首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It can be very time consuming to use the conventional numerical methods, such as the finite element method, to solve convection–dispersion equations, especially for solutions of large-scale, long-term solute transport in porous media. In addition, the conventional methods are subject to artificial diffusion and oscillation when used to solve convection-dominant solute transport problems. In this paper, a hybrid method of Laplace transform and finite element method is developed to solve one- and two-dimensional convection–dispersion equations. The method is semi-analytical in time through Laplace transform. Then the transformed partial differential equations are solved numerically in the Laplace domain using the finite element method. Finally the nodal concentration values are obtained through a numerical inversion of the finite element solution, using a highly accurate inversion algorithm. The proposed method eliminates time steps in the computation and allows using relatively large grid sizes, which increases computation efficiency dramatically. Numerical results of several examples show that the hybrid method is of high efficiency and accuracy, and capable of eliminating numerical diffusion and oscillation effectively.  相似文献   

2.
Fast transport simulation with an adaptive grid refinement   总被引:2,自引:0,他引:2  
Haefner F  Boy S 《Ground water》2003,41(2):273-279
One of the main difficulties in transport modeling and calibration is the extraordinarily long computing times necessary for simulation runs. Improved execution time is a prerequisite for calibration in transport modeling. In this paper we investigate the problem of code acceleration using an adaptive grid refinement, neglecting subdomains, and devising a method by which the Courant condition can be ignored while maintaining accurate solutions. Grid refinement is based on dividing selected cells into regular subcells and including the balance equations of subcells in the equation system. The connection of coarse and refined cells satisfies the mass balance with an interpolation scheme that is implicitly included in the equation system. The refined subdomain can move with the average transport velocity of the subdomain. Very small time steps are required on a fine or a refined grid, because of the combined effect of the Courant and Peclet conditions. Therefore, we have developed a special upwind technique in small grid cells with high velocities (velocity suppression). We have neglected grid subdomains with very small concentration gradients (zero suppression). The resulting software, MODCALIF, is a three-dimensional, modularly constructed FORTRAN code. For convenience, the package names used by the well-known MODFLOW and MT3D computer programs are adopted, and the same input file structure and format is used, but the program presented here is separate and independent. Also, MODCALIF includes algorithms for variable density modeling and model calibration. The method is tested by comparison with an analytical solution, and illustrated by means of a two-dimensional theoretical example and three-dimensional simulations of the variable-density Cape Cod and SALTPOOL experiments. Crossing from fine to coarse grid produces numerical dispersion when the whole subdomain of interest is refined; however, we show that accurate solutions can be obtained using a fraction of the execution time required by uniformly fine-grid solutions.  相似文献   

3.
A forward particle tracking Eulerian Lagrangian localized adjoint method (ELLAM) is applied to the multicomponent reactive transport problem using a split operator approach. Two split operator algorithms are compared, the Strang algorithm and the sequential non-iterative algorithm (SNIA). The reaction equations are integrated using a coupled predictor corrector algorithm with adaptive time stepping. Reaction time steps are adjusted at the inflow boundary to reflect the actual time of transport inside the solution domain.Results show that split operator ELLAM formulations are competitive with direct or fully coupled ELLAM solutions for reactive transport problems. The SNIA algorithm is more accurate than the Strang splitting algorithm when large time steps are used. The reaction algorithm employed dominates computational effort in runs with large time step sizes. To illustrate the use of the method in practical problems, the model is fitted to aerobic aniline degradation data from laboratory scale column experiments. Model inversion is achieved using non-linear regression with a shuffled complex evolution optimization algorithm and parameter uncertainty is assessed using a Bayesian uncertainty analysis procedure.  相似文献   

4.
Analytical solutions for the water flow and solute transport equations in the unsaturated zone are presented. We use the Broadbridge and White nonlinear model to solve the Richards’ equation for vertical flow under a constant infiltration rate. Then we extend the water flow solution and develop an exact parametric solution for the advection-dispersion equation. The method of characteristics is adopted to determine the location of a solute front in the unsaturated zone. The dispersion component is incorporated into the final solution using a singular perturbation method. The formulation of the analytical solutions is simple, and a complete solution is generated without resorting to computationally demanding numerical schemes. Indeed, the simple analytical solutions can be used as tools to verify the accuracy of numerical models of water flow and solute transport. Comparison with a finite-element numerical solution indicates that a good match for the predicted water content is achieved when the mesh grid is one-fourth the capillary length scale of the porous medium. However, when numerically solving the solute transport equation at this level of discretization, numerical dispersion and spatial oscillations were significant.  相似文献   

5.
In this paper, we study the numerical approximation of the two-dimensional morphodynamic model governed by the shallow water equations and bed-load transport following a coupled solution strategy. The resulting system of governing equations contains non-conservative products and it is solved simultaneously within each time step. The numerical solution is obtained using a new high-order accurate centered scheme of the finite volume type on unstructured meshes, which is an extension of the one-dimensional PRICE-C scheme recently proposed in Canestrelli et al. (2009) [5]. The resulting first-order accurate centered method is then extended to high order of accuracy in space via a high order WENO reconstruction technique and in time via a local continuous space–time Galerkin predictor method. The scheme is applied to the shallow water equations and the well-balanced properties of the method are investigated. Finally, we apply the new scheme to different test cases with both fixed and movable bed. An attractive future of the proposed method is that it is particularly suitable for engineering applications since it allows practitioners to adopt the most suitable sediment transport formula which better fits the field data.  相似文献   

6.
在前人工作的基础上,本文推导了电导率任意各向异性介质的海洋可控源电磁三维谱元法正演方程.采用一次场/二次场分离算法结合混合阶矢量基函数,可以有效避免源点的奇异性的影响,从而提高数值解的精度.采用任意六面体单元离散研究区域,有利于模拟复杂地形和地电结构.利用不完全LU分解的Induced Dimension Reduction(IDR(s))迭代算法求解线性方程组,有效地提高了求解的效率.设计典型的地电模型进行正演计算,并将计算结果与有限元解进行对比,对比结果表明本文提出的基于混合阶矢量基函数的海洋可控源电磁三维谱元数值模拟算法是正确的、有效的.本文算法具有良好的通用性,可推广用于电导率呈任意各向异性的陆地电磁、井中电磁等数值模拟研究.  相似文献   

7.
A multiscale adjoint (MSADJ) method is developed to compute high-resolution sensitivity coefficients for subsurface flow in large-scale heterogeneous geologic formations. In this method, the original fine-scale problem is partitioned into a set of coupled subgrid problems, such that the global adjoint problem can be efficiently solved on a coarse grid. Then, the coarse-scale sensitivities are interpolated to the local fine grid by reconstructing the local variability of the model parameters with the aid of solving embedded adjoint subproblems. The approach employs the multiscale finite-volume (MSFV) formulation to accurately and efficiently solve the highly detailed flow problem. The MSFV method couples a global coarse-scale solution with local fine-scale reconstruction operators, hence yielding model responses that are quite accurate at both scales. The MSADJ method is equally efficient in computing the gradient of the objective function with respect to model parameters. Several examples demonstrate that the approach is accurate and computationally efficient. The accuracy of our multiscale method for inverse problems is twofold: the sensitivity coefficients computed by this approach are more accurate than the traditional finite-difference-based numerical method for computing derivatives, and the calibrated models after history matching honor the available dynamic data on the fine scale. In other words, the multiscale based adjoint scheme can be used to history match fine-scale models quite effectively.  相似文献   

8.
1 INTRODUCTION In recent years, due to the increase in population and industrial developments, mankind has faced manyproblems associated with rivers, coastal waters and reservoirs. Some of these problems are flood control,water supply, power generation, and irrigation. In addition, making new hydraulic structures changesnatural conditions. Prediction of these changes is necessary for designing such constructions. For solutionof these problems usually an assessment of flow pattern, sedim…  相似文献   

9.
A three-dimensional, reactive numerical flow model is developed that couples chemical reactions with density-dependent mass transport and fluid flow. The model includes equilibrium reactions for the aqueous species, kinetic reactions between the solid and aqueous phases, and full coupling of porosity and permeability changes that result from precipitation and dissolution reactions in porous media. A one-step, global implicit approach is used to solve the coupled flow, transport and reaction equations with a fully implicit upstream-weighted control volume discretization. The Newton–Raphson method is applied to the discretized non-linear equations and a block ILU-preconditioned CGSTAB method is used to solve the resulting Jacobian matrix equations. This approach permits the solution of the complete set of governing equations for both concentration and pressure simultaneously affected by chemical and physical processes. A series of chemical transport simulations are conducted to investigate coupled processes of reactive chemical transport and density-dependent flow and their subsequent impact on the development of preferential flow paths in porous media. The coupled effects of the processes driving flow and the chemical reactions occurring during solute transport is studied using a carbonate system in fully saturated porous media. Results demonstrate that instability development is sensitive to the initial perturbation caused by density differences between the solute plume and the ambient groundwater. If the initial perturbation is large, then it acts as a “trigger” in the flow system that causes instabilities to develop in a planar reaction front. When permeability changes occur due to dissolution reactions occurring in the porous media, a reactive feedback loop is created by calcite dissolution and the mixed convective transport of the system. Although the feedback loop does not have a significant impact on plume shape, complex concentration distributions develop as a result of the instabilities generated in the flow system.  相似文献   

10.
《Advances in water resources》2003,26(11):1189-1198
A two-dimensional finite element based overland flow model was developed and used to study the accuracy and stability of three numerical schemes and watershed parameter aggregation error. The conventional consistent finite element scheme results in oscillations for certain time step ranges. The lumped and the upwind finite element schemes are tested as alternatives to the consistent scheme. The upwind scheme did not improve on the stability or the accuracy of the solution, while the lumped scheme provided stable and accurate solutions for time steps twice the size of time steps needed for the consistent scheme. A new accuracy based dynamic time step estimate for the two-dimensional overland flow kinematic wave solution is developed for the lumped scheme. The newly developed dynamic time step estimates are functions of the mesh size, and time of concentration of the watershed hydrograph. Due to lack of analytical solutions, the time step was developed by comparing numerical solutions of various levels of discretization to a reference solution using a very fine mesh and a very small time step. The time step criteria were tested on a different set of problems and proved to be adequate for accurate and stable solutions. A sensitivity analysis for the watershed slope, Manning’s roughness coefficient and excess rainfall rate was conducted in order to test the effect of parameter aggregation on the stability and accuracy of the solution. The results of this analysis show that aggregation of the slope data resulted in the highest error. The roughness coefficient had a smaller effect on the solution while the rainfall intensity did not show any significant effect on the flow rate solution for the range of rainfall intensity used. This work pioneers the challenge of providing guidelines for accurate and stable numerical solutions of the two-dimensional kinematic wave equations for overland flow.  相似文献   

11.
The ray-theoretical transport equation for inhomogeneous isotropic media (2D-SH case) is solved by the method of finite differences on a rectangular grid, both for an incident plane wave (explicit scheme) and a line source (implicit scheme). Results for homogeneous models and for heterogeneous models with structural discontinuities are discussed. First-arrival travel times calculated by various techniques serve as input for the solution of the transport equation and the computation of amplitudes of first arrivals. To obtain correct amplitudes the travel times must be highly accurate and the discontinuities must be smoothed out; the reason is that the spatial second derivatives of the travel time field enter the transport equation. In the simple cases studied, finite differences provide a fast and efficient tool for the computation of first-arrival amplitudes.  相似文献   

12.
I.~OntjcnONEngineeringPredictionsofsedimenttransPOrtinopen-Channelsystems,especiallyifunsteadyflowconditionmustbeconsidered,isfraughtwithambigUityduetospatialandtemporalvariability,measurementerrors,lumtedsamplingoftheParameters,bounceandscallconditionS,andsink/sourcetenns.Duringrecentyearsmanysophisticatedmathematicalmodelshavebecomeavailabletocalculateunsteadyflowinone,tWoorthreedimensionS.ThesemodelswillbecoupledwithtranSportequationSforbedloadorsuSpendedloadtocalculateforexamplelongt…  相似文献   

13.
基于并行化直接解法的频率域可控源电磁三维正演   总被引:9,自引:8,他引:1       下载免费PDF全文
电磁法的三维数值模拟是一个对数值算法和计算机硬件要求都非常高的问题.对常用的微分类方法如有限单元法和有限差分法而言,求解最后所得的大型线性方程组是至关重要的一步,直接影响到正演算法的实用性.如何高效、稳定且准确地解线性方程长期以来一直是被探讨的问题.本文实现了基于线性系统直接求解技术的频率域可控源电磁(CSEM)三维正演.使用交错网格有限体积法(FV)来离散化关于二次电场的Helmholtz方程;使用直接解法取代传统的迭代解法来求解离散线性系统,即对系统矩阵进行完全LU分解,具体通过调用大规模并行矩阵直接求解器(MUMPS)来实现.基于理论模型做了一系列数值实验,首先证明了直接解法的高精度和稳定性,并考察了其内存需求、计算时间和并行可伸缩性等主要计算性能,最后检验了所开发的算法快速模拟多场源CSEM问题的能力以及对常规海洋和陆地CSEM模拟的有效性.  相似文献   

14.
黄继伟  刘洪 《地球物理学报》2020,63(8):3091-3104
传统的伪谱(PS)方法,采用傅里叶变换(FT)计算空间导数具有很高的精度,每个波长仅需要两个采样点,而时间导数采用有限差分(FD)近似因而精度较低.当采用大时间步长时,由于时空精度不平衡,PS法存在不稳定性问题.原始的k-space方法可以有效地克服这些问题但是却无法适用于非均匀介质.为了提高原始k-space方法模拟非均匀介质波动方程的精度,我们提出了一种新的k-space算子族.它是用非均匀介质的变速度代替原k-space算子中的常数补偿速度构造得到,引入低秩近似可以高效求解.我们将构造的新的k-space算子应用于耦合的二阶位移波动方程,而不是交错网格一阶速度应力波动方程,使模拟弹性波的计算存储量减少.我们从数学上证明了基于二阶波动方程的k-space方法与基于一阶波动方程的k-space方法是等价的.数值模拟实验表明,与传统的PS、交错网格PS和原始的k-space方法相比,我们的新方法可以在时间和空间步长较大的均匀和非均匀介质中,为弹性波的传播提供更精确的数值解.在保持稳定性和精度的同时,采用较大的时空采样间隔,可以大大降低数值模拟的计算成本.  相似文献   

15.
The coupling upscaling finite element method is developed for solving the coupling problems of deformation and consolidation of heterogeneous saturated porous media under external loading conditions. The method couples two kinds of fully developed methodologies together, i.e., the numerical techniques developed for calculating the apparent and effective physical properties of the heterogeneous media and the upscaling techniques developed for simulating the fluid flow and mass transport properties in heterogeneous porous media. Equivalent permeability tensors and equivalent elastic modulus tensors are calculated for every coarse grid block in the coarse-scale model of the heterogeneous saturated porous media. Moreover, an oversampling technique is introduced to improve the calculation accuracy of the equivalent elastic modulus tensors. A numerical integration process is performed over the fine mesh within every coarse grid element to capture the small scale information induced by non-uniform scalar field properties such as density, compressibility, etc. Numerical experiments are carried out to examine the accuracy of the developed method. It shows that the numerical results obtained by the coupling upscaling finite element method on the coarse-scale models fit fairly well with the reference solutions obtained by traditional finite element method on the fine-scale models. Moreover, this method gets more accurate coarse-scale results than the previously developed coupling multiscale finite element method for solving this kind of coupling problems though it cannot recover the fine-scale solutions. At the same time, the method developed reduces dramatically the computing effort in both CPU time and memory for solving the transient problems, and therefore more large and computational-demanding coupling problems can be solved by computers.  相似文献   

16.
Herrera P  Valocchi A 《Ground water》2006,44(6):803-813
The transport of contaminants in aquifers is usually represented by a convection-dispersion equation. There are several well-known problems of oscillation and artificial dispersion that affect the numerical solution of this equation. For example, several studies have shown that standard treatment of the cross-dispersion terms always leads to a negative concentration. It is also well known that the numerical solution of the convective term is affected by spurious oscillations or substantial numerical dispersion. These difficulties are especially significant for solute transport in nonuniform flow in heterogeneous aquifers. For the case of coupled reactive-transport models, even small negative concentration values can become amplified through nonlinear reaction source/sink terms and thus result in physically erroneous and unstable results. This paper includes a brief discussion about how nonpositive concentrations arise from numerical solution of the convection and cross-dispersion terms. We demonstrate the effectiveness of directional splitting with one-dimensional flux limiters for the convection term. Also, a new numerical scheme for the dispersion term that preserves positivity is presented. The results of the proposed convection scheme and the solution given by the new method to compute dispersion are compared with standard numerical methods as used in MT3DMS.  相似文献   

17.
Abstract

In dealing with the transient sediment transport problem, the commonly used uncoupled model may not be suitable. The uncoupling technique is intended to separate the physical coupling phenomenon of water flow and sediment transport into two independent processes. Very often, as a result, severe numerical oscillation and solution instability problems appear in the simulation of transient sediment transport in alluvial channels. The coupled model, which simultaneously solves water flow continuity, momentum and sediment continuity equations, gives fewer numerical oscillation and solution instability problems. In this article, a coupled model using a matrix double-sweep method to solve the system of nonlinear algebraic equations has been developed. Several test runs designed on the basis of a schematic model have been performed. The numerical oscillation and solution instability problems have been investigated through a comparison with those obtained from an uncoupled model. Based on the proposed case studies, it can be concluded that, for transient bed evolution, the performance of the coupled model is much better than that of the uncoupled model. The numerical oscillation is reduced and the solution is more stable. This newly developed coupled model was also applied to the Cho-Shui River in Taiwan. This application study implied that the effect of the peaky flood wave propagation on the bed evolution could be simulated better by the coupled model than by the uncoupled model.  相似文献   

18.
Zhang J  Randall G  Wei X 《Ground water》2012,50(3):464-471
In solving groundwater transport problems with numerical models, the computation time (CPU processing time) of transport simulation is approximately inversely proportional to the transport time-step size. Therefore, large time-step sizes are favorable for achieving short computation time. However, transport time-step size must be sufficiently small to avoid numerical instability if an explicit scheme is used (and to guarantee enough model accuracy if an implicit scheme is used). For a transport model involving groundwater pumping, a small transport time-step size is often required due to the high groundwater velocities near the pumping well. Small grid spacing often specified near the pumping well also limits the time-step size. This paper presents a method to increase transport time-step size in a transport model when groundwater pumping is simulated. The key to this approach is to numerically decrease the groundwater seepage velocities in grid cells near the pumping well by increasing the effective porosity so that the transport time-step size can be increased without violating stability constraints. Numerical tests reveal that by using the proposed method, the computation time of transport simulation can be reduced significantly, while the transport simulation results change very little.  相似文献   

19.
在数值模拟中,隐式有限差分具有较高的精度和稳定性.然而,传统隐式有限差分算法大多由于需要求解大型矩阵方程而存在计算效率偏低的局限性.本文针对一阶速度-应力弹性波方程,构建了一种优化隐式交错网格有限差分格式,然后将改进格式由时间-空间域转换为时间-波数域,利用二范数原理建立目标函数,再利用模拟退火法求取优化系数.通过对均匀模型以及复杂介质模型进行一阶速度-应力弹性波方程数值模拟所得单炮记录、波场快照分析表明:这种优化隐式交错网格差分算法与传统的几种显式和隐式交错网格有限差分算法相比不但降低了计算量,而且能有效的压制网格频散,使弹性波数值模拟的精度得到有效的提高.  相似文献   

20.
Grid refinement is introduced in a numerical groundwater model to increase the accuracy of the solution over local areas without compromising the run time of the model. Numerical methods developed for grid refinement suffered certain drawbacks, for example, deficiencies in the implemented interpolation technique; the non‐reciprocity in head calculations or flow calculations; lack of accuracy resulting from high truncation errors, and numerical problems resulting from the construction of elongated meshes. A refinement scheme based on the divergence theorem and Taylor's expansions is presented in this article. This scheme is based on the work of De Marsily (1986) but includes more terms of the Taylor's series to improve the numerical solution. In this scheme, flow reciprocity is maintained and high order of refinement was achievable. The new numerical method is applied to simulate groundwater flows in homogeneous and heterogeneous confined aquifers. It produced results with acceptable degrees of accuracy. This method shows the potential for its application to solving groundwater heads over nested meshes with irregular shapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号