paleosols have been recognized in the Sichuan Basin, along with the preserved pedogenetic features, e.g., soil horizons, soil structure, root traces and pedogenic nodules. Chemical, geochemical and mineralogical analyses were used to examine the paleosols. These paleosols were classified as Entisols, Inceptisols, Aridisols and Alfisols in terms of the modern soil taxonomic system. Early Cretaceous paleoprecipitation and paleotemperature in the Sichuan Basin were estimated from the degree of chemical weathering for non-calcareous paleosols, and from the depth to the calcic horizon and stable oxygen isotopic composition of pedogenic carbonates in calcareous paleosols, respectively. A temperate semi-arid climate generally prevailed in the Sichuan Basin as a part of the South China Block (SCB) and was controlled by subtropical high-pressure and a rain-shadow effect because the humid air masses from the Paleo-Pacific were impeded by the highlands of the South China Block. Further, several intervals of sub-humid paleoclimate occurred due to strengthened monsoonal circulation in the Early Cretaceous. Using the paleosol barometer, the paleoatmospheric CO2 levels of the Early Cretaceous are estimated to range from ∼120 to ∼520 ppmv, with a mean of 305 ppmv. Regional temperature is generally coupled with atmospheric CO2 concentration and is roughly consistent with the sea level fluctuation.  相似文献   

18.
Evaluating the impact of allogenic water and sulfuric acid on karst carbon sink not only helps to improve the accurate calculation of soil CO2 uptake by rock weathering, but also obtains a complete understanding of the global carbon cycle. Groundwater samples were collected from four karst subterranean rivers watershed within different lithology strata in Wushui Basin, upstream of Beijiang Basin, Hunan Province, for revealing the important impact of silicate weathering on hydrochemistry of groundwater. To estimate the contribution of soil CO2 uptake by silicate weathering to CO2 uptake by rock weathering, the Galy model was employed in this article. The important impact of sulfuric acid on CO2 uptake by carbonate weathering resulting from the substitution of carbonic acid by protons from sulfuric acid was investigated. Our results showed that the concentration of Na+, K+ and SiO2 in L01,L02 subterranean river with silicate strata in watershed were higher than that in L03,L04 subterranean river without silicate strata in watershed, which implied that the contribution of silicate weathering to Na+,K+ and SiO2 was very important in watershed within silicate strata . The changeable equivalent ratio between (Ca2++Mg2+) and HCO3- was 1.05 to 1.15, and the value of [Ca2++Mg2+]/[HCO3-+SO42-] was 0.99 to 1.08. The concentrations of Ca2+ and Mg2+ exceeded the equivalent concentrations of HC3-, and the excess of Ca2+ and Mg2+cations were compensated by SO42-, which suggested that sulfuric acid has an important influence on carbonate dissolution. The contribution of soil CO2uptake by silicate weathering to CO2 consumption in L01 and L02 subterranean river were 3.36% and 2.22%, respectively, whereas the contribution in L03, L04 subterranean river were less than 0.50%, indicating that the contribution of soil CO2 uptake by silicate weathering was important in the subterranean river basin within silicate strata. Due to the contributions made by sulfuric acid, the CO2 consumption in four subterranean rivers decreased by 4.84%, 4.52%, 6.20%, 9.36%, respectively.  相似文献   

19.
This study reports on the transfer of contaminants from waste rock dumps and mineralised ground into soils, sediments, waters and plants at the rehabilitated Mary Kathleen uranium mine in semi-arid northwest Queensland. Numerous waste rock dumps were partly covered with benign soil and the open pit mine was allowed to flood. The mineralised and waste calc-silicate rock in the open pit and dumps has major (>1 wt%) Ca, Fe and Mg, minor (>1,000 ppm) Ce, La, Mn, P and S, subminor (>100 ppm) Ba, Cu, Th and U, and trace (<100 ppm) As, Ni, Pb, Y and Zn values. Consequently, chemical and physical weathering processes have acted on waste rock and on rock faces within the open pit, mobilising many elements and leading to their dispersion into soils, stream sediments, pit water and several plant species. Chemical dispersion is initiated by sulfide mineral breakdown, generation of sulfuric acid and formation of several soluble, transient sulfate minerals as evaporative efflorescent precipitates. Radiation doses associated with the open pit average 5.65 mSv year−1; waste dumps commonly have lower values, especially where soil-covered. Surface pit water is slightly acid, with high sulfate values accompanied by levels of U, Cu and Ni close to or above Australian water guideline values for livestock. Dispersion of U and related elements into soils and stream sediments occurs by physical (erosional) processes and from chemical precipitation. Plants growing in the mine void, on waste dumps and contaminated soil display evidence of biological uptake of U, LREE, Cu and Th and to a lesser degree of As, Ni, Pb, Y and Zn, with values being up to 1–2 orders of magnitude above background sites for the same species. Although rehabilitation procedures have been partly successful in reducing dispersion of U and related elements into the surrounding environment, it is apparent that 20 years after rehabilitation, there is significant physical and chemical mobility, including transfer into plants.  相似文献   

20.
兰州新区位于黄土高原西段, 为典型干旱区, 道路修建形成了许多坡度大于30°的工程开挖边坡。在边坡上重建植被对改善局地景观和防治水土流失具有重要的作用, 而坡面土壤水分状况对植被重建影响重大。选择3种整地类型(条形坑、 圆形坑和原状坡样地), 研究兰州新区黄土工程开挖边坡植被重建的初期土壤水分状况, 结果表明: 3种整地类型中条形坑的土壤水分条件最好, 与圆形坑、 原状坡样地土壤水分存在显著差异(P<0.05)。不同灌溉频率下原状坡样地0 ~ 20 cm土层土壤含水量较低, 20 ~ 50 cm土层土壤含水量较高。土壤含水量的变异系数随土层深度的增加而减小, 随灌溉频率的降低而增加。在边坡植被重建初期, 需把土壤水分维持在8.4% ~ 10.8%, 即田间持水量的38% ~ 49%, 才能保证植物正常生育生长。当栽植的植被根系长度大于10 cm时, 可考虑将喷灌频率从每天喷灌改为隔天喷灌, 否则植物有死亡的风险。研究结果可为类似的黄土边坡植被恢复和生态建设提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号