首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Mean July and January temperatures are reconstructed from radiocarbon-dated fossil beetle assemblages, yielding a synthesis of palaeoclimatic history of the regions south of the Laurentide Ice Sheet in North America from 35 000 to 8500 yr BP. Mean July temperatures close to the last glacial maximum were 11–12°C colder than present; mean January temperatures were possibly 10–19°C colder. Mutual climatic range analyses of the beetle assemblages show warming of mean summer temperatures as early as 13.7 kyr, although ice-proximal sites were consistently about 5°C cooler than ice-distal sites. Late-glacial mean summer temperatures peaked between 12 and 11 kyr, then remained fairly constant through the early Holocene. Mean winter temperatures did not reach modern values until after 10 kyr.  相似文献   

2.
Mutual Climatic Range (MCR) analysis was applied to 20 fossil beetle assemblages from 11 sites dating from 14,500 to 400 yr B.P. The fossil sites represent a transect of the Rocky Mountain region from northern Montana to central Colorado. The analyses yielded estimates of mean July and mean January temperatures. The oldest assemblage (14,500 yr B.P.) yielded mean July values of 10–11°C colder than present and mean January values 26–30°C colder than present. Postglacial summer warming was rapid, as indicated by an assemblage dating 13,200 yr B.P., with mean July values only 3–4°C cooler than modern. By 10,000 yr B.P., several assemblages indicate warmer-than-modern mean summer and winter values. By 9000 yr B.P., MCR reconstructions indicate that both summer and winter temperatures were already declining from an early Holocene peak. Mean July values remained above modern levels and mean January values remained below modern levels until 3000 yr B.P. A series of small-scale oscillations followed.  相似文献   

3.
Palaeoecological studies carried out in the Chilean Lake District and Chilotan Archipelago (41°–43°S) record full-glacial and late-glacial pollen assemblages beginning just after 21000 and beetle assemblages after 18000, both sets extending until 10000 14C yr BP. Pollen records indicate that Subantarctic Parkland, the vegetation of the early millennia of record, changed after about 14000 yr BP to become open woodland and later North Patagonian Evergreen Forest. Assemblages of plants and beetles, responding more or less in unison to a strong rise in temperature (≥ 6°C), behaved in accord at around 14000 until 13000–12500 yr BP, the beetle fauna displaying a marked increase in obligate forest types. During full-glacial conditions (17400–16100 and 15300 and 14400 yr BP) and in the late-glacial interval (after about 13000 yr BP), however, climate evidently coerced populations dissimilarly, the pollen sequence showing an increase in plant taxa indicative of colder climate, whereas the beetle fauna underwent little or no variation. Contrasting climate modes implied by plants and beetles may be attributed to differential responses to apparent low-order temperature changes (≤ 2–3°C).  相似文献   

4.
Pollen evidence from a 350-cm section of a fen in a moraine belt at Rucañancu (39°33′S, 72°18′W) bears on the controversy regarding interpretation of late-glacial and Holocene climate in midlatitude Chile. Earlier pollen studies, indicating a cooling trend between approximately 11,000 and 10,000 yr B.P., disagreed with observations of glacier fluctuations which show continuous glacier wastage and, by inference, warming after 12,500 yr B.P. and possibly earlier, up until Neoglaciation, beginning after 6850 yr B.P. Fossil beetle assemblage data in this time range support the interpretation of climate made from the observed glacier behavior. At Rucañancu, a pollen assemblage containing upper montane podocarp (Podocarpus andinus) in quantities reaching 34% and dating between 10,440 and 10,000 yr B.P. implies a cold climate with summer temperatures possibly 5–8°C lower than today's. Holocene warming began afterward, later than the glacier and beetle records indicate, and continued until at least 8350 yr B.P., as suggested by the sequence of assemblages dominated by Myrtaceae, by Aextoxicon punctatum, and by Gramineae. A subsequent assemblage of Nothofagus obliqua type implies an increase of moisture until 6960 yr B.P., following which N. dombeyi type, under a cool and humid Neoglacial climate, became dominant.  相似文献   

5.
15 abrupt warming transitions perturbed glacial climate in Greenland during Marine Isotope Stage 3 (MIS 3, 60–27 ka BP). One hypothesis states that the 8–16 °C warming between Greenland Stadials (GS) and Interstadials (GI) was caused by enhanced heat transport to the North Atlantic region after a resumption of the Atlantic Meridional Overturning Circulation (AMOC) from a weak or shutdown stadial mode. This hypothesis also predicts warming over Europe, a prediction poorly constrained by data due to the paucity of well-dated quantitative temperature records. We therefore use a new evidence from biotic proxies and a climate model simulation to study the characteristics of a GS–GI transition in continental Europe and the link to enhanced AMOC strength. We compare reconstructed climatic and vegetation changes between a stadial and subsequent interstadial – correlated to GS15 and GI14 (~55 ka BP) – with a simulated AMOC resumption using a three-dimensional earth system model setup with early-MIS 3 boundary conditions. Over western Europe (12°W–15°E), we simulate twice the annual precipitation, a 17 °C warmer coldest month, a 8 °C warmer warmest month, 1300 °C-day more growing degree days with baseline 5 °C (GDD5) and potential vegetation allowing tree cover after the transition. However, the combined effect of frequent killing frosts, <20 mm summer precipitation and too few GDD5 after the transition suggest a northern tree limit lying at ~50°N during GI14. With these 3 climatic limiting factors we provide a possible explanation for the absence of forests north of 48°N during MIS 3 interstadials with mild summers. Finally, apart from a large model bias in warmest month surface air temperatures, our simulation is in reasonable agreement with reconstructed climatic and vegetation changes in Europe, thus further supporting the hypothesis.  相似文献   

6.
Organic sediments exposed in a seacliff near Kalaloch, Washington, contain abundant, well-preserved beetle remains. Fossil assemblages dating from about 48 000 to 40 000 yr BP are dominated by species typical of the lowland and montane forests in the region today. A few species, Micropeplus laticollis, Olophrum consimile, Olophrum boreale, Arpedium cribratum, and Tachinus thruppi are presently not members of the Pacific Northwest fauna. Mean July temperature during this part of the Middle Wisconsinan is estimated to have been about 1°C lower than today. Later Wisconsinan assemblages are dominated by non-arboreal species, indicating a treeless, probably tundra environment. Mean July temperature based mostly on the occurrence of the alpine leaf-beetle species, Asiorestia pallida, is estimated to have been at least 3°C lower than the present day. Palaeoclimatic interpretations based on beetles are in good agreement with those based on pollen.  相似文献   

7.
Coring through glaciotectonically stacked Quaternary sediments situated below sea level on the island of Møn, Denmark, recovered a succession of interstadial sediments of Middle Weichselian age. Plant and animal remains including insects found in laminated sand and mud indicate deposition in a lake surrounded by dwarf shrubs, herbs, mosses and rare trees. The insect fauna indicates a mean July temperature of 8–12 °C, suggesting an arctic to sub‐arctic environment, while winter temperatures around ?8 to ?22 °C suggest periglacial conditions with permafrost. Luminescence dating of sediment samples gave ages from 48–29 ka, and radiocarbon dating indicates deposition of plant fragments between 45 and 36 ka BP. The fossil assemblage from Møn shows close resemblance to those from other sites with similar ages found in the vicinity of the western Baltic Basin.  相似文献   

8.
Pollen stratigraphy of a core taken from a fen at Fundo Nueva Braunau (40°17.49′S, 73°04.83′W), situated 2 km beyond the western border of Llanquihue‐age glacial drift, spans an age range from an estimated 60 000–70 000 BP to about 14 000 14C yr BP (marine Oxygen Isotope Stages 4–2). The location at present is in the contact zone of Valdivian Evergreen Forest and Lowland Deciduous Beech Forest. Early and late in the pollen record, as indicated by assemblages of southern beech (Nothofagus dombeyi type) and grass (Gramineae), the site was located in Subantarctic Parkland. Intervening assemblages represent expansion of Valdivian–North Patagonian Evergreen Forest (> 49 355 to about 40 000 14C yr BP) and North Patagonian Evergreen Forest–Subantarctic Parkland (approximately 40 000 to 30 000 14C yr BP). Climate over the time span was under the storm regime of the Southern Westerlies and apparently uninterruptedly wet. When Subantarctic Parkland expanded, cold conditions with summer temperatures estimated at 8–9°C (7°C lower than present) resulted in episodes of glacier maxima. Climate moderated during the period of forest expansion, at which time glaciers were in a state of recession. Contrasting with the continuously wet climate of the Lake District for the period of record, climate in semi‐arid–arid, subtropical Chile underwent extended intervals of precipitation. Data from both the terrestrial and marine realm implicate the Southern Westerlies as the cause of intensified storm activity at lower latitudes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
The paleo-hydrography in the Japan Sea called a “mini-Ocean” was reconstructed based on the high-resolution analysis of diatom assemblages over the period of 150,000 yr. The decrease of diatom fertilization in the Japan Sea, when it was isolated from surrounding seas due to the drop of sea-level during the glacial to stadial phase, resulted in dissolution and/or extremely low diatom production in the northern cores in the subarctic water-masses. The annual Td′-derived paleo-SSTs (°C) were controlled by the fluctuations of 2-kyr and 4-kyr periods at intervals of 20 kyr and 40 kyr over the last 160 kyr BP, respectively. A 23-kyr cycle is recognized during the periods from 140 ka to 100 ka, according to the Wavelet analysis. After temperature and sea-level increased both at 133–128 ka, 60–53 ka and 15–10 ka, oceanic warm-water diatom species predominated at 127–119 ka and after 9 cal ka in the interstadial phase. At 21.3–16.9 ka and 12.9–9.8 ka, sea-level and salinity increased as the transgression developed. At 10.0–7.0 ka, the oceanic association shifted from cold-water species in the stadial period to warm-water ones in the interstadial phase. The fluctuations of Td′ derived-SSTs (°C) on century to millennial time-scales during the Holocene are well correlated with abrupt climatic events that different paleoclimatic proxies record in many regions of the Northern Hemisphere.  相似文献   

10.
Previous research has shown that speleothems from the northern rim of the European Alps captured submillennial-scale climate change during the last glacial period with exceptional sensitivity and resolution, mimicking Greenland ice-core records. Here we extend this so-called NALPS19 record across the Late Glacial using two stalagmites which grew continuously into the Holocene. Both specimens show the same high-amplitude δ18O signal as Greenland ice cores down to decadal resolution. The start of the warming at the onset of the equivalent of Greenland Interstadial (GI) GI-1e at 14.66 ± 0.18 ka agrees with the North Greenland Ice Core Project (NGRIP) (14.64 ± 0.28 ka) and comprised a temperature rise of about 5–6 °C. The transition from the equivalent of GI-1a into the equivalent of Greenland Stadial (GS) GS-1 (broadly equivalent to the Younger Dryas) commenced at 13.02 ± 0.13 ka which is consistent with NGRIP (12.80 ± 0.26 ka) within errors. The onset of the Holocene started at 11.78 ± 0.14 ka (11.65 ± 0.10 ka at NGRIP) and involved a warming of about 4–5 °C. In contrast to δ18O, δ13C values show no response to (sub)millennial climate shifts due to strong rock-buffering and only record a long-term trend of soil development starting with the rapid warming at 14.7 ka.  相似文献   

11.
The Rocks loess section, in unglaciated western Kentucky, provides a high-resolution environmental record during the last glacial maximum onset. The Peoria Silt (9 m thick) contains 26 terrestrial gastropod species, with up to 15 species within a single 5 cm interval. Thirteen radiocarbon ages, using shells or charcoal, range between 30 and 24.5 cal ka; younger loess has been leached or eroded. Stratigraphic shifts in gastropod assemblages imply significant cooling, particularly ~27 cal ka, as solar insolation was decreasing and the southern Laurentide Ice Sheet rapidly advancing. Midwestern to southern species (e.g. Anguispira kochi, Gastrocopta pentodon, Hawaii miniscula, Helicodiscus parallelus, Vallonia perspectiva) occur only in the lowermost Peoria Silt (~30–27 cal ka). In contrast, cold-tolerant species (Columella alticola, Vertigo modesta, Vallonia gracilicosta) occur only in full glacial Peoria Silt (27–24.5 cal ka). Inferred mean July temperatures, from mutual climatic range methods, range from ~23 °C at 30 cal ka, cooling to ~18 °C by 26 cal ka; about 3–8 °C cooler than today (~26 °C). Superimposed on this cooling trend are multi-centennial variations in detrital carbonate, fossil shell concentrations, palaeotemperature estimates, and oxygen isotope values (Vertigo, Discus, Helicodiscus). The finer-scale variations imply relatively synchronous fluctuations in glacial sediment supply, loess sedimentation, and climate.  相似文献   

12.
《Quaternary Science Reviews》2007,26(19-21):2420-2437
Lateglacial environments at Hijkermeer, northwest Netherlands, were reconstructed by means of chironomid, diatom and pollen analyses. Diatom assemblages indicate that Hijkermeer was a shallow, oligo- to mesotrophic lake during this period. Pollen assemblages reflect the typical northwest European Lateglacial vegetation development and provide an age assessment for the record from the beginning of the Older Dryas (ca 14 000 calibrated 14C yr BP) into the early Holocene (to ca 10 700 calibrated 14C yr BP). The chironomid record is characterized by several abrupt shifts between assemblages typically found in mid-latitude subalpine to alpine lakes and assemblages typical for lowland environments. Based on the chironomid record, July air temperatures were reconstructed using a chironomid-temperature transfer-function from central Europe. Mean July air temperatures of ca 14.0–16.0 °C are inferred before the Older Dryas, of ca 16.0–16.5 °C during most of the Allerød, of ca 13.5–14.0 °C during the Younger Dryas, and of ca 15.5–16.0 °C during the early Holocene. Two centennial-scale decreases in July air temperature were reconstructed during the Lateglacial interstadial which are correlated with Greenland Interstadial events (GI)-1d and -1b. The results suggest that vegetation changes in the Netherlands may have been promoted by the cooler climate during GI-1d, immediately preceding the Older Dryas biozone, and GI-1b. The Hijkermeer chironomid-inferred temperature record shows a similar temperature development as the Greenland ice core oxygen isotope records for most of the Lateglacial and a good agreement with other temperature reconstructions available from the Netherlands. This suggests that chironomid-based temperature reconstruction can be successfully implemented in the Northwest European lowlands and that chironomids may provide a useful alternative to oxygen isotopes for correlating European lake sediment records during the Lateglacial.  相似文献   

13.
《Quaternary Science Reviews》2004,23(5-6):529-560
The spatio-temporal pattern of peak Holocene warmth (Holocene thermal maximum, HTM) is traced over 140 sites across the Western Hemisphere of the Arctic (0–180°W; north of ∼60°N). Paleoclimate inferences based on a wide variety of proxy indicators provide clear evidence for warmer-than-present conditions at 120 of these sites. At the 16 terrestrial sites where quantitative estimates have been obtained, local HTM temperatures (primarily summer estimates) were on average 1.6±0.8°C higher than present (approximate average of the 20th century), but the warming was time-transgressive across the western Arctic. As the precession-driven summer insolation anomaly peaked 12–10 ka (thousands of calendar years ago), warming was concentrated in northwest North America, while cool conditions lingered in the northeast. Alaska and northwest Canada experienced the HTM between ca 11 and 9 ka, about 4000 yr prior to the HTM in northeast Canada. The delayed warming in Quebec and Labrador was linked to the residual Laurentide Ice Sheet, which chilled the region through its impact on surface energy balance and ocean circulation. The lingering ice also attests to the inherent asymmetry of atmospheric and oceanic circulation that predisposes the region to glaciation and modulates the pattern of climatic change. The spatial asymmetry of warming during the HTM resembles the pattern of warming observed in the Arctic over the last several decades. Although the two warmings are described at different temporal scales, and the HTM was additionally affected by the residual Laurentide ice, the similarities suggest there might be a preferred mode of variability in the atmospheric circulation that generates a recurrent pattern of warming under positive radiative forcing. Unlike the HTM, however, future warming will not be counterbalanced by the cooling effect of a residual North American ice sheet.  相似文献   

14.
This study forms part of a wider investigation of late Quaternary environments in the Southern Hemisphere. We here review the terrestrial and near-shore proxy data from Australia, Indonesia, Papua New Guinea (PNG), New Zealand and surrounding oceans during 35–10 ka, an interval spanning the lead-up to the Last Glacial Maximum (LGM), the LGM proper (21 ± 2 ka), and the ensuing deglaciation. Sites selected for detailed discussion have a continuous or near continuous sedimentary record for this time interval, a stratigraphically consistent chronology, and one or more sources of proxy climatic data. Tropical Australia, Indonesia and PNG had LGM mean annual temperatures 3–7 °C below present values and summer precipitation reduced by at least 30%, consistent with a weaker summer monsoon and a northward displacement of the Intertropical Convergence Zone. The summer monsoon was re-established in northwest Australia by 14 ka. Precipitation in northeast Australia was reduced to less than 50% of present values until warmer and wetter conditions resumed at 17–16 ka, followed by a second warmer, wetter phase at 15–14 ka. LGM temperatures were up to 8 °C lower than today in mainland southeast Australia and up to 4 °C cooler in Tasmania. Winter rainfall was much reduced throughout much of southern Australia although periodic extreme flood events are evident in the fluvial record. Glacial advances in southeast Australia are dated to 32 ± 2.5, 19.1 ± 1.6 and 16.8 ± 1.4 ka, with periglacial activity concentrated towards 23–16 ka. Deglaciation was rapid in the Snowy Mountains, which were ice-free by 15.8 ka. Minimum effective precipitation in southern Australia was from 14 to 12 ka. In New Zealand the glacial advances date to ~28, 21.5 and 19 ka, with the onset of major cooling at ~28 ka, or well before the LGM. There is no convincing evidence for a Younger Dryas cooling event in or around New Zealand, but there are signs of the Antarctic Cold Reversal in and around New Zealand and off southern Australia. There remain unresolved discrepancies between the climates inferred from pollen and those inferred from the beetle and chironomid fauna at a number of New Zealand sites. One explanation may be that pollen provides a generalised regional climatic signal in contrast to the finer local resolution offered by beetles and chironomids. Sea surface temperatures (SSTs) were up to 5 °C cooler during the LGM with rapid warming after 20 ka to attain present values by 15 ka. The increase in summer monsoonal precipitation at or before 15 ka reflects higher insolation, warmer SSTs and steeper thermal gradients between land and sea. The postglacial increase in winter rainfall in southern Australia is probably related to the southward displacement of the westerlies as SSTs around Antarctica became warmer and the winter pack ice and Antarctic Convergence Zone retreated to the south.  相似文献   

15.
《Quaternary Science Reviews》2007,26(5-6):759-772
Quantitative reconstruction of the climatic history of the Chinese Loess Plateau is important for understanding present and past environment and climate changes in the Northern Hemisphere. Here, we reconstructed mean annual temperature (MAT) and mean annual precipitation (MAP) trends during the last 136 ka based on the analysis of phytoliths from the Weinan loess section (34°24′N, 109°30′E) near the southern part of the Loess Plateau in northern China. The reconstructions have been carried out using a Chinese phytolith–climate calibration model based on weighted averaging partial least-squares regression. A series of cold and dry events, as indicated by the reconstructed MAT and MAP, are documented in the loess during the last glacial periods, which can be temporally correlated with the North Atlantic Heinrich events. Our MAT and MAP estimations show that the coldest and/or driest period occurred at the upper part of L2 unit (Late MIS 6), where MAT dropped to ca 4.4 °C and MAP to ca 100 mm. Two other prominent cold-dry periods occurred at lower Ll-5 (ca 77–62 ka) and L1-1 (ca 23–10.5 ka) where the MAT and MAP decreased to about 6.1–6.5 °C and 150–370 mm, respectively, ca 6.6–6.2 °C and 400–200 mm lower than today. However, the highest MAT (average 14.6 °C, max. 18.1 °C) and MAP (average 757 mm, max. 1000 mm) occurred at Sl interval (MIS 5). During the interstadial of L1-4–L1-2 (MIS 3) and during the Holocene warm-wet period, the MAT was about 1–2 °C and MAP 100–150 mm higher than today in the Weinan region. The well-dated MAT and MAP reconstructions from the Chinese Loess Plateau presented in this paper are the first quantitatively reconstructed proxy record of climatic changes at the glacial–interglacial timescale that is based on phytolith data. This study also reveals a causal link between climatic instability in the Atlantic Ocean and climate variability in the Chinese Loess Plateau.  相似文献   

16.
The distributions of the radiolarian assemblages in the Northeastern Pacific Ocean were determined and correlated with the average summer temperature of the near surface waters of this region. These assemblages were compared with those in three sediment cores taken beneath the Transition Zone waters. This comparison indicates that the assemblage off Oregon at the last maximum cold interval (24,000 yr B.P.) was like that now found off southern Alaska. The correlation of the radiolarian assemblages with temperature gives an estimate of 11°C for the average summer temperature at that time. This is approximately 4°C cooler than present day conditions in the area. Superimposed on the general warming trend that began 24,000 y.a., there are minor oscillations in the assemblages which correspond to estimates of temperature change of about 2°C in the Pleistocene and about 1°C in the Holocene. In the Holocene, these minor warm intervals appear to be approximately synchronous with advances in mountain glaciers.  相似文献   

17.
《Applied Geochemistry》2003,18(7):997-1009
The δ18O and δD values in the deep confined aquifer beneath the North China Plain which is located at 112°30′E–119°30′E and 34°46′N–40°25′N, reflect differences in paleoclimatic conditions between the Holocene and the late Pleistocene. Groundwater samples whose 14C ages are between 12 and 25 ka B.P have ranges of −9.4 to −11.7‰ for δ18O and −76‰ to −85‰ for δD values. These very negative δ18O and δD values reflect the cold and arid climate in the last glacial period. The temperature estimated in this period is 6–9 °C cooler than that of the present. The entire ranges of δ18O and δD values for samples with 14C dating from 7 ka B.P to present are −7.7‰ to −10.2‰ and −63‰ to −73‰, respectively. The greater δ18O and δD enrichments of these samples indicate a period of relatively humid and warm climate in the Holocene. However, the wide ranges of δ18O (−9.0‰ to −11.1‰) and δD (−66‰ to −80‰) values for samples with 14C age ranging from 12 to 7 ka B.P. imply an unstable climatic condition of rapidly increasing temperature, which marks the transition from the Pleistocene to the Holocene.  相似文献   

18.
The transition phase from Lateglacial to Holocene climate conditions was accompanied by a pronounced reorganization of climate patterns in the Northern Hemisphere. Evidence of Alpine palaeoglaciers provides a basis for understanding climate downturns during a time of generally warming conditions. In this context a series of well‐preserved and previously undated moraines were investigated in the small Falgin cirque located in the central Alpine Langtaufers Valley (South Tyrol, Italy) and in the neighbouring Hinteres Bergle cirque of the Radurschl Valley (North Tyrol, Austria). Both localities are situated in the driest area of the eastern Alps. They lie well above prominent moraines associated with the Younger Dryas (YD) cold phase and represent the first moraines below Little Ice Age (LIA) positions. The corresponding equilibrium line altitude of the palaeoglaciers in both cirques was 100–120 m lower than during the LIA. Surface exposure dating (10Be) of the inner Falgin moraines shows a mean stabilization age of 11.2±0.9 ka, which is similar to the deglaciation age of 10.9±0.8 ka for the Hinteres Bergle cirque. The ages indicate glacier activity most likely during the earliest Holocene or the YD/Holocene transition. These findings point to a climate with mean summer temperatures about 1.5 °C lower than during the 20th century in the Alps.  相似文献   

19.
Western Ireland, located adjacent to the North Atlantic, and with a strongly oceanic climate, is potentially sensitive to rapid and extreme climate change. We present the first high‐resolution chironomid‐inferred mean July temperature reconstruction for Ireland, spanning the late‐glacial and early Holocene (LGIT, 15–10 ka BP). The reconstruction suggests an initial rapid warming followed by a short cool phase early in the interstadial. During the interstadial there are oscillations in the inferred temperatures which may relate to Greenland Interstadial events GI‐1a–e. The temperature decrease into the stadial occurs in two stages. This two‐stage drop can also be seen in other late‐glacial chironomid‐inferred temperature records from the British Isles. A stepped rise in temperatures into the Holocene, consistent with present‐day temperatures in Donegal, is inferred. The results show strong similarities with previously published LGIT chironomid‐inferred temperature reconstructions, and with the NGRIP oxygen‐isotope curve, which indicates that the oscillations observed in the NGRIP record are of hemispherical significance. The results also highlight the influence of the North Atlantic on the Irish climate throughout the LGIT. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
《Quaternary Science Reviews》2003,22(21-22):2303-2310
The present work revisits the chronology of the archaeologically controversial Pedra Furada Rock Shelter of Southeast Piauı́, Brazil, using an improved radiocarbon laboratory pre-treatment and measurements on charcoal samples. The procedure, known as ABOX-SC (acid–base–wet oxidation followed by stepped combustion), has previously been used to secure radiocarbon dates of >40 ka for the antiquity of human occupation of Australia and South Africa, and now has been applied to charcoal from the previously dated oldest occupation layer of the Pedra Furada site. Previous radiocarbon dating had obtained only lower limits of 40–45 ka BP for the Pedra Furada basal layer. Nine charcoal samples from well-structured hearths were subjected to the ABOX-SC procedure and their radiocarbon content determined by accelerator mass spectrometry. Measurements on five of the samples returned ages of greater than 56 ka BP, from graphites produced from ABOX pre-treated charcoal combusted at 910°C. Two other samples were greater than 50 ka BP. The remaining two samples were essentially completely combusted at 650°C, with no material surviving to make a 910°C CO2 fraction. Their ages were 41.3 and 47.2 ka BP. Ages obtained from graphites generated from the 650°C combusted fraction are considered minimum ages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号