首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed litho‐ and biostratigraphical analyses from three coastal sites in contrasting coastal settings on the Isle of Skye, Scotland, UK, reveal evidence for several changes in relative sea level during the Late Devensian and Holocene. At the start of the record, relative sea level in the area was high at ca. 12 500 14C (ca. 14 800 cal.) yr BP but then fell, reaching a low point during the Younger Dryas, at ca. 11 000–10 000 14C (ca. 13 000–11 600 cal.) yr BP, when a rock platform, correlated with the Main Rock Platform, was formed. In the early–middle Holocene, relative sea level was rising by ca. 8000 14C (ca. 8800 cal.) yr BP and in northeast Skye a lagoonal surface, correlated with the Main Postglacial Shoreline, was formed at ca. 6600 14C (ca. 7500 cal.) yr BP. By the late Holocene, relative sea level was again falling, but a rise, registered at at least two sites, began probably before ca. 4000 14C (ca. 4500 cal.) yr BP, and a second lagoonal surface in northeast Skye, correlated with the Blairdrummond Shoreline, was formed, although by ca. 3000 14C (ca. 3200 cal.) yr BP relative sea level in the area had resumed its downward trend. The pattern of relative sea‐level changes disclosed is compared with evidence elsewhere in Scotland. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Sediment cores from Lake Pupuke in Auckland City, New Zealand, contain a high‐resolution millennial to centennial‐scale record of changing climate and catchment hydrology spanning the past ca. 10 000 years. Here, we focus on the period between 9500 ± 25 and 7000 ± 155 cal. yr BP during which grain size, diatom palaeoecology, biogenic silica concentrations, sediment elemental and carbon isotope geochemistry reflect changes in sediment sources and lake conditions, with a significant event commencing at ca. 8240 cal. yr BP, commensurate with a lowering of lake level, faster erosion rates and increased sediment influx with a duration of ca. 360 yrs. However, the changes in the lake are not reflected in the terrestrial vegetation, where the pollen record indicates that podocarp forest dominated the Auckland region, with apparent environmental stability during this part of the early Holocene. The synchronous change in most of the proxies between ca. 8240 and 7880 cal. yr BP at Lake Pupuke indicates the presence of a sustained episode of relatively low lake level and concomitant increased rate of erosion in the early Holocene that appears to be at least partly coeval with the 8200 cal. yr BP meltwater event proposed for the North Atlantic region. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Two interstadial tree ring-width chronologies from Geikie Inlet, Glacier Bay Southeast, Alaska were built from 40 logs. One of these chronologies has been calendar dated to AD 224–999 (775 yr) crossdating with a living ring-width chronology from Prince William Sound, Alaska. Trees in this chronology were likely killed through inundation by sediments and meltwater from the advancing Geikie Glacier and its tributaries ca. AD 850. The earlier tree-ring chronology spans 545 yr and is a floating ring-width series tied to radiocarbon ages of about 3000 cal yr BP. This tree-ring work indicates two intervals of glacial expansion by the Geikie Glacier system toward the main trunk glacier in Glacier Bay between 3400 and 3000 cal yr BP and again about AD 850. The timing of both expansions is consistent with patterns of ice advance at tidewater glaciers in other parts of Alaska and British Columbia about the same time, and with a relative sea-level history from just outside Glacier Bay in Icy Strait. This emerging tree-ring dated history builds on previous radiocarbon-based glacial histories and is the first study to use tree-ring dating to assign calendar dates to glacial activity for Glacier Bay.  相似文献   

4.
A detailed multidisciplinary investigation of intertidal freshwater sediments exposed in the north of the Bay of Skaill, Mainland Orkney, Scotland, have revealed a complex sedimentary sequence. This provided evidence for dynamic coastal environmental changes in the area since the mid‐Holocene. Freshwater ponds developed on glacial sediments ca. 6550 ± 80 yr BP (cal. bc 5590–5305). From ca. 6120 ± 70 yr BP (cal. bc 5040–4855), these were infilled by blown sand from the distal edge of a dune ridge located to the west. Thereafter, a series of sand‐blow events alternating with periods of quiescence occurred until ca. 4410 ± 60 yr BP (cal. bc 3325–2900). Between ca. 5240 ± 160 and 4660 ± 80 yr BP (cal. bc 4370–3115), pollen and charcoal records show evidence of anthropogenic activities, associated with the nearby Neolithic settlement of Skara Brae. Agriculture was probably affected by recurrent sand movement and widespread deposition of calcium carbonate in the hinterland of the bay. Machair development between ca. 6100 and 5000 yr BP (cal. bc 5235–3540) corresponds to a mid‐Holocene phase of dune formation recorded elsewhere in northwest Europe. The more recent and progressive formation of the bay has probably been related to increasing external forcing via storminess, long‐term relative sea‐level change and sediment starvation within this exposed environment. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
The region of north Iceland is highly sensitive climatically owing to its location with respect to atmospheric and oceanographic fronts. In this study we present total carbonate and δ18O records of benthic and planktic Foraminifera from nine sediment cores from the North Iceland Shelf. The results of this work indicate that the deglaciation of the Vestfirdir Peninsula was completed by 10 200 cal. yr BP. The 8200 cal. yr BP cold event is present only as a minor isotopic event, and seems not to have had much of a cooling effect on the bottom waters of the northwest Iceland shelf. The Holocene maximum warmth, attributed to a stronger North Icelandic Irminger Current, occurred between ca. 7800 and 6200 cal. yr BP. Over the past 4500 cal. yr BP a general cooling trend has occurred on the North Iceland Shelf, and superimposed on this overall cooling trend are a number of oscillations between periods when relatively warmer and cooler waters occupied the shelf. Relatively cooler waters were present at 4200–4000 cal. yr BP, 3200–2900 cal. yr BP, 2500–2350 cal. yr BP and 600–200 cal. yr BP, whereas relatively warmer waters were present on the shelf at 3750–3450 cal. yr BP, 2800–2600 cal. yr BP and 1700–1000 cal. yr BP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Multiproxy analysis of three littoral cores from western New Caledonia supports the hypothesis that the main controlling factors of environmental changes are sea-level change, ENSO variability and extra-tropical phenomena, such as the Medieval Warm Period (MWP) marked by a tendency for La Niña-like conditions in the tropical Pacific. The record starts during the late Holocene sea-level rise when the terrestrial vegetation indicated wet and cool conditions. The site was a coastal bay definitely transformed into a freshwater swamp at around 3400 cal yr BP, after the rapid drawdown of sea level to its current level. Sediments and foraminiferal assemblages indicated subsequent episodes of freshwater infillings, emersion or very high-energy conditions, likely related to climatic changes and mostly controlled by ENSO variability. Between 2750 and 2000 cal yr BP, relatively dry and cool climate prevailed, while wetter conditions predominated between ca. 1800 and 900 cal yr BP. The Rhizophoraceae peak between ca. 1080 and 750 cal yr BP, coeval with the MWP, may indicate a global phenomenon. Microcharcoal particles present throughout the record increased after 1500 cal yr BP, suggesting an anthropogenic source. From ca. 750 cal yr BP the appearance of current type of vegetation marks the human impact.  相似文献   

7.
A foraminiferal transfer function for mean tide level (MTL) is used in combination with AMS radiocarbon dated material to construct a record of relative sea‐level (RSL) change from Poole Harbour, southern Britain. These new data, based on multiple cores from duplicate sites, indicate four phases of change during the last 5000 cal. (calendar) yr: (i) rising RSL between ca. 4700 cal. yr BP and ca. 2400 cal. yr BP; (ii) stable to falling RSL from ca. 2400 cal. yr BP until ca. 1200 cal. yr BP; (iii) a brief rise in RSL from ca. 1200 cal. yr BP to ca. 900 cal. yr BP, followed by a period of stability; (iv) a recent increase in the rate of RSL rise from ca. 400–200 cal. yr BP until the present day. In addition, they suggest that the region has experienced long‐term crustal subsidence at a rate of 0.5 mm C14 yr?1. Although this can account for the overall rise in MTL observed during the past 2500 yr, it fails to explain the changes in the rate of rise during this period. This implies that the phases of RSL change recorded in the marshes of Poole Harbour reflect tidal range variations or ‘eustatic’ fluctuations in sea‐level. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents the results of an investigation into Holocene relative sea-level (RSL) change, isostatic rebound and ice sheet dynamics in Disko Bugt, West Greenland. Data collected from nine isolation basins on Arveprinsen Ejland, east Disko Bugt, show that mean sea level fell continuously from ca. 70 m at 9.9 ka cal. yr BP (8.9 ka 14C yr BP) to reach a minimum of ca. −5 m at 2.8 ka cal. yr BP (2.5 ka 14C yr BP), before rising to the present day. A west–east gradient in isostatic uplift across Disko Bugt is confirmed, with reduced rebound observed in east Disko Bugt. However, RSL differences (up to 20 m at 7.8 ka to 6.8 ka cal. yr BP (7 ka to 6 ka 14C yr BP)) also exist within east Disko Bugt, suggesting a significant north–south component to the area’s isostatic history. The observed magnitude and timing of late Holocene RSL rise is not compatible with regional forebulge collapse. Instead, RSL rise began first in the eastern part of the bay, as might be expected under a scenario of crustal subsidence caused by neoglacial ice sheet readvance. The results of this study demonstrate the potential of isolation basin data for local and regional RSL studies in Greenland, and the importance of avoiding data compilations from areas where the isobase orientation is uncertain. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
The early Holocene sea level rise   总被引:1,自引:0,他引:1  
The causes, anatomy and consequences of the early Holocene sea level rise (EHSLR) are reviewed. The rise, of ca 60m, took place over most of the Earth as the volume of the oceans increased during deglaciation and is dated at 11,650–7000 cal. BP. The EHSLR was largely driven by meltwater release from decaying ice masses and the break up of coastal ice streams. The patterns of ice sheet decay and the evidence for meltwater pulses are reviewed, and it is argued that the EHSLR was a factor in the ca 8470 BP flood from Lake Agassiz-Ojibway. Patterns of relative sea level changes are examined and it is argued that in addition to regional variations, temporal changes are indicated. The impact of the EHSLR on climate is reviewed and it is maintained that the event was a factor in the 8200 BP cooling event, as well as in changes in ocean current patterns and their resultant effects. The EHSLR may also have enhanced volcanic activity, but no clear evidence of a causal link with submarine sliding on continental slopes and shelves can yet be demonstrated. The rise probably influenced rates and patterns of human migrations and cultural changes. It is concluded that the EHSLR was a major event of global significance, knowledge of which is relevant to an understanding of the impacts of global climate change in the future.  相似文献   

10.
More than 100 radiocarbon dates of penguin guano and remains, shells and seal skin afford ages for raised beaches adjacent to Terra Nova Bay, Antarctica. These dates permit construction of a new relative sea‐level curve that bears on the timing of deglaciation. Recession of the Ross Sea ice‐sheet grounding line from Terra Nova Bay occurred no earlier than 7200 14C yr (8000 cal. yr) BP. Retreat along the Victoria Land coast may have been rapid, possibly contributing to eustatic sea‐level rise centred at ca. 7600 cal. yr BP. The presence of a significant amount of ice remaining in the Ross Sea Embayment in Holocene time lessens the chance that Antarctica contributed significantly to meltwater pulse 1A several thousand years earlier. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
We present results from an investigation of relative sea-level changes in the Qaqortoq area in south Greenland from c. 11 000 cal. yr BP to the present. Isolation and transgression sequences from six lakes and two tidal basins have been identified using stratigraphical analyses, magnetic susceptibility, XRF and macrofossil analyses. Macrofossils and bulk sediments have been dated by AMS radiocarbon dating. Maximum and minimum altitudes for relative sea level are provided from two deglaciation and marine lagoon sequences. Initially, relative sea level fell rapidly and reached present-day level at ∼9000 cal. yr BP and continued falling until at least 8800 cal. yr BP. Between 8000 and 6000 cal. yr BP, sea level reached its lowest level of around 6-8 m below highest astronomical tide (h.a.t.). At around 3750 cal. yr BP, sea level has reached above 2.7 m below h.a.t. and continued to rise slowly, reaching the present-day level between ∼2000 cal. yr BP and the present. As in the Nanortalik area further south, initial isostatic rebound caused rapid isolation of low elevation basins in the Qaqortoq area. Distinct isolation contacts in the sediments are observed. The late Holocene transgression is less well defined and occurred over a longer time interval. The late Holocene sea-level rise implies reloading by advancing glaciers superimposed on the isostatic signal from the North American Ice Sheet. One consequence of this transgression is that settlements of Palaeo-Eskimo cultures from ∼4000 cal. yr BP may have been transgressed by the sea.  相似文献   

12.
We present a relative sea-level (RSL) history, constrained by AMS radiocarbon-dated marine-freshwater transitions in isolation basins from a site adjacent to the Lambert Glacier, East Antarctica. The RSL data suggest an initial ice retreat between c. 15,370 and 12,660 cal yr B.P.. Within this period, meltwater pulse IA (mwp IA, between c. 14,600-14,200 and 14,100-13,700 cal yr B.P.) occurred; an exceptionally large ice melting event, inferred from far-field sea-level records. The RSL curve shows a pronounced highstand of approximately 8 m between c. 7570-7270 and 7250-6950 cal yr B.P. that is consistent with the timing of the RSL highstand in the nearby Vestfold Hills. This is followed by a fall in RSL to the present. In contrast to previous findings, the isolation of the lakes in the Larsemann Hills postdates the isolation of lakes with similar sill heights in the Vestfold Hills. An increase in RSL fall during the late Holocene may record a decline in the rate of isostatic uplift in the Larsemann Hills between c. 7250-6950 and 2847-2509 cal yr B.P., that occurred in response to a documented mid-Holocene glacier readvance followed by a late-Holocene retreat.  相似文献   

13.
This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake‐level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial–early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north‐central Italy). On the basis of an age–depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas–Bølling warming event was dated to ca. 14 560 cal. yr BP and the Younger Dryas event to ca. 12 700–11 650 cal. yr BP. Four sub‐millennial scale cooling phases were recognised from pollen data at ca. 14 300–14 200, 13 900–13 700, 13 400–13 100 and 11 350–11 150 cal. yr BP. The last three may be Mediterranean equivalents to the Older Dryas (GI‐1d), Intra‐Allerød (GI‐1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice‐core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra‐Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake‐level record shows that the sub‐millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2 ka cold reversal. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Cores and exposed cliff sections in salt marshes around Ho Bugt, a tidal embayment in the northernmost part of the Danish Wadden Sea, were subjected to 14C dating and litho- and biostratigraphical analyses to reconstruct paleoenvironmental changes and to establish a late Holocene relative sea-level history. Four stages in the late Holocene development of Ho Bugt can be identified: (1) groundwater-table rise and growth of basal peat (from at least 2300 BC to AD 0); (2) salt-marsh formation (0 to AD 250); (3) a freshening phase (AD 250 to AD 1600?), culminating in the drying out of the marshes and producing a distinct black horizon followed by an aeolian phase with sand deposition; and (4) renewed salt-marsh deposition (AD 1600? to present). From 16 calibrated AMS radiocarbon ages on fossil plant fragments and 4 calibrated conventional radiocarbon ages on peat, we reconstructed a local relative sea-level history that shows a steady sea-level rise of 4 m since 4000 cal yr BP. Contrary to suggestions made in the literature, the relative sea-level record of Ho Bugt does not contain a late Holocene highstand. Relative sea-level changes at Ho Bugt are controlled by glacio-isostatic subsidence and can be duplicated by a glacial isostatic adjustment model in which no water is added to the world's oceans after ca. 5000 cal yr BP.  相似文献   

15.
It is widely recognised that the acquisition of high‐resolution palaeoclimate records from southern mid‐latitude sites is essential for establishing a coherent picture of inter‐hemispheric climate change and for better understanding of the role of Antarctic climate dynamics in the global climate system. New Zealand is considered to be a sensitive monitor of climate change because it is one of a few sizeable landmasses in the Southern Hemisphere westerly circulation zone, a critical transition zone between subtropical and Antarctic influences. New Zealand has mountainous axial ranges that amplify the climate signals and, consequently, the environmental gradients are highly sensitive to subtle changes in atmospheric and oceanic conditions. Since 1995, INTIMATE has, through a series of international workshops, sought ways to improve procedures for establishing the precise ages of climate events, and to correlate them with high precision, for the last 30 000 calendar years. The NZ‐INTIMATE project commenced in late 2003, and has involved virtually the entire New Zealand palaeoclimate community. Its aim is to develop an event stratigraphy for the New Zealand region over the past 30 000 years, and to reconcile these events against the established climatostratigraphy of the last glacial cycle which has largely been developed from Northern Hemisphere records (e.g. Last Glacial Maximum (LGM), Termination I, Younger Dryas). An initial outcome of NZ‐INTIMATE has been the identification of a series of well‐dated, high‐resolution onshore and offshore proxy records from a variety of latitudes and elevations on a common calendar timescale from 30 000 cal. yr BP to the present day. High‐resolution records for the last glacial coldest period (LGCP) (including the LGM sensu stricto) and last glacial–interglacial transition (LGIT) from Auckland maars, Kaipo and Otamangakau wetlands on eastern and central North Island, marine core MD97‐2121 east of southern North Island, speleothems on northwest South Island, Okarito wetland on southwestern South Island, are presented. Discontinuous (fragmentary) records comprising compilations of glacial sequences, fluvial sequences, loess accumulation, and aeolian quartz accumulation in an andesitic terrain are described. Comparisons with ice‐core records from Antarctica (EPICA Dome C) and Greenland (GISP2) are discussed. A major advantage immediately evident from these records apart from the speleothem record, is that they are linked precisely by one or more tephra layers. Based on these New Zealand terrestrial and marine records, a reasonably coherent, regionally applicable, sequence of climatically linked stratigraphic events over the past 30 000 cal. yr is emerging. Three major climate events are recognised: (1) LGCP beginning at ca. 28 000 cal. yr BP, ending at Termination I, ca. 18 000 cal. yr BP, and including a warmer and more variable phase between ca. 27 000 and 21 000 cal. yr BP, (2) LGIT between ca. 18 000 and 11 600 cal. yr BP, including a Lateglacial warm period from ca. 14 800 to 13 500 cal. yr BP and a Lateglacial climate reversal between ca. 13 500 and 11 600 cal. yr BP, and (3) Holocene interglacial conditions, with two phases of greatest warmth between ca. 11 600 and 10 800 cal. yr BP and from ca. 6 800 to 6 500 cal. yr BP. Some key boundaries coincide with volcanic tephras. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Bracketing ages on marine—freshwater transitions in isolation basins extending from sea level to 100 m elevation on Lasqueti Island, and data from shallow marine cores and outcrops on eastern Vancouver Island, constrain late Pleistocene and Holocene sea-level change in the central Strait of Georgia. Relative sea level fell from 150 m elevation to about —15 m from 14000 cal. yr BP to 11 500 cal. yr BP. Basins at higher elevations exhibit abrupt changes in diatom assemblages at the marine-freshwater transition. At lower elevations an intervening brackish phase suggests slower rates of uplift. Relative sea level rose to about +1 m about 9000 cal. yr BP to 8500 cal. yr BP, and then slowly fell to the modern datum. The mean rate of glacio-isostatic rebound in the first millennium after deglaciation was about 0.11 in a -1, similar to the peak rate at the centres of the former Laurentide and Fennoscandian ice complexes. The latter feature smooth, exponential-style declines in sea level up to the present day, whereas in the study area the uplift rate dropped to less than one-tenth of its initial value in only about 2500 years. Slower, more deeply seated isostatic recovery generated residual uplift rates of <0.01 m a-1 in the early Holocene after the late-Pleistocene wasting of the Cordilleran ice sheet.  相似文献   

17.
A new analysis of all 346 published 14C dated Holocene alluvial units in Britain offers a unique insight into the regional impacts of global change and shows how surprisingly sensitive British rivers have been to relatively modest but repeated changes in climate. Fourteen major but probably brief periods of flooding are identified bracketed within the periods 400–1070, 1940–3940, 7520–8100 and at ca. 10 420 cal. yr BP. There is a strong correspondence between climatic deteriorations inferred from mire wet shifts and major periods of flooding, especially at ca. 8000 cal. yr BP and since ca. 4000 cal. yr BP. The unusually long and complete British record also demonstrates that alterations in land cover have resulted in a step change in river basin sensitivity to variations in climate. This has very important implications for assessing and mitigating the impact of increasing severe flooding. In small and medium‐sized river basins land use is likely to play a key role in either moderating or amplifying the climatic signal. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Pollen, diatom, radiocarbon and lithostratigraphical data from isolation basins in northwest Scotland are used to quantify the reference water (tide) level, indicative range and age of differenty types of isolation and connection contacts. Tendencies of sea-level movement and relative sea-level changes from the mid-Lateglacial Interstadial (11.8 ka BP) to the late Holocene are constructed from these data. Relative sea-level fell continuously from + 17.8 m OD at 11.8 ka BP to ca. + 5.2 m OD at 10.1 ka BP. From an unkown minimum between 10 ka and 9 ka BP relative sea-level then rose to +6.3 m OD at 8.3 ka BP. The maximum Holocene sea-level occurred within the range +6.6 m OD to +9.3 m OD between 6.6 ka BP and 4.0 ka BP before falling to present. Isobase, age-altitude and quantitative rebound models for northwest Scotland are tested using these sealevel data, but none of the published models shows close agreement with the new results.  相似文献   

19.
Studies of Late Quaternary sediments in south and central Sweden have yielded a detailed tephrochronology for the Last Glacial–Interglacial transition (LGIT; ca. 15,000–10,000 cal. yr BP) and the Holocene. More than ten tephra layers have been detected and geochemically characterised. The most widespread tephra from the LGIT is the rhyolitic phase of the Vedde Ash (ca. 12,000 cal. yr BP) which has been found in lacustrine sediments and marine clays south of the Younger Dryas moraines in south Sweden. Other horizons from the LGIT identified to date include the Borrobol tephra (ca. 14,400 cal. yr BP), the Hässeldalen tephra (ca. 11,500 cal. yr BP), the 10-ka Askja tephra (ca. 11,300 cal. yr BP) and the Högstorpsmossen tephra (ca. 10,200 cal. yr BP). The most significant Holocene isochrones are Hekla-4 (ca. 4260 cal. yr BP), Hekla-Selsund/Kebister (ca. 3750 cal. yr BP), Hekla-3 (ca. 3000 cal. yr BP) and Askja-1875. Two new Late Holocene tephra horizons (the Stömyren tephra, ca. 2100 cal. yr BP and the Gullbergby tephra; ca. 2700 cal. yr BP) were identified in single sites and are so far less valuable as marker horizons, but are potentially important for the future.  相似文献   

20.
在对莱州湾南岸8个钻孔沉积物沉积结构及有孔虫特征分析基础上,识别相关海面标志层位,辅以加速器质谱AMS14C测年,重建了全新世相对海面变化历史,并讨论了海面变化的沉积响应及控制因素。约9200cal BP以前,海面快速上升,研究区海侵时海面于-21.5m左右;9200~8400cal BP海面上升速率减缓至约2mm/a;8400~8000cal BP海面由-14m快速上升至-5.5m,速率约为33mm/a;8000~7600cal BP,海面持续数百年停滞或微弱下降;7600~7000cal BP海面由-5.5m快速上升至0m以上,速率至少约为13mm/a;7000~6000cal BP海面缓慢上升至+2~+3m位置,速率约为3mm/a;约6000cal BP以后海面缓慢下降至现今水平。约9200cal BP以前、8400~8000cal BP、7600~7000cal BP时期的3次海面快速上升,是MWP-1C融水脉冲、诱发8.2ka冷事件的融水脉冲,以及MWP-2融水脉冲的中纬度地区响应。中全新世全球冰融趋于停滞后,由于研究区沉积盆地沉降速度较慢,在冰川均衡调整效应下,使+2~+3m的相对高海面得以呈现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号