首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fresh tholeiitic basalt glass has been reacted with seawater at 150°C, (water/rock mass ratio of 10), and fresh diabase has been reacted with a Na-K-Ca-Cl fluid at 375°C (water/rock mass ratios of 1, 2, and 5) to understand better the role of temperature, basalt composition, and water/rock mass ratio on the direction and magnitude of B and Li exchange during basalt alteration. At 150°C, slight but nevertheless significant amounts of B and Li were removed from seawater and incorporated into a dominantly smectite alteration phase. At 375°C, however, B and Li were leached from basalt. B behaved as a “soluble” element and attained concentrations in solution limited only by the B concentration in basalt and the water/rock mass ratio. Li, however, was less mobile. For example, at water/rock mass ratios of 1, 2, and 5, the percent of Li leached from basalt was 58, 70, and 92% respectively. This suggests some mineralogic control on Li mobility during hydrothermal alteration of basalt, especially at low-water/rock mass ratios. In general, these results, as well as those for B, are consistent with the temperature-dependent chemistry of altered seafloor basalt and the chemistry of ridge crest hydrothermal fluids.Based on the distribution and chemistry of products of seafloor weathering, low (≤ 150°C) and high-temperature hydrothermal alteration of basalt, and the chemistry of ridge crest hydrothermal fluids, it was estimated that alteration of the oceanic crust is a Li source for seawater. This is not true for B, however, since the hot spring flux estimated for B is balanced by low-temperature basalt alteration. These data, coupled with B and Li flux estimates for other processes (e.g., continental weathering, clay mineral adsorption, authigenic silicate formation and formation of siliceous skeletal material) yield new insight into the B and Li geochemical cycles. Calculations performed here indicate relatively good agreement between the magnitude of B and Li sources and sinks. The geochemical cycle of B, however, may be affected by serpentinization of mantle derived peridotite in oceanic fracture zones. Serpentinites are conspicuously enriched in B and if the B source for these rocks is seawater, then an additional B sink exists which must be integrated into the B geochemical cycle. However, until more data are available in terms of areal extent of serpentinization, serpentite chemistry and isotopic composition, the importance of B in these rocks with respect to the B geochemical cycle remains speculative at best.  相似文献   

2.
The final ratio equation of an isotopic element in a rock, derived from water/rock formula of McCulloch et al. Earth Planet Sci Lett 46:201-211, 1980, McCulloch et al. J Geophys Res 86:B4 2721-2735, 1981 is used to assess the behavior of diverse suites of rocks towards the alteration effect, and what implications can give about hydrothermal alteration in terms of isotopic compositions. Due to their higher Sr and lower Nd initial ratios than seawater, rocks of metamorphic and sedimentary signatures such as carbonates and Precambrian basement rocks show similar but inverse mixing curves compared with igneous rocks. Sr composition of rocks immediately alters by seawater, while Nd composition keeps unchanged until large volumes of water are added. Although, this can be attributed to the very low Nd concentration in seawater, it indicates that Nd-exchange may only take place under seawater, possibly hydrothermally by circulated seawater, and Nd-concentration of less altered crustal rocks are apparently primary. The isotopic composition and rock mineralogy seem to be the main factors controlling the volume of water required to cause isotopic alteration in rocks. Crustal rocks require higher water volumes due to their relatively low temperature minerals, whereas, mantle peridotites mainly consist of residual olivine minerals that are highly susceptible to alteration and lack of Sr and Nd compositions, and so need less amount of water for metasomatism. This property reduces the limited penetration effect as the mafic affinity increases at depth in the oceanic crust, and enables modified (probably acidified) circulated fluids to maintain ion exchanging and leaching throughout their passageway.  相似文献   

3.
莱芜张家洼铁矿位于华北克拉通东缘的鲁西地区,矿石成因类型为夕卡岩型铁矿。矿体赋存在早白垩世高镁闪长岩与奥陶系马家沟组灰岩及白云岩接触带附近。本文通过对莱芜岩浆和热液磁铁矿电子探针(EPMA)以及激光剥蚀电感耦合等离子体质谱(LA ICP MS)分析,探讨磁铁矿微量元素组成及变化规律对成岩和成矿作用的指示,为揭示张家洼铁矿的矿床成因及其成矿流体演化过程提供重要制约。分析结果表明,莱芜岩浆磁铁矿与热液磁铁矿相比明显富集Ti、V、Cr等亲铁元素,相对富集Nb、Ta、Zr、Hf等高场强元素以及Sn、Ga、Ge、Sc等中等相容元素,Mg、Al、Mn、Zn、Co显著富集于热液磁铁矿中。Ti、V、Cr以及Mg、Al、Mn、Zn在岩浆和热液中具有不同的地球化学行为,Ti、V、Cr从熔体中进入磁铁矿主要受温度、分配系数以及fO2控制。Mg、Al、Mn、Zn主要受控于水岩反应和后期绿泥石+碳酸盐脉的交代,这些元素通过类质同象替换富集于热液磁铁矿中。Co在热液磁铁矿中除了受水岩相互作用和后期流体交代的影响外,硫化物的出现会导致Co含量急剧降低。Si、Ca、Na及Sr、Ba在岩浆和热液磁铁矿中的地球化学行为非常一致。Ti Ni/Cr图能够用于区分岩浆和热液磁铁矿,莱芜岩浆磁铁矿中Ti含量较高且Ni/Cr比值≤1,热液磁铁矿Ti含量较低且绝大多数Ni/Cr比值≥1。张家洼热液磁铁矿可分为早、晚两个阶段:早期阶段包括(1)早期原生粒状磁铁矿和(2)早期次生磁铁矿;晚期阶段包括(3)晚期原生磁铁矿和(4)晚期次生磁铁矿。原生磁铁矿具有典型的三联点结构特征;次生磁铁矿受后期热液交代影响表现为多空隙,通常呈不规则状、树枝状、骸晶以及交代残余结构。磁铁矿微量元素生动记录了成矿流体演化过程,从早期到晚期、从原生到次生都显示Mg、Al、Mn、Zn包括Co含量持续升高,表明成矿流体可能朝着富集这些微量元素的方向演化。后期流体的交代导致绿泥石蚀变为磁铁矿,连续水岩相互作用和后期流体的交代以及绿泥石直接蚀变是导致热液磁铁矿富集Mg、Al、Mn、Zn等元素的主要原因。热液磁铁矿晚期孔隙较为发育,孔隙度的增加促使更多的流体和磁铁矿发生反应。热液磁铁矿的微量元素不仅能够反映矿床形成的物理化学条件,而且可以反映围岩性质以及水岩相互作用过程。  相似文献   

4.
Fresh mid-ocean ridge basalt glass and diabase have been reacted with seawater at 150–300°C, 500 bar, and water/rock mass ratios of 50, 62, and 125, using experimental apparatus which allowed on-line sampling of solution to monitor reaction progress. These experiments characterize reaction under what we have called “seawater-dominated” conditions of hydrothermal alteration.In an experiment at 300°C, basalt glass undergoing alteration removed nearly all Mg2+ from an amount of seawater 50 times its own mass. In the process, the glass was converted entirely to mixed-layer smectite-chlorite, anhydrite, and minor hematite. Removal of Mg from seawater occurred as a Mg(OH)2 component incorporated into the secondary clay. This produced a precipitous drop in solution pH early in the experiment, accompanied by a dramatic increase in the concentrations of Fe, Mn, and Zn in solution. As Mg removal neared completion and the glass was hydrolyzed, pH rose again and heavy metal concentrations dropped.At water/rock ratios of 62 and 125 and 150–300°C, the mineral assemblage produced was similar to that at a water/rock ratio of 50. Solution chemistry, however, contrasted with the earlier experiment in that Mg concentrations in solution were greater and pH lower. This caused significant leaching of heavy metals. At 300°C nearly all of the Na, Ca, Cu, Zn, and CO2 and most of the K, Ba, Sr, and Mn were leached from the silicates. H2S, Al, Si, and possibly Co were also significantly mobilized, whereas V, Cr, and Ni were not. Little or no seawater sulfate was reduced.Although submarine hot spring solutions sampled to date along mid-ocean ridges clearly come from rock-dominated hydrothermal systems, evidence from ocean floor metabasalts and from heat flow studies indicates that seawater-dominated conditions of alteration prevail at least locally both in axial hightemperature systems and in ridge flank systems at lower temperatures.  相似文献   

5.
The Early Proterozoic sulfide deposit at Garpenberg is located in the metallogenetic province of central Sweden. It is a strata-bound massive sulfide deposit contained in a supracrustal sequence of mainly acid metavolcanic rocks. Stratiform Zn-Pb-Cu mineralization is underlain by Cu-bearing stockwork ore and an extensive alteration zone. The sulfide ores and their altered wall rocks were formed by subseafloor hydrothermal activity. The alteration pattern observed in the wall rocks of this deposit is consistent with a hydrothermal system where the fluid consists mainly of seawater and a high water/rock mass ratio predominates. The hydrothermal activity caused the destruction of the primary mineralogy, mainly feldspars, and a general redistribution of the chemical elements in the altered wall rocks which were principally depleted in Ca, Na and Eu and enriched in Mg. Eu was redeposited with the ore metals near or at the seafloor and Ca was deposited as limestone. Most of the major and trace elements show large mobility during the alteration; only Ti, Zr, Y and REE (excluding Eu) behaved as relatively immobile elements.  相似文献   

6.
Mesoproterozoic oceanic paleohydrothermal systems developed in the volcanosedimentary Serra do Itaberaba Group, which comprises part of the Ribeira fold belt. Hydrothermal alteration associated with these systems was responsible for large premetamorphic chloritic alteration halos (CZ1 rocks), overprinted by restricted premetamorphic chloritic (CZ2 rocks), argillic, and advanced argillic alterations that correspond to intensely leached rocks within feeder zones. Well-defined trends of increasing δ18O values with the progressive intensity of the alteration process are observed for igneous metabasites, metabasic hydroclastic rocks, and intermediate metamorphosed igneous and volcaniclastic rocks from CZ1. Systematic stable isotope variations evince that, in the Serra do Itaberaba metamorphosed hydrothermalized rocks, the preexisting isotope signatures of the hydrothermal systems were at least partially preserved. Highly evolved hot seawater is suggested for the genesis of the CZ1 rocks, whereas for the CZ2 rocks and marundites, the 18O fluid enrichments are interpreted as due to the major contribution of evolved seawater-derived fluids with a subordinate magmatic water component. An early near-seafloor, low-temperature alteration in a mid-ocean ridge environment was responsible for heterogeneous 18O whole-rock enrichments and followed by steady hydrothermal circulation with discharge of hot fluids, which previously underwent isotopic exchange with the 18O enriched volcanic rocks in the deeper part of the system with high temperatures and low water: rock ratios in a backarc environment. The subordinate magmatic water component derived from andesitic and rhyodacitic intrusions. The extremely high δ18O anomalies from the CZ1 rocks suggest an associated base metal massive sulfide ore body. The lower δ18O values related to the CZ2 rocks represent alteration by a higher temperature fluid, which might indicate the proximity of possible ore zones. The identification of several premetamorphic hydrothermally altered zones, similar to those of Kuroko-type base metal mineralizations, expands the mineral potential of base metal deposits in the Serra do Itaberaba Group and the volcanosedimentary sequences from the Ribeira fold belt.  相似文献   

7.
The Igarapé Bahia gold deposit has developed from weathering of a near-vertical hydrothermal Cu (Au) mineralization zone. The unweathered bedrock composed of chlorite schists is mainly metamorphosed basalts, pyroclastic and clastic sedimentary rocks and iron formation. Contents and Fe/(Fe + Mg) ratios of chlorites increase from distal country rock towards the mineralization zone, which can be attributed to different water/rock ratios and locations in a hydrothermal system. In the hydrothermal system high salinity fluids convected through basin-floor rocks, stripping metals from the recharge zones with precipitation in discharge zones. The chlorite with lower Fe/(Fe + Mg) ratios indicates alteration by relatively unreacted Mg-rich fluids, occurring within recharge zones. By contrast, the chlorite with higher Fe/(Fe + Mg) ratios in the mineralization zone formed from solutions rich in Fe, Mn, Au, Cu, H2S and SiO2 within a discharge zone. The iron formation could also be formed within the discharge zone or on the basin floor from the Fe-rich fluids. The distal country rock with less chlorite content is a hydrothermal product at low water/rock ratios whereas the proximal country rock and the host rock with more chlorite content formed at high water/rock ratio conditions. The Al(IV) contents of chlorites indicate that the formation temperatures of these rocks range from 204 to 266 °C, with temperatures slightly increasing from distal country rock towards the mineralization zone.  相似文献   

8.
Oceanic tholeiite glass has been reacted with natural seawater at 25°–500° C, 1 kbar, with both low (5) and high (50) water/rock mass ratios. Initial experiments were conducted at constant temperatures between 100° C and 500° C (100° intervals) in order to characterize the mineralogy and chemical exchange trends for both water/rock ratios. However, the primary purpose of this investigation was to study the chemical and mineralogical changes that may take place as reacted seawater cools as it traverses a temperature gradient before exiting onto the seafloor, as may happen in some submarine hydrothermal systems. Consequently, a series of cooling or temperature gradient experiments were performed in which seawater that had reacted with basalt at 500° C was cooled to 25° C in a step-wise fashion; mineralogy and fluid chemistry were determined at 100 degree intervals during cooling.For all of the experiments, the elemental exchange trends were the same. With respect to the initial sea-water, Fe, Mn, Ca, Si and H+ increased while Na and Mg decreased. However, the extent of the exchange depended heavily on the temperature and water/rock ratio. During cooling, fluid compositions in the temperature gradient runs generally approached those of the constant temperature experiments. Even though fluid compositions were very similar at 500° C for both water/rock ratios, the high water/rock ratio systems were more efficient in leaching transition metals from the rock and maintained substantial concentrations in solution during cooling, even to temperatures as low as 25° C. The Fe/Mn ratio in the fluid, however, was quite different for the two water/rock ratios; consequently, the effective water/rock ratio appears to be one parameter that can control the Fe/Mn ratio in exiting hydrothermal fluids and may influence the Fe/Mn ratio in metal-rich sediments.Alteration minerals produced in these seawater/ basalt experiments are very similar to those found at submarine springs on the East Pacific Rise, 21° N. Iron sulfides, pyrite and pyrrhotite, precipitated during cooling for both water/rock ratios, demonstrating the ore-forming potential of submarine hydrothermal systems.  相似文献   

9.
中国探明锂钾资源主要分布于青藏、罗布泊盐湖和川西等地,资源开发成本高、难度大,难以满足产业发展需求。目前,在江西吉泰盆地勘探发现卤水中氯化锂浓度超过600 mg/L,氯化钾含量接近1%,锂钾含量均超过或接近工业品位,综合利用价值高。本文在前人研究的基础上,通过对吉泰盆地中生代火成岩开展矿物学、岩石学、地球化学、流体包裹体研究以及高压釜水-岩反应模拟实验,重点研究了时间、温度、流体成分等对火成岩水-岩反应的影响,探究其对富钾锂卤水物质来源和成因机制的指示意义。研究结果表明,吉泰盆地卤水具有高锂低镁的特征,表明吉泰盆地卤水在成因上受到火山活动的影响;研究区岩浆发生不同程度的分异,火成岩蚀变作用强烈,表明地下热液对研究区火成岩的交代作用强烈,火成岩通过水-岩反应为富锂钾卤水矿提供了物质来源;温度是流体对元素的淋滤能力的主要控制因素,高盐度流体是各成矿元素主要的迁移载体;地表成因的卤水中Mg/Li值主要受原岩成分控制;水-岩反应是卤水形成的重要过程,而地表蒸发浓缩是卤水成矿最主要机理。  相似文献   

10.
Information about the magmatic to hydrothermal transition is preserved in late-stage features of quartz phenocrysts and endoskarn alteration in some Cu–Zn skarn deposits such as the Empire Mine in Idaho. Important features include: (1) quartz phenocrysts with strong resorption textures such as vermicular zones of igneous groundmass cutting primary quartz cathodoluminescence banding, (2) anomalous amounts of endoskarn (more than 50% of mineralized rock), (3) high F activities as evidenced by fluorite as an accessory mineral in igneous rocks, in alteration assemblages, and in fluid inclusions and by high F in hydroxyl sites in igneous biotite and amphibole, and (4) direct association of Zn, which normally is deposited distally at low temperature, with Cu in proximal locations and in endoskarn. These features are explained by the following model: (1) F lowers the solidus temperature of the magma, thus changing the timing, temperature, and duration of hydrothermal fluid exsolution. (2) Upon magmatic vapor saturation the F-rich hydrothermal fluids form bubbles that adhere to quartz phenocrysts and chemically corrode/tunnel into the quartz forming vermicular resorption textures. (3) F-rich hydrothermal fluids also promote the formation of endoskarn; silicic rocks are attacked by F-rich fluids in the same sense that carbonate wall rocks are dissolved by weakly to moderately acidic hydrothermal fluids. (4) Low fluid exsolution temperature facilitated by high F activity promotes high Zn/Cu ratios in proximal locations due to the solubility of Zn relative to Cu at lower temperatures. This model may be applicable at other localities such as the world-class Cu–Zn skarn Antamina mine, as well as some tin and rapakivi granites.  相似文献   

11.
块状硫化物矿床的地球化学找矿标志   总被引:6,自引:0,他引:6  
近年来国外发现了许多大型块状硫化物矿床,而我国进展还不大。原因之一是我们对这类矿床的地质特征,成矿条件尤其是找矿标志研究还不够。这是一类成矿物质通过热液作用在海底沉积而成的特殊矿床,故在找矿勘探讨既要研究沉积矿时形成的原生晕,又要研究热液经过围岩时蚀变而产生的次生晕?Mn晕,Tl,Hg,Ba,As和Zn等元素的异常,络合剂元素的富集,微量元素的分布,铅同位素,岩石化学异指数尤其是块状硫化物Cu矿中  相似文献   

12.
Thallium is a highly incompatible element and a large fraction of the bulk silicate Earth Tl budget is, therefore, expected to reside in the continental crust. Nonetheless, the Tl isotope systematics of continental rocks are essentially unexplored at present. Here, we present new Tl isotope composition and concentration data for a suite of 36 intrusive and extrusive igneous rocks from the vicinity of porphyry Cu deposits in the Collahuasi Formation of the Central Andes in northern Chile. The igneous lithologies of the rocks are variably affected by the hydrothermal alteration that accompanied the formation of the Cu deposits.The samples display Tl concentrations that vary by more than an order of magnitude, from 0.1 to 3.2 μg/g, whilst ε205Tl ranges between −5.1 and +0.1 (ε205Tl is the deviation of the 205Tl/203Tl isotope ratio of a sample from a standard in parts per 104). These variations are primarily thought to be a consequence of hydrothermal alteration processes, including metasomatic transport of Tl, and formation/breakdown of Tl-bearing minerals, which are associated with small but significant Tl isotope effects. The Tl abundances show excellent correlations with both K and Rb concentrations but no co-variation with Cu. This demonstrates that Tl displays only limited chalcophile affinity in the continental crust of the Collahuasi Formation, but behaves as a lithophile element with a distribution that is primarily governed by partitioning of Tl+ into K+-bearing phases. Collahuasi samples with propylitic alteration features, which are derived from the marginal parts of the hydrothermal systems, have, on average, slightly lighter Tl isotope compositions than rocks from the more central sericitic and argillic alteration zones. This small but statistically significant difference most likely reflects preferential retention of isotopically heavy Tl in alteration phases, such as white micas and clays, which formed during sericitic and argillic alteration.  相似文献   

13.
The c. 1.9 Ga old Stollberg sulphide and Mnrich skarn iron ores and sulphide ores in Bergslagen, south-central Sweden are hosted by hydrothermally altered and metamorphosed felsic volcanic and volcaniclastic rocks. The ores are underlain by comformable alteration zones characterized by albite-gedrite-quartz and biotite-muscovite-plagioclase-K-feldspar-quartz +/– garnet assemblages. The present mineralogies are interpreted as medium-grade metamorphic equivalents to the original alteration mineral assemblages. PT-conditions during prograde regional metamorphism are semiquantatively determined to be 510 to 560 °C at approximately 3 kbar. With increasing modal content of gedrite and biotite in the alteration zones, the Mg/Fe ratios and XMg's in octahedral positions of these minerals also increase. In the gedrite-bearing strata, whole-rock Mg/Fe ratios remain constant, whereas in the biotite-rich unit the wholerock Mg/Fe trend is parallel to that of the biotites.The trends in the metamorphic mineral composition are interpreted to be a product of original changes in fluid composition during the evolution of a sub-seafloor hydrothermal system. During the initial stage of alteration, Fe-Mn-rich fluids altered the rocks, and during a later stage, the fluids became more Mg-rich, possibly due to entrainment of fresh seawater, and the alteration zones became relatively more Mg-rich. Sulphide precipitation was contemperaneous with Mg metasomatism, suggesting base metal precipitation was a function of the mixing of cool seawater with hydrothermal fluid. It is proposed that early hydrothermal alteration was associated with the deposition of areally extensive Fe-oxide formation, and that Mg metasomatism defines a second stage of hydrothermal activity during which sulphide mineralization overprinted the earlier formed Fe-oxide deposit.  相似文献   

14.
Orogenic disseminated and Carlin gold deposits share much similarity in alteration and mineralization.The disseminated orogenic Zhenyuan Au deposit along the Ailaoshan shear zone,southeastern Tibet,was selected to clarify their difference.The alteration and mineralization from the different lithologies,including meta-quartz sandstone,carbonaceous slate,meta-(ultra)mafic rock,quartz porphyry and lamprophyre were researched.According to the mineral assemblage and replacement relationship in all types of host rocks,two reactions show general control on gold deposition:(1)replacement of earlier magnetite by pyrite and carbonaceous material;(2)alteration of biotite and phlogopite phenocrysts in quartz porphyry and lamprophyre into dolomite/ankerite and sericite.Despite the lamprophyre is volumetrically minor and much less fractured than other host rocks,it contains a large portion of Au reserve,indicating that the chemically active lithology has played a more important role in gold precipitation compared to structure.LA-ICP-MS analysis shows that Au mainly occurs as invisible gold in fine-grained pyrite disseminated in the host rocks,with Au content reaching to 258.95 ppm.The diagenetic core of pyrite in meta-quartz sandstone enriched in Co,Ni,Mo,Ag and Hg is wrapped by hydrothermal pyrite enriched in Cu,As,Sb,Au,Tl,Pb and Bi.Different host rock lithology has much impact on the alteration and mineralization features.Carbonate and sericite in altered lamprophyre show they have higher Mg than those developed in other of host rocks denoting that the carbonate and sericite incorporated Mg from phlogopite phenocrysts in the primary lamprophyre during alteration.The ore fluid activated the diagenetic pyrite in meta-quartz sandstone leading the hydrothermal pyrite enriched in Cu,Mo,Ag,Sb,Te,Hg,Tl,Pb and Bi,but the hydrothermal pyrite in meta-(ultra)mafic rock is enriched in Co and Ni as the meta-(ultra)mafic rock host rock contain high content of Co and Ni.However,Au and As shear similar range in both types of host rocks indicating that these two elements most likely come from the deep source fluid rather than the host rocks.It was shown in the disseminated orogenic gold deposit that similar hydrothermal alteration with mineral assemblage of carbonate(mainly dolomite and ankerite),sericite,pyrite and arsenopyrite develops in all types of host rocks.This is different from the Nevada Carlin type,in which alteration is mainly dissolution and silicification of carbonate host rock.On the other hand,Au mainly occur as invisible gold in both disseminated orogenic and Carlin gold deposits.  相似文献   

15.
In the high-pressure meta-ophiolites of Western Liguria (Italy), serpentinized ultramafites host bodies of eclogite, metarodingite and Ti-clinohumite ± Ti-chondrodite-bearing rocks. The latter contain relics of augite, ilmenite and apatite, which suggest derivation from pristine Fe-Ti-rich gabbros. The composition of relict mantle clinopyroxene in the host serpentinites indicates primary depleted peridotite compositions. Compared with their inferred protoliths, the Ti-clinohumite dikelets and the host serpentinites display significant changes in their major and trace element concentrations, indicating element exchange between the two rock systems. In particular, the Fe-Ti-rich gabbros were depleted in CaO and FeO and were strongly enriched in MgO. Analogous compositional variations are shown by altered gabbros enclosed in serpentinized peridotites from the obducted ophiolite sequences of the Northern Apennine. This evidence suggests that the observed Mg-enrichment recorded by the Ti-clinohumite metagabbros occurred in oceanic environments as the result of diffusive exchange between ultramafites and gabbros in presence of fluids related to serpentinization of the ultramafic country rocks. Alteration of the gabbro and concomitant Mg-uptake mostly caused extensive chloritization of the igneous plagioclase. Survival of igneous ilmenite and augite and their reaction with the hydrothermal chlorite during high-pressure metamorphism produced the observed Ti-clinohumite and Ti-chondrodite assemblages. The data presented thus indicate that crystallization of Ti-clinohumite assemblages was facilitated by a stage of oceanic alteration leading to Mg-enrichment of original Fe-Ti-rich gabbros. We suggest that during alteration, Mg-metasomatism occurred prior to rodingitization and was related to the earlier stages of peridotite serpentinization. Survival of oceanic chemical heterogeneities in the Ti-clinohumite rocks, indicates that element mobility during high-pressure recrystallization of these rocks was on a limited scale. This allowed preservation of their pre-subduction alteration features. Received: 13 July 1998 / Accepted: 3 November 1998  相似文献   

16.
The Kaapvaal craton in southern Africa and the Pilbara craton of northwestern Australia are the largest regions on Earth to have retained relatively pristine mid-Archaean rocks (3.0–4.0 Ga).The Kaapvaal craton covers about 1.2×106 km2, and varies in lithospheric thickness between 170 and 350 km. At surface, the craton can be subdivided into a number of Archaean sub-domains; some of the subdomains are also well defined at depth, and local variations in tomography of the lithosphere correspond closely with subdomain boundaries at surface.The Archaean history of the Kaapvaal craton spans about 1 Gyr and can be conveniently subdivided into two periods, each of about the same length as the Phanerozoic. The first period, from circa 3.7-3.1 Ga, records the initial separation of the cratonic lithosphere from the asthenosphere, terminating with a major pulse of accretion tectonics between 3.2 and 3.1 Ga, which includes the formation of “paired metamorphic belts”. This period of continental growth can be compared to plate tectonic processes occurring in modern-day oceanic basins. However, the difference is that in the mid-Archaean, these oceanic processes appear to have occurred in shallower water depths than the modern ocean basins. The second period, from circa 3.1-2.6 Ga, records intra-continental and continental-edge processes: continental growth during this period occurred predominantly through a combination of tectonic accretion of crustal fragments and subduction-related igneous processes, in much the same way as has been documented along the margins of the Pacific and Tethys oceans since the Mesozoic.The intra-oceanic processes resulted in small, but deep-rooted continental nucleii; the first separation of this early continental lithosphere could only have occurred when the mean elevation of mid-oceanicridges sank below sea-level. Substantial recycling of continental lithosphere into the mantle must have occurred during this period of Earth history. During the second period, at least two large continental nucleii amalgamated during collisional processes which, together with internal chemical differentiation processes, created the first stable continental landmass. This landmass, which is known to have been substantially bigger than its present outline, may have been part of the Earth's first supercontinent.The oldest known subdomains of the craton include the oceanic-like rocks of the Barberton greenstone belt. The comagmatic mafic-ultramafic rocks (3.48–3.49 Ga) of this belt represent a remnant of very early oceanic-like lithosphere (known as the Jamestown Ophiolite Complex), which was obducted, approximately 45 Ma after its formation, onto a volcanic arc-like terrain by processes similar to those which have emplaced modern ophiolites at convergent margins of Phanerozoic continents. The early metamorphic history, metamorphic mineralogy, oxygen isotope profiles and degree of hydration of the 3.49 Ga Jamestown Ophiolite Complex are similar to present day subseafloor hydrothermal systems. The ratio of ΔMg to ΔSi for hydrothermally altered igneous rocks, both present day and Archaean, are remarkably uniform at −5(±0.9) and the same as that of hydrothermal fluids venting on the present-day East Pacific Rise. This observation suggests that the process of Mg exchange for Si in hydrothermal systems was commonplace throughout Earth's history.The chemistry of vent fluids and hydrothermally altered igneous rocks was combined with an inventory of 3He in the mantle to model Earth's total hydrothermal flux. An Archaean flux (at 3.5 Ga) of about 10 times present day was accompanied by a correspondingly greater abundance of Mg(OH), SiO2, carbonate and Fe---Mn metasomatic rock types as well as massive sulphides. Assuming a constant column of seawater since the Archaean, the average residence time of seawater in the oceanic crust was 1.65−8.90×105 years in the Archaean. Assuming that 3He and heat are transported from the mantle in silicate melts in uniform proportions, the model stipulates that accretion of oceanic crust decreased from about 3.43−6.5×1017 g/yr to a present-day rate of 0.52−0.8×1017 g/yr, with a drop in heat flow from 1.4−2.6×1020 cal/yr to 2.1−3.2×1019 cal/year.The total amounts of SiO2 and Fe mobilised in marine hydrothermal systems since 3.5 Ga is less than their masses in the present exosphere reservoirs (crust, hydrosphere, atmosphere). The total amounts of Mg, K, CO2, Ca and Mn are greater than their respective masses in exosphere reservoirs; therefore, they must have been recycled into mantle. The total mass of recycled hydrothermal components is small compared to the mass of the mantle. The flux of volatiles in hydrothermal systems is large compared to their volume in the atmosphere suggesting that the CO2 and O2 budgets of the atmosphere have been influenced by hydrothermal processes, especially in the Archaean.  相似文献   

17.
以沙坪沟钼矿主要的赋矿岩石——石英正长岩和花岗斑岩为对象,通过对比不同蚀变强度岩石的岩相学、岩石地球化学和同位素特征,研究该矿床的钾质交代作用-矿化特征,探讨不同热液蚀变的元素组合、蚀变过程中的元素迁移和Sr-Nd同位素的变化及其成因、不同蚀变的物理化学条件差异及其与矿化的关系,进而揭示蚀变-成矿热液流体的特征和起源。研究表明,石英正长岩和花岗斑岩的地球化学特征总体相似,显示其属同源岩浆演化产物,二者均受到钾质蚀变,但蚀变强度相差较大。钾质蚀变岩石的化学成分表现为高K_2O、Rb和低Na_2O、CaO、Sr、Ba,不同蚀变强度的岩石Rb/Sr和Sr同位素组成差别较大,花岗斑岩样品数据更显离散,甚至出现异常低的锶同位素初始值,表明热液蚀变强烈改造了Rb-Sr同位素体系,而Sm-Nd体系基本保持稳定。这一现象在东秦岭-大别钼矿带中典型的斑岩钼矿床也有出现,显示该成矿带具有相似的蚀变类型、热液起源和演化特征。而且钾长石化后期至黄铁云(绢)英岩化阶段也是最主要的钼成矿期,表明这期间流体系统pH值的降低致使Mo元素从流体中沉淀成矿。对比斑岩铜、铜-钼矿床和钼矿床的蚀变特征及其过程中元素和同位素的变化可以发现,这3种矿床均发育碱质交代作用,但蚀变强度、热液的Rb-Sr分异程度及其对原岩的改造程度存在较大差异,这暗示了各自特有的成岩、成矿物质和流体来源及大地构造背景。  相似文献   

18.
The 1.5 km-large hydrothermal system of Balya is characterized by three alteration styles which from the outer halo towards the center are: (i) propylitic alteration with the hydrothermal mineral assemblage of calcite-daphnite-albite-epidote-quartz-pyrite; (ii) argillic/phyllic alteration with the hydrothermal mineral assemblage of sericite/muscovite-kaolinite-rutile-quartz ± pyrite; (iii) advanced argillic alteration with the hydrothermal mineral assemblage of alunite-jarosite-kaolinite-quartz-sericite ± pyrite. Hornblende andesite is the protolith of the hydrothermal alteration system. Enrichment in Si, Sb and Rb, and depletion in Na, Ca, Mg, Fe, Mn, P, Ba, Sr, and Zn distinguishes the argillic/phyllic and advanced alteration types from propylitic alteration and the unaltered hornblende andesite protolith. REE distribution patterns indicate an essentially immobile behaviour of REEs during the alteration cycle. K-Ar age data for unaltered and hydrothermally altered rocks define a synchronous age of 25.3 ± 1.2 Ma for both igneous and hydrothermal activity.  相似文献   

19.
Magnesite, siderite and dolomite are characteristic alteration minerals occurring in Miocene hanging wall rocks of dacitic composition which host the Kuroko orebodies. These carbonates generally occur in a more stratigraphically upper horizon than chlorite alteration zone surrounding the orebodies. The Mg/(Mg+Fe) ratios of the carbonates decrease from the central alteration zone to marginal zone. The Mg/(Mg+Fe) ratios of carbonates and chlorite positively correlate. The δ18O and δ13C values of magnesite, siderite and dolomite positively correlate with each other and lie between the igneous and marine carbonate values. The petrographic, isotopic and fluid inclusion characteristics and thermochemical modelling calculations indicate that magnesite and dolomite formed in the central zone close to the orebodies due to the interaction of hydrothermal solutions with the biogenic marine carbonates. Calcite formed further from the orebodies from hydrothermal fluids which did not contain a biogenic marine carbon component. The compositional and textural relationships indicate that superimposed alterations (chlorite alteration and carbonate alteration) occurred in hanging wall rocks. The mode of occurrences and the Mg/(Mg+Fe) ratios of magnesite and dolomite occurring in hanging wallrocks are useful in the exploration for concealed volcanogenic massive sulfide-sulfate deposits. Received: 9 September 1997 / Accepted: 23 September 1997  相似文献   

20.
Precious-metal mineralization in the southern Apuseni Mountains of western Romania is hosted by mid-Miocene (∼14 Ma) andesitic stocks and lava flows. The mineralized veins are surrounded by aureoles of hydrothermal alteration, consisting of quartz, sericite, K-feldspar, pyrite and calcite. The alteration process caused a total homogenization of initial 87Sr/86Sr in the rocks. Ages determined for the hydrothermal alteration are 13.7–15.7 Ma, indicating that hydrothermal alteration immediately followed igneous activity. Furthermore, a large influx of radiogenic Sr took place during alteration, this Sr probably being derived from the hydrothermal leaching of continental meta-sedimentary rocks in the basement. Received: 5 December 1997 / Accepted: 26 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号