首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sea water intrusion by sea-level rise: scenarios for the 21st century   总被引:4,自引:0,他引:4  
This study presents a method to assess the contributions of 21st-century sea-level rise and groundwater extraction to sea water intrusion in coastal aquifers. Sea water intrusion is represented by the landward advance of the 10,000 mg/L iso-salinity line, a concentration of dissolved salts that renders groundwater unsuitable for human use. A mathematical formulation of the resolution of sea water intrusion among its causes was quantified via numerical simulation under scenarios of change in groundwater extraction and sea-level rise in the 21st century. The developed method is illustrated with simulations of sea water intrusion in the Seaside Area sub-basin near the City of Monterey, California (USA), where predictions of mean sea-level rise through the early 21st century range from 0.10 to 0.90 m due to increasing global mean surface temperature. The modeling simulation was carried out with a state-of-the-art numerical model that accounts for the effects of salinity on groundwater density and can approximate hydrostratigraphic geometry closely. Simulations of sea water intrusion corresponding to various combinations of groundwater extraction and sea-level rise established that groundwater extraction is the predominant driver of sea water intrusion in the study aquifer. The method presented in this work is applicable to coastal aquifers under a variety of other scenarios of change not considered in this work. For example, one could resolve what changes in groundwater extraction and/or sea level would cause specified levels of groundwater salinization at strategic locations and times.  相似文献   

2.
Vulnerability indicators of sea water intrusion   总被引:5,自引:0,他引:5  
In this paper, simple indicators of the propensity for sea water intrusion (SWI) to occur (referred to as "SWI vulnerability indicators") are devised. The analysis is based on an existing analytical solution for the steady-state position of a sharp fresh water-salt water interface. Interface characteristics, that is, the wedge toe location and sea water volume, are used in quantifying SWI in both confined and unconfined aquifers. Rates-of-change (partial derivatives of the analytical solution) in the wedge toe or sea water volume are used to quantify the aquifer vulnerability to various stress situations, including (1) sea-level rise; (2) change in recharge (e.g., due to climate change); and (3) change in seaward discharge. A selection of coastal aquifer cases is used to apply the SWI vulnerability indicators, and the proposed methodology produces interpretations of SWI vulnerability that are broadly consistent with more comprehensive investigations. Several inferences regarding SWI vulnerability arise from the analysis, including: (1) sea-level rise impacts are more extensive in aquifers with head-controlled rather than flux-controlled inland boundaries, whereas the opposite is true for recharge change impacts; (2) sea-level rise does not induce SWI in constant-discharge confined aquifers; (3) SWI vulnerability varies depending on the causal factor, and therefore vulnerability composites are needed that differentiate vulnerability to such threats as sea-level rise, climate change, and changes in seaward groundwater discharge. We contend that the approach is an improvement over existing methods for characterizing SWI vulnerability, because the method has theoretical underpinnings and yet calculations are simple, although the coastal aquifer conceptualization is highly idealized.  相似文献   

3.
Leo Vallner   《Limnologica》1999,29(3):282
For a sustainable development of Estonia's coastal region it is necessary to achieve a balanced proportion between purified surface water and deep groundwater for public drinking water supplies. Special attention should be directed to problems of sea water encroachment into coastal aquifer systems. Only close co-operation between surface water specialists, hydrogeologists, and socio-economists will be able to solve this sophisticated task.  相似文献   

4.
Seasonal variations in sea level are often neglected in studies of coastal aquifers; however, they may have important controls on processes such as submarine groundwater discharge, sea water intrusion, and groundwater discharge to coastal springs and wetlands. We investigated seasonal variations in salinity in a groundwater‐fed coastal wetland (the RAMSAR listed Piccaninnie Ponds in South Australia) and found that salinity peaked during winter, coincident with seasonal sea level peaks. Closer examination of salinity variations revealed a relationship between changes in sea level and changes in salinity, indicating that sea level–driven movement of the fresh water‐sea water interface influences the salinity of discharging groundwater in the wetland. Moreover, the seasonal control of sea level on wetland salinity seems to override the influence of seasonal recharge. A two‐dimensional variable density model helped validate this conceptual model of coastal groundwater discharge by showing that fluctuations in groundwater salinity in a coastal aquifer can be driven by a seasonal coastal boundary condition in spite of seasonal recharge/discharge dynamics. Because seasonal variations in sea level and coastal wetlands are ubiquitous throughout the world, these findings have important implications for monitoring and management of coastal groundwater–dependent ecosystems.  相似文献   

5.
Climate change and sea‐level rise will have severe impacts on coastal water resources around the world. However, whereas the influence of marine inundation is well documented in the literature, the impact of groundwater inundation on coastal communities is not well known. Here, core analysis, groundwater monitoring, and ground penetrating radar are utilized to assess the groundwater regime of the surficial aquifer on Bogue Banks Barrier Island (USA). Then, geospatial techniques are used to assess the relative roles and extents of groundwater and marine inundation on the dune‐dominated barrier island under sea‐level rise scenarios of 0.2, 0.5, and 1.0 m above current conditions by 2100. Additionally, the effects of rising water tables on onsite wastewater treatment systems (OWTS) are modelled using the projected sea‐level rise scenarios. The results indicate that the surficial aquifer comprising fine to medium sands responds quickly to precipitation. Water‐level measurements reveal varying thicknesses of the vadose zone (>3 to 0 m) and several groundwater mounds with radial flow patterns. Results from projected sea‐level rise scenarios suggest that owing to aquifer properties and morphology of the island, groundwater inundation may occur at the same rate as marine inundation. Furthermore, the area inundated by groundwater may be as significant as that affected by marine inundation. The results also show that the proportion of land in the study area where OWTS may be perpetually compromised by rising water tables under worst case scenarios may range from ~43 to ~54% over an 86‐year‐period. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
海平面变化是全球气候系统变化的一个组成部分,是环境变化的重要指标,也会影响沿海区域及岛屿的生态环境甚至存亡.全球海平面变化由海水质量变化和比容海平面变化构成.海水质量变化主要是由于两极冰盖和高山区的冰川融化流入海洋所致;比容海平面变化是由海水的温度和盐度变化所引起的,其中温度变化是最主要的因素.本文介绍了海平面变化各种监测技术的发展过程,并对海平面变化的研究现状进行了总结.所有研究成果均表明,近100多年以来,全球海平面一直处于上升态势;近几十年以来,海平面呈现加快上升并且越来越快的趋势.目前仍然存在一些问题:人们还没有完全掌握海平面变化规律,对未来海平面变化预测有较大不确定性;深海缺乏实测数据;厄尔尼诺—南方涛动(ENSO)的变化规律以及对海平面的影响;GRACE陆地与海洋信号无法完全分离以及GRACE与GRACE-FO之间的一致性分析等.这些问题都需要进一步开展研究.  相似文献   

7.
《水文科学杂志》2013,58(4):690-703
Abstract

One of the key uncertainties surrounding the impacts of climate change in Africa is the effect on the sustainability of rural water supplies. Many of these water supplies abstract from shallow groundwater (<50 m) and are the sole source of safe drinking water for rural populations. Analysis of existing rainfall and recharge studies suggests that climate change is unlikely to lead to widespread catastrophic failure of improved rural groundwater supplies. These require only 10 mm of recharge annually per year to support a hand pump, which should still be achievable for much of the continent, although up to 90 million people may be affected in marginal groundwater recharge areas (200–500 mm annual rainfall). Lessons learnt from groundwater source behaviour during recent droughts, substantiated by groundwater modelling, indicate that increased demand on dispersed water points, as shallow unimproved sources progressively fail, poses a much greater risk of individual source failure than regional resource depletion. Low yielding sources in poor aquifers are most at risk. Predicted increased rainfall intensity may also increase the risk of contamination of very shallow groundwater. Looking to the future, an increase in major groundwater-based irrigation systems, as food prices rise and surface water becomes more unreliable, may threaten long-term sustainability as competition for groundwater increases. To help prepare for increased climate variability, it is essential to understand the balance between water availability, access to water, and use/demand. In practice, this means increasing access to secure domestic water, understanding and mapping renewable and non-renewable groundwater resources, promoting small-scale irrigation and widening the scope of early warning systems and mapping to include access to water.  相似文献   

8.
Aquifers are inherently susceptible to contamination and coastal aquifers in specific are highly vulnerable to sea water intrusion. For efficient planning and management of coastal aquifers in Kayalpattu and Tiruchopuram villages, which extend over 4·05 km2, it is essential to delineate and predict the extent of intrusion into the shallow aquifer. Management of ground water in coastal aquifers is composed of major elements that should be properly evaluated, and special attention is given to the sea water intrusion problem. Different data, like hydro‐geomorphological and depth‐wise iso‐apparent resistivity, are integrated spatially using a geographical information system. The stack‐unit mapping approach is used to delineate the zones with iso‐apparent resistivity of less than 10 Ω m have been found to be increasing in areal extent with reference to depth. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Sea level is the base level for groundwater circulation in coastal aquifers. The evolution of karst surface landforms and subsurface drainage systems in these aquifers has been conditioned in geological time by tectonics and glacio‐eustatic sea‐level changes. Present morpho‐structural settings and the type/distribution of karst surface and subsurface forms have developed in different carbonate formations according to differences in lithology, climate and exposure time, all driving the intensity of morphologic and karst processes. The repeated and significant changes of groundwater level linked to ‘sea‐level changes’ have had the most important role in driving the continuous evolution of karstic drainage systems, and has resulted in most cases in a multiphase karst. This study aims at defining a general method for identifying, in karst coastal settings, the elevations of flat or low topographic gradient surfaces (using morphometric analysis of Digital Elevation Models (DEMs) and geographical information systems (GISs), and their comparison with elevations of distinctive karstic levels (passages, lateral solution cavities) observed in vertical shafts and horizontal caves. Of the elevations of flat or low topographic gradient surfaces only those agreeing, within ±10 m or ±20 m, with elevation ranges marked by the high frequency of distinctive karst levels were considered as representative of the more probable past sea‐level stands. The method is applied to a regional coastal carbonate formation in southern Italy, by using a 10 m DEM and information on 140 complex caves and 85 shafts. Of the 15 elevations indicated by DEM analysis [620, 600, 470, 450, 425, 385, 355, 315, 270, 250, 205, 180, 150, 110, and 70 m above sea level (a.s.l.)], 13 match clearly those highlighted by significant frequencies of distinctive karstic levels. These elevations are validated by comparison to the elevation of terraces and karst plains indicated in the literature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Xun Zhou  Chao Song  Ting Li 《水文科学杂志》2013,58(13):2367-2375
ABSTRACT

The inland extending length of the freshwatersaltwater interface toe is useful in studies of seawater intrusion in coastal areas. The submarine fresh groundwater discharge in coastal zones is affected not only by hydraulic conductivity and hydraulic gradient of the aquifer, but also by the position of the interface. Two observation wells at different distances from the coast are required to calculate the fresh groundwater flow rate in coastal unconfined aquifers. By considering that the submarine groundwater discharge is equal to the groundwater flow rate, the length of the interface toe extending inland can be estimated when the groundwater flow is at a steady-flow state. Aquifers with horizontal and sloping confined beds and without/with unique surface vertical infiltration are considered. Examples used to illustrate the application of these methods indicate that the inland extending lengths of the interface toe in aquifers with vertical surface infiltration are much shorter than those in aquifers without vertical surface infiltration, and the length of the interface in aquifers with a horizontal confining lower bed are smaller than those in aquifers with a confining lower bed sloping towards the sea. The extent of the interface on the northwestern coast near the city of Beihai in southern Guangxi, China, on 18 January 2013 was estimated as 471478 m.
Editor M.C. Acreman Associate editor not assigned  相似文献   

11.
Much of what is known about groundwater circulation and geochemical evolution in carbonate platforms is based on platforms that are fully confined or unconfined. Much less is known about groundwater flow paths and geochemical evolution in partially confined platforms, particularly those supporting surface water. In north‐central Florida, sea level rise and a transition to a wetter climate during the Holocene formed rivers in unconfined portions of the Florida carbonate platform. Focusing on data from the Santa Fe River basin, we show river formation has led to important differences in the hydrological and geochemical evolution of the Santa Fe River basin relative to fully confined or unconfined platforms. Runoff from the siliciclastic confining layer drove river incision and created topographic relief, reorienting the termination of local and regional groundwater flow paths from the coast to the rivers in unconfined portions of the platform. The most chemically evolved groundwater occurs at the end of the longest and deepest flow paths, which discharge near the center of the platform because of incision of the Santa Fe River at the edge of the confining unit. This pattern of discharge of mineralized water differs from fully confined or unconfined platforms where discharge of the most mineralized water occurs at the coast. Mineralized water flowing into the Santa Fe River is diluted by less evolved water derived from shorter, shallower flow paths that discharge to the river downstream. Formation of rivers shortens flow path lengths, thereby decreasing groundwater residence times and allowing freshwater to discharge more quickly to the oceans in the newly formed rivers than in platforms that lack rivers. Similar dynamic changes to groundwater systems should be expected to occur in the future as climate change and sea level rise develop surface water on other carbonate platforms and low lying coastal aquifer systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Globally, the number of people experiencing water stress is expected to increase by millions by the end of the century. The Great Lakes region, representing 20% of the world's surface freshwater, is not immune to stresses on water supply due to uncertainties on the impacts of climate and land use change. It is imperative for researchers and policy makers to assess the changing state of water resources, even if the region is water rich. This research developed the integrated surface water-groundwater GSFLOW model and investigated the effects of climate change and anthropogenic activities on water resources in the lower Great Lakes region of Western New York. To capture a range of scenarios, two climate emission pathways and three land development projections were used, specifically RCP 4.5, RCP 8.5, increased urbanization by 50%, decreased urbanization by 50%, and current land cover, respectively. Model outputs of surface water and groundwater discharge into the Great Lakes and groundwater storage for mid- and late century were compared to historical to determine the direction and amplitude of changes. Both surface water and groundwater systems show no statistically significant changes under RCP 4.5 but substantial and worrisome losses with RCP 8.5 by mid-century and end of century. Under RCP 8.5, streamflow decreased by 22% for mid-century and 42% for late century. Adjusting impervious surfaces revealed complex land use effects, resulting in spatially varying groundwater head fluctuations. For instance, increasing impervious surfaces lowered groundwater levels from 0.5 to 3.8 m under Buffalo, the largest city in the model domain, due to reduced recharge in surrounding suburban areas. Ultimately, results of this study highlight the necessity of integrated modelling in assessing temporal changes to water resources. This research has implications for other water-rich areas, which may not be immune to effects of climate change and human activities.  相似文献   

13.
Sea water intrusion into aquifers is problematic in many coastal areas. The physics and chemistry of this issue are complex, and sea water intrusion remains challenging to quantify. Simple assessment tools like analytical models offer advantages of rapid application, but their applicability to field situations is unclear. This study examines the reliability of a popular sharp‐interface analytical approach for estimating the extent of sea water in a homogeneous coastal aquifer subjected to pumping and regional flow effects and under steady‐state conditions. The analytical model is tested against observations from Canada, the United States, and Australia to assess its utility as an initial approximation of sea water extent for the purposes of rapid groundwater management decision making. The occurrence of sea water intrusion resulting in increased salinity at pumping wells was correctly predicted in approximately 60% of cases. Application of a correction to account for dispersion did not markedly improve the results. Failure of the analytical model to provide correct predictions can be attributed to mismatches between its simplifying assumptions and more complex field settings. The best results occurred where the toe of the salt water wedge is expected to be the closest to the coast under predevelopment conditions. Predictions were the poorest for aquifers where the salt water wedge was expected to extend further inland under predevelopment conditions and was therefore more dispersive prior to pumping. Sharp‐interface solutions remain useful tools to screen for the vulnerability of coastal aquifers to sea water intrusion, although the significant sources of uncertainty identified in this study require careful consideration to avoid misinterpreting sharp‐interface results.  相似文献   

14.
Abstract

We investigate the general methodology for an intensive development of coastal aquifers, described in a companion paper, through its application to the management of the Akrotiri aquifer, Cyprus. The Zakaki area of that aquifer, adjacent to Lemessos City, is managed such that it permits a fixed annual agricultural water demand to be met, as well as and a fraction of the water demand of Lemessos, which varies according to available surface water. Effluents of the Lemessos wastewater treatment plant are injected into the aquifer to counteract the seawater intrusion resulting from the increased pumping. The locations of pumping and injection wells are optimized based on least-cost, subject to meeting the demand. This strategy controls sea intrusion so effectively that desalting of only small volumes of slightly brackish groundwater is required over short times, while ~2.3 m3 of groundwater is produced for each 1 m3 of injected treated wastewater. The cost over the 20-year period 2000–2020 of operation is ~40 M€ and the unit production cost of potable water is under 0.2 €/m3. The comparison between the deterministic and stochastic analyses of the groundwater dynamics indicates the former as conservative, i.e. yielding higher groundwater salinity at the well. The Akrotiri case study shows that the proposed aquifer management scheme yields solutions that are preferable to the widely promoted seawater desalination, also considering the revenues from using the treated wastewater for irrigation.

Citation Koussis, A. D., Georgopoulou, E., Kotronarou, A., Mazi, K., Restrepo, P., Destouni, G., Prieto, C., Rodriguez, J. J., Rodriguez-Mirasol, J., Cordero, T., Ioannou, C., Georgiou, A., Schwartz, J. & Zacharias, I. (2010) Cost-efficient management of coastal aquifers via recharge with treated wastewater and desalination of brackish groundwater: application to the Akrotiri basin and aquifer, Cyprus. Hydrol. Sci. J. 55(7), 1234–1245.  相似文献   

15.
Volcanic aquifers supply a substantial portion of water resources in many parts of the world, including islands, and their productivity depends strongly on volcanic stratigraphy, which exhibits considerable heterogeneity. We investigated water inflow to lava tube caves formed from numerous basaltic lava flows in the northeastern coastal area of Jeju Island after storm events and monitored relative inflow rates monthly over 1 year to characterize groundwater flow processes in the upper parts of volcanic aquifers, and to evaluate the applicability of the previous hydrogeological models proposed for the island. Considerable water inflow arose shortly after storms from exposed palaeosol layers on the walls of the caves. The monthly monitoring results showed that wall inflow associated with these palaeosol layers is substantial. In both cases, discharge from ceiling drips was much less and more temporally variable compared to wall inflow discharge. Water flowing into the caves was rapidly drained through the floor at all monitoring sites. The lateral extent of the palaeosol layers was identified using drill core logs near the cave and outcrops in the coastal area. Based on these results, we inferred that multiple perched aquifers are formed by low-permeability palaeosol layers between lava flows, which are connected by vertical flows at discontinuities in the palaeosol layer, eventually reaching the basal aquifer. This study revealed the water inflow processes observed in lava tube caves constrained by palaeosol layers, and established a hydrogeological conceptual model incorporating multiple perched aquifers in both coastal and mountainous areas associated with extensive palaeosol layers formed during volcanic hiatuses. This finding would help elucidate recharge, groundwater flow, and contaminant transport processes in many volcanic aquifers that are not adequately represented by the previous models, and contribute to better management of groundwater in those areas.  相似文献   

16.
Rising sea levels, owing to climate change, are a threat to fresh water coastal aquifers. This is because saline intrusions are caused by increases and intensification of medium‐large scale influences including sea level rise, wave climate, tidal cycles, and shifts in beach morphology. Methods are therefore required to understand the dynamics of these interactions. While traditional borehole and galvanic contact resistivity (GCR) techniques have been successful they are time‐consuming. Alternatively, frequency‐domain electromagnetic (FEM) induction is potentially useful as physical contact with the ground is not required. A DUALEM‐421 and EM4Soil inversion software package are used to develop a quasi two‐ (2D) and quasi three‐dimensional (3D) electromagnetic conductivity images (EMCI) across Long Reef Beach located north of Sydney Harbour, New South Wales, Australia. The quasi 2D models discern: the dry sand (<10 mS/m) associated with the incipient dune; sand with fresh water (10 to 20 mS/m); mixing of fresh and saline water (20 to 500 mS/m), and; saline sand of varying moisture (more than 500 mS/m). The quasi 3D EMCIs generated for low and high tides suggest that daily tidal cycles do not have a significant effect on local groundwater salinity. Instead, the saline intrusion is most likely influenced by medium‐large scale drivers including local wave climate and morphology along this wave‐dominated beach. Further research is required to elucidate the influence of spring‐neap tidal cycles, contrasting beach morphological states and sea level rise.  相似文献   

17.
The coastal aquifers and inland waters of the Long Xuyen Quadrangle and Ca Mau Peninsula of southern Vietnam have been significantly impacted by sea water intrusion (SI) as a result of recent anthropogenic activities. This study identified the evolution and spatial distribution of hydrochemical conditions in coastal aquifers at this region using Hydrochemical Facies Evolution Diagram (HFE-D) and Geographical Information System mapping. Hydraulic heads and water chemistry were measured at 31 observation wells in four layered aquifers during dry and rainy seasons in early (2005), and more recent (2016), stages of agricultural development. Hydrochemical facies associated with intrusion or freshening stages were mapped in each aquifer after assigning mixing index values to each facies. The position of groundwater freshening and SI phases differed in Holocene, Upper Pleistocene, Middle Pleistocene, and Lower Pleistocene aquifers. The geographic position of freshening and intrusion fronts differ in dry and rainy seasons, and shifted after 11 years of groundwater abstraction in all four aquifers. The spatial and temporal differences in hydrochemical facies distributions according to HFE-D reflect the relative impact of SI in the four aquifers. The study results provide a better understanding of the evolution of groundwater quality associated with SI in a peninsular coastal aquifer system, and highlight the need for improving groundwater quality and management in similar coastal regions.  相似文献   

18.
Abstract

The effects of changes in climate on aquifer storage and groundwater flow to rivers have been investigated using an idealized representation of the aquifer/river system. The generalized aquifer/river model can incorporate spatial variability in aquifer transmissivity and is applied with parameters characteristic of Chalk and Triassic sandstone aquifers in the United Kingdom, and is also applicable to other aquifers elsewhere. The model is run using historical time series of recharge, estimated from observed rainfall and potential evaporation data, and with climate inputs perturbed according to a number of climate change scenarios. Simulations of baseflow suggest large proportional reductions at low flows from Chalk under high evaporation change scenarios. Simulated baseflow from the slower responding Triassic sandstone aquifer shows more uniform and less severe reductions. The change in hydrological regime is less extreme for the low evaporation change scenario, but remains significant for the Chalk aquifer.  相似文献   

19.
Several investigations have recently considered the possible impacts of climate change and seawater level rise on seawater intrusion in coastal aquifers. All have revealed the severity of the problem and the significance of the landward movement of the dispersion zone under the condition of seawater level rise. Most of the studies did not consider the possible effects of the seawater rise on the inland movement of the shoreline and the associate changes in the boundary conditions at the seaside and the domain geometry. Such effects become more evident in flat, low land, coastal alluvial plans where large areas might be submerged with seawater under a relatively small increase in the seawater level. None of the studies combined the effect of increased groundwater pumping, due to the possible decline in precipitation and shortage in surface water resources, with the expected landward shift of the shore line. In this article, the possible effects of seawater level rise in the Mediterranean Sea on the seawater intrusion problem in the Nile Delta Aquifer are investigated using FEFLOW. The simulations are conducted in horizontal view while considering the effect of the shoreline landward shift using digital elevation models. In addition to the basic run (current conditions), six different scenarios are considered. Scenarios one, two, and three assume a 0.5 m seawater rise while the total pumping is reduced by 50%, maintained as per the current conditions and doubled, respectively. Scenarios four, five, and six assume a 1.0 m seawater rise and the total pumping is changed as in the first three scenarios. The shoreline is moved to account for the seawater rise and hence the study domain and the seaside boundary are modified accordingly. It is concluded that, large areas in the coastal zone of the Nile Delta will be submerged by seawater and the coast line will shift landward by several kilometers in the eastern and western sides of the Delta. Scenario six represents the worst case under which the volume of freshwater will be reduced to about 513 km3 (billion m3).  相似文献   

20.
Optimal and sustainable extraction of groundwater in coastal aquifers   总被引:1,自引:0,他引:1  
Four examples are investigated for the optimal and sustainable extraction of groundwater from a coastal aquifer under the threat of seawater intrusion. The objectives and constraints of these management scenarios include maximizing the total volume of water pumped, maximizing the profit of selling water, minimizing the operational and water treatment costs, minimizing the salt concentration of the pumped water, and controlling the drawdown limits. The physical model is based on the density-dependent advective-dispersive solute transport model. Genetic algorithm is used as the optimization tool. The models are tested on a hypothetical confined aquifer with four pumping wells located at various depths. These solutions establish the feasibility of simulating various management scenarios under complex three-dimensional flow and transport processes in coastal aquifers for the optimal and sustainable use of groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号