首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term interdisciplinary studies of the Rhode River estuary and its watershed in the mid-Atlantic coastal plain of North America have measured fluxes of nitrogen and phosphorus fractions through the hydrologically-linked ecosystems of this landscape. These ecosystems are upland forest, cropland, and pasture; streamside riparian forests; floodplain swamps; tidal brackish marshes and mudflats; and an estuarine embayment. Croplands discharged far more nitrogen per hectare in runoff than did forests and pastures. However, riparian deciduous hardwood forest bordering the cropland removed over 80 percent of the nitrate and total phosphorus in overland flows and about 85 percent of the nitrate in shallow groundwater drainage from cropland. Nevertheless, nutrient discharges from riparian forests downslope from croplands still exceeded discharges from pastures and other forests. The atomic ratio of nitrogen to phosphorus discharged from the watersheds into the estuary was about 9 for total nutrients and 6 for inorganic nutrient fractions. Such a low N:P ratio would promote nitrogen rather than phosphorus limitation of phytoplankton growth in the estuary. Estuarine tidal marshes trapped particulate nutrients and released dissolved nutrients. Subtidal mudflats in the upper estuary trapped particulate P, released dissolved phosphate, and consumed nitrate. This resulted in a decrease in the ratio of dissolved inorganic N:P in the estuary. However, the upper estuary was a major sink for total phosphorus due to sediment accretion in the subtidal area. Bulk precipitation accounted for 31 percent of the total nongaseous nitrogen influx to the landscape, while farming accounted for 69 percent. Forty-six percent of the total non-gaseous nitrogen influx was removed as farm products, 53 percent either accumulated in the watershed or was lost in gaseous forms, and 1 percent entered the Rhode River. Of the total phosphorus influx to the landscape, 7 percent was from bulk precipitation and 93 percent was from farming. Forty-five percent of the total phosphorus influx was removed as farm products, 48 percent accumulated in the watershed, and 7 percent entered the Rhode River. These nitrogen and phosphorus discharges into the Rhode River, although a small fraction of total loadings to the watershed, were large enough to cause seriously overenriched conditions in the upper estuary.  相似文献   

2.
Multi-year nitrogen (N) and phosphorus (P) budgets were developed for the Patuxent River estuary, a seasonally stratified and moderately eutrophic tributary of Chesapeake Bay. Major inputs (point, diffuse, septic, and direct atmospheric) were measured for 13 years during which, large reductions in P and then lesser reductions in N-loading occurred due to wastewater treatment plant improvements. Internal nutrient losses (denitrification and long-term burial of particulate N and P) were measured in tidal marshes and sub-tidal sediments throughout the estuary as were nutrient storage in the water column, sediments, and biota. Nutrient transport between the oligohaline and mesohaline zones and between the Patuxent and Chesapeake Bay was estimated using a salt and water balance model. Several major nutrient recycling terms were directly and indirectly evaluated and compared to new N and P inputs on seasonal and annual time-scales. Major findings included: (1) average terrestrial and atmospheric inputs of N and P were very close to the sum of internal losses plus export, suggesting that dominant processes are captured in these budgets; (2) both N and P export were a small fraction (13% and 28%, respectively) of inputs, about half of that expected for N based on water residence times, and almost all exported N and P were in organic forms; (3) the tidal marsh-oligohaline estuary, which by area comprised ~27% of the full estuarine system, removed about 46% and 74% of total annual upland N and P inputs, respectively; (4) recycled N and P were much larger sources of inorganic nutrients than new inputs during warm seasons and were similar in magnitude even during cold seasons; (5) there was clear evidence that major estuarine processes responded rapidly to inter-annual nutrient input variations; (6) historical nutrient input data and nutrient budget data from drought periods indicated that diffuse nutrient sources were dominant and that N loads need to be reduced by about 50% to restore water quality conditions to pre-eutrophic levels.  相似文献   

3.
Based on the characteristics of land use and drainage network of the upper watershed of the Miyun Res-ervoir, Beijing, 26 monitoring and sampling sites were selected in different sub-catchments. Temporal and spatial variations in nutrient loss were dealt with in this paper in terms of the monitoring data on the water quality of the main tributaries flowing into the Miyun Reservoir. In combination with the monitoring data on water quality, the impacts of watershed characteristics including land-use type, landscape pattern, and drainage density were assessed, The concentrations of nutrients in the rainy season are higher than those in other seasons, and the concentrations of NO3--N are linearly related to those of total N which is the main form of nitrogen present in the fiver water. The concentrations of nitrogen become higher toward the reservoir along the main rivers. The seasonal variation of ni-trogen in the watershed affected by intensive human activities is very obvious; in the watershed with steady or low water flow, the seasonal variation of nitrogen is less obvious. Forest land and grassland can trap and filter nitrogen effectively. Land-use pattern also has important impacts on the loss of nitrogen. The concentrations of nitrogen and phosphorus in the water bodies show great temporal and spatial variations. On a temporal scale, the concentrations of TN and TP in the rainy reason are higher than those in other seasons. On a spatial scale, the concentrations of TN and NO3--N in the Qingshui River and Chaohe River are highest all the time. The spatial variation of TP is distinct, being obvious at sampling sites near villages. The form of nitrogen and phosphorus loss varies in different hydrological seasons. Dissolved nitrogen and phosphorus are the main forms in streams in non-rainy seasons, the dissolved nitro-gen and total nitrogen decrease in percentage in the rainy season. Particulate nitrogen and phosphorus are the main forms in some rivers. The concentrations of TN and NO3--N from orchards and villages are high whereas those from forest land are lowest. Land-use pattern has impacts on TN and NO3--N losses, at the sampling sites near the source landscape, the concentrations are higher than those at the sampling sites near the sink landscape. Water quality of the rivers which flow into the Miyuan Reservior is influenced by the composition of adjacent soils.  相似文献   

4.
External nutrient loadings, internal nutrient pools, and phytoplankton production were examined for three major subsystems of the Chesapeake Bay Estuary—the upper Mainstem, the Patuxent Estuary, and the 01 Potomac Estuary—during 1985–1989. The atomic nitrogen to phosphorus ratios (TN:TP) of total loads to the 01 Mainstem, Patuxent, and the Potomac were 51, 29 and 35, respectively. Most of these loads entered at the head of the estuaries from riverine sources and major wastewater treatment plants. Approximately 7–16% for the nitrogen load entered the head of each estuary as particulate matter in contrast to 48–69% for phosphorus. This difference is hypothesized to favor a greater loss of phosphorus than nitrogen through sedimentation and burial. This process could be important in driving estuarine nitrogen to phosphorus ratios above those of inputs. Water column TN: TP ratios in the tidal fresh, oligohaline, and mesohaline salinity zones of each estuary ranged from 56 to 82 in the Mainstem, 27 to 48 in the Patuxent, and 72 to 126 in the Potomac. A major storm event in the Potomac watershed was shown to greatly increase the particulate fraction of nitrogen and phosphorus and lower the TN:TP in the river-borne loads. The load during the month that contained this storm (November 1985) accounted for 11% of the nitrogen and 31% of the phosphorus that was delivered to the estuary by the Potomac River during the entire 60-month period examined here. Within the Mainstem estuary, salinity dilution plots revealed strong net sources of ammonium and phosphate in the oligohaline to upper mesohaline region, indicating that these areas were sites of considerable internal recycling of nutrients to surface waters. The sedimentation of particulate nutrient loads in the upper reaches of the estuary is probably a major source of these recycled nutrients. A net sink of nitrate was indicated during summer. A combination of inputs and these internal recycling processes caused dissolved inorganic N to P ratios to approach 16:1 in the mesohaline zone of the Mainstem during late summer; this ratio was much higher at other times and in the lower salinity zones. Phytoplankton biomass in the mesohaline Mainstem reached a peak in spring and was relatively constant throughout the other seasons. Productivity was highest in spring and summer, accounting for approximately 33% and 44%, respectively, of the total annual productivity in this region. In the Patuxent and Potomac, the TN:TP ratios of external loads documented here are 2–4 times higher than those observed over the previous two decades. These changes are attributed to point-source phosphorus controls and the likelihood that nitrogen-rich nonpoint source inputs, including contributions from the atmosphere, have increased. These higher N:P ratios relative to Redfield proportions (16:1) now suggest a greater overall potential for phosphorus-limitation rather than nitrogen-limitation of phytoplankton in the areas studied.  相似文献   

5.
In recent decades, humans have become a very important force in the Earth system, demonstrating that emissions (gaseous, liquid, and solid) are the cause of many of our environmental issues. These emissions are responsible for major global reorganizations of the biogeochemical cycles. The oceans are now a net sink of atmospheric CO2, whereas in their preindustrial state they were a source; the trophic state of the coastal oceans is progressively moving toward increased heterotrophy; and the terrestrial realm is now vacillating between trophic states, whereas in preindustrial times it was autotrophic. In this paper, we present model calculations that underscore the role of human-induced perturbations in changing Earth's climate, specifically the role of anthropogenic nitrogen and phosphorus in controlling processes in the global carbon cycle since the year 1850 with projections to the year 2035. Our studies show that since the late 1940's emissions of nitrogen and phosphorus have been sequestered in the terrestrial living phytomass and groundwater. This nutrient-enhanced fertilization of terrestrial biota, coupled with rising atmospheric CO2 and global temperature, has induced a sink of anthropogenic CO2 that roughly balances the emission of CO2 owing to land use change. In the year 2000, for example, the model-calculated terrestrial biotic sink was 1730 Mtons C/year, while the emission of CO2 from changes in land use was 1820 Mtons C/year, a net flux of 90 Mtons C/year emitted to the atmosphere. In the global aquatic environment, enhanced terrestrial inputs of biotically reactive phosphorus (about 8.5 Mtons P/year) and inorganic nitrogen (about 54 Mtons N/year), have induced increased new production and burial of organic carbon in marine sediments, which is a small sink of anthropogenic CO2. It is predicted that the response of the global land reservoirs of C, N, and P to sustained anthropogenic perturbations will be maintained in the same direction of change over the range of projected scenarios of global population increase and temperature change for the next 35 years. The magnitude of change is significantly larger when the global temperature increase is maximum, especially with respect to the processes of remobilization of the biotically important nutrients nitrogen and phosphorus.  相似文献   

6.
We developed a synthesis using diverse monitoring and modeling data for Mattawoman Creek, Maryland, USA to examine responses of this tidal freshwater tributary of the Potomac River estuary to a sharp reduction in point-source nutrient loading rate. Oligotrophication of these systems is not well understood; questions concerning recovery pathways, threshold responses, and lag times remain to be clarified and eventually generalized for application to other systems. Prior to load reductions Mattawoman Creek was eutrophic with poor water clarity (Secchi depth <0.5 m), no submerged aquatic vegetation (SAV), and large algal stocks (50–100 μg L?1 chlorophyll-a). A substantial modification to a wastewater treatment plant reduced annual average nitrogen (N) loads from 30 to 12 g N m?2 year?1 and phosphorus (P) loads from 3.7 to 1.6 g P m?2 year?1. Load reductions for both N and P were initiated in 1991 and completed by 1995. There was no trend in diffuse N and P loads between 1985 and 2010. Following nutrient load reduction, NO2?+?NO3 and chlorophyll-a decreased and Secchi depth and SAV coverage and density increased with initial response lag times of one, four, three, one, and one year, respectively. A preliminary N budget was developed and indicated the following: diffuse sources currently dominate N inputs, estimates of long-term burial and denitrification were not large enough to balance the budget, sediment recycling of NH4 was the single largest term in the budget, SAV uptake of N from sediments and water provided a modest seasonal-scale N sink, and the creek system acted as an N sink for imported Potomac River nitrogen. Finally, using a comparative approach utilizing data from other shallow, low-salinity Chesapeake Bay ecosystems, strong relationships were found between N loading and algal biomass and between algal biomass and water clarity, two key water quality variables used as indices of restoration in Chesapeake Bay.  相似文献   

7.
《Applied Geochemistry》2004,19(5):769-786
Heavy metal (Zn, Cd, Cu and Pb) mass balances in the Lot-Garonne fluvial system have been established for 1999 and 2000. The mean annual discharges of these years are close to the mean discharge of the previous decade. The estimated annual dissolved and particulate fluxes in this model watershed integrate daily input from diffuse and point sources, diffusive fluxes at the water/sediment interface, changes in the dissolved-particulate partition and changes in sediment stock. Cadmium, Zn, Cu and Pb entering the Gironde estuary via the Garonne River (11–14 t a−1 of Cd; 1330–1450 t a−1 of Zn; 126–214 t a−1 of Cu and 127–155 t a−1 of Pb) are mainly transported in the particulate phase and the major part (i.e. ∼74 to 96% for Cd, ∼60% for Zn, ∼50 to 60% for Cu and ∼80% for Pb) is transported by the Lot River. The main anthropogenic heavy metal point source is located in a small upstream watershed (Riou-Mort River) accounting for at least 47% (Cd), ∼20% (Zn), ∼4% (Cu) and ∼7 to 9% (Pb) of the total heavy metal inputs into the Garonne River, although it contributes only 1% of the discharge. Mass balances for 1999 suggest that under mean annual hydrologic conditions on the basin scale, the heavy metal budget of the Lot-Garonne fluvial system is balanced and that the stocks of Cd [200 t; Environ. Tech. 16 (1995) 1145] and Zn in the Lot River sediment are constant under mean discharge conditions. Heavy metal input by molecular diffusion at the sediment surface represents an important component of dissolved metal inputs into the system (e.g. 30% for Cu). Except for Cu, these dissolved inputs are totally removed from solution by SPM. Based on the generally constant Zn/Cd (∼50) concentration ratio in sediment cores from the polluted Lot River reaches and the sediment stock of Cd [200 t; Environ. Tech. 16 (1995) 1145], the present day Zn stock in the Lot River sediments has been estimated at about 10,000 t. In addition to the mobilization of river-bed sediment and associated heavy metals by intense floods, local human activities, including river-bed dredging, may strongly modify the heavy metal budget of the river system. In 2000, the dredging-related remobilization of polluted Lot River sediment released 2–6 t Cd. This additional Cd point source was estimated to account for 15–43% of the gross inputs into the Gironde Estuary.  相似文献   

8.
Degraded water quality due to water column availability of nitrogen and phosphorus to algal species has been identified as the primary cause of the decline of submersed aquatic vegetation in Chesapeake Bay and its subestuaries. Determining the relative impacts of various nutrient delivery pathways on estuarine water quality is critical for developing effective strategies for reducing anthropogenic nutrient inputs to estuarine waters. This study investigated temporal and spatial patterns of nutrient inputs along an 80-km transect in the Choptank River, a coastal plain tributary and subestuary of Chesapeake Bay, from 1986 through 1991. The study period encompassed a wide range in freshwater discharge conditions that resulted in major changes in estuarine water quality. Watershed nitrogen loads to the Choptank River estuary are dominated by diffuse-source inputs, and are highly correlated to freshwater discharge volume. in years of below-average freshwater discharge, reduced nitrogen availability results in improved water quality throughout most of the Choptank River. Diffuse-source inputs are highly enriched in nitrogen relative to phosphorus, but point-source inputs of phosphorus from sewage treatment plants in the upper estuary reduce this imbalance, particularly during summer periods of low freshwater discharge. Diffuse-source nitrogen inputs result primarily from the discharge of groundwater contaminated by nitrate. Contamination is attributable to agricultural practices in the drainage basin where agricultural land use predominates. Groundwater discharge provides base flow to perennial streams in the upper regions of the watershed and seeps directly into tidal waters. Diffuse-source phosphorus inputs are highly episodic, occurring primarily via overland flow during storm events. Major reductions in diffuse-source nitrogen inputs under current landuse conditions will require modification of agricultural practices in the drainage basin to reduce entry rates of nitrate into shallow groundwater. Rates of subsurface nitrate delivery to tidal waters are generally lower from poorly-drained versus well-drained regions of the watershed, suggesting greater potential reductions of diffuse-source nitrogen loads per unit effort in the well-drained region of the watershed. Reductions in diffuse-source phosphorus loads will require long-term management of phosphorus levels in upper soil horizons. *** DIRECT SUPPORT *** A01BY074 00021  相似文献   

9.
Some 60% of coastal rivers and bays in the U.S. have been moderately to severely degraded by nutrient pollution. Both nitrogen (N) and phosphorus (P) contribute to the problem, although for most coastal systems N additions cause more damage. Globally, human activity has increased the flux of N and P from land to the oceans by 2-fold and 3-fold, respectively. For N, much of this increase has occurred over the past 40 years, with the increase varying by region. Human activity has increased the flux of N in the Mississippi River basin by 4-fold, in the rivers of the northeastern U.S. by 8-fold, and in the rivers draining to the North Sea by more than 10-fold. The sources of nutrients to the coast vary. For some estuaries, sewage treatment plants are the largest single input; for most systems nonpoint sources of nutrients are now of relatively greater importance, both because of improved point source treatment and control (particularly for P) and because of increases in the total magnitude of nonpoint sources (particularly for N) over the past three decades. For P, agricultural activities dominate nonpoint source fluxes. Agriculture is also the major source of N in many systems, including the flux of N down the Mississippi River, which has contributed to the large hypoxic zone in the Gulf of Mexico. For both P and N, agriculture contributes to nonpoint source pollution both through losses at the field scale, as soils erode away and fertilizer is leached to surface and ground waters, and from losses from animal feedlot operations. In the U.S. N from animal wastes that leaks directly to surface waters or is volatilized to the atmosphere as ammonia may be the single largest source of N that moves from agricultural operations into coastal waters. In some regions, including the northeastern U.S., atmospheric deposition of oxidized N from fossil-fuel combustion is the major flux from nonpoint sources. This atmospheric component of the N flux into estuaries has often been underestimated, particularly with respect to deposition onto the terrestrial landscape with subsequent export downstream. Because the relative importance of these nutrient sources varies among regions and sites, so too must appropriate and effective mitigation strategies. The regional nature and variability of nutrient sources require that nutrient management efforts address large geographic areas.  相似文献   

10.
The Mississippi River system ranks among the world's top 10 rivers in freshwater and sediment inputs to the coastal ocean. The river contributes 90% of the freshwater loading to the Gulf of Mexico, and terminates amidst one of the United States' most productive fisheries regions and the location of the largest zone of hypoxia, in the western Atlantic Ocean. Significant increases in riverine nutrient concentrations and loadings of nitrate and phosphorus and decreases in silicate have occurred this century, and have accelerated since 1950. Consequently, major alterations have occurred in the probable nutrient limitation and overall stoichiometric nutrient balance in the adjacent continental shelf system. Changes in the nutrient balances and reduction in riverine silica loading to, the continental shelf appear to have led to phytoplankton species shifts offshore and to an increase in primary production. The phytoplankton community response, as indicated by long-term changes in biological uptake of silicate and accumulation of biologically bound silica in sediments, has shown how the system has responded to changes in riverine nutrient loadings. Indeed, the accumulation of biologically bound silica in sediments beneath the Mississippi River plume increased during the past two decades, presumably in response to, increased nitrogen loading. The duration, size, and severity of hypoxia has probably increased as a consequence of the increased primary production. Management alternatives directed at water pollution issues within the Mississippi River watershed may have unintended and contrasting impacts on the coastal waters of the northern Gulf of Mexico.  相似文献   

11.
Nutrient mass balance analyses are a way of obtaining ‘whole system’ viewpoints on coastal biogeochemical functions and their forcing. Seasonal mass balances are presented for four large bay systems in New Zealand (NZ), with the aim of showing how they can inform coastal management. Freshwater volumes, and surface and groundwater, wastewater and atmospheric inorganic and organic nitrogen (N) and phosphorus (P) were balanced with levels of salinity, N and P from ocean surveys, used to determine non-conservative N and P fluxes and, via stoichiometry, carbon (C) fluxes. For Golden and Tasman Bays and Hauraki Gulf, exchange with adjacent shelf waters usually dominated total N supply (80–85%). In contrast, for the Firth of Thames, 51% of total N and 85% of dissolved inorganic N supply originated from its agricultural catchment. Net ecosystem metabolism (NEM; balance of autotrophy and heterotrophy) of Golden and Tasman Bays and Hauraki Gulf was usually nearly balanced. In contrast, Firth NEM was highly seasonally variable, often exhibiting strong heterotrophy coincident with expression of respiration-related stressors (low O2 and high DIC/low pH). Denitrification accounted for about 51% of total N export across the four systems, signifying its importance as a eutrophication-regulating ecosystem service. Budgets made 12 years apart in the Firth showed decreased denitrification efficiency, coincident with large increases in system N and phytoplankton. The findings for land-ocean nutrient balance, NEM and denitrification showed how mass balance budgeting can inform coastal management, including inventories of nutrient inputs, balances of oceanic and terrestrial nutrient loading, and potential for risk associated with biogeochemical responses.  相似文献   

12.
Impact of aquaculture on eutrophication in Changshou Reservoir   总被引:1,自引:1,他引:1  
1INTRODUCTION EUTROPHICATIONCANBEUNDERSTOODASAPHENOME NONOFTHEENRICHMENTOFNUTRIENTSINAWATERBODY.THE MOSTIMPORTANTNUTRIENTSTHATCAUSEEUTROPHICATIONARE PHOSPHATES,NITRATESANDAMMONIA(CAIQINGHUA,1993;HORNEANDGOLDMAN,1994).THEMOSTPROMI NENTFEATURESOFEUTROPHICWATERSARETHEHIGHCONTENTS OFNUTRIENTSANDTHEABUNDANCEOFPLANKTONSORATTACHED ALGAE.EUTROPHICATIONISACOMMONPHENOMENO…  相似文献   

13.
A water budget analysis for the Cedar River watershed in northeastern Iowa was conducted to determine the water balance during the summer months of 2000. The watershed has eight major tributaries that comprise a drainage area of 20,242 km2, of which 81% is agricultural land. Water budgets are essential when examining the movement of agricultural chemicals as well as nutrients within the system. The water budget was determined using the hydrologic mass-balance equation, which states that [inflow = outflow - storage]. The inflow components were measured individually and included precipitation, tributary and Cedar River baseflow. The outflow components included evaporation, transpiration, tributary and Cedar River discharge. The results of this study indicate a slightly larger volume of water leaving the watershed (6.24᎒9 m3) than entering (6.21᎒9 m3). The surplus of the outgoing water (0.5%) is most likely due to an overestimation of transpiration, or the contribution of water from the intermittent streams not measured during the study. Calculations of nutrient flux showed that approximately 2.99᎒6 kg of nitrogen and 2.39᎒5 kg of phosphorus were lost from the watershed during the study.  相似文献   

14.
From February 1992 until June 1993, the distribution of dissolved and particulate phosphorus and nitrogen was investigated in the Ems estuary at approximately monthly intervals. Nutrient import was quantified from the river load. Nutrient export to sea was quantified from river discharge and from the salinity-nutrient gradient in the outer estuary. In addition, sediment cores were taken from four sites along the main axis of the estuary in October 1992. On the basis of these data a nitrogen and phosphorus budget was made. On an annual basis, 45 × 106 mol P and 2,360 × 106 mol N are imported into the Ems estuary. Freshwater runoff is the main source of input, accounting for about 92% of the nitrogen input and 71% of the phosphorus input. Import of particulate phosphorus from the sea is important in the phosphorus budget (27%). Seventy-five percent of the nitrogen input is transported to the North Sea. Denitrification is the major loss factor (19% of the nitrogen input), and burial explains 6%. Of the phosphorus input, 60% is transported to the North Sea and 40% accumulates in the sediment. Nitrogen import during summer explains about one third of the annual primary production, indicating that nitrogen turn over is about three times. Phosphorus import during summer explains less than 16% of the annual primary production. We suggest that trapping of particulate P and adsorption onto Fe(oxy)hydroxides during the entire year and the release of Fe-bound P during summer after reduction of Fe(oxy)hydroxides is instrumental in sustaining high primary production, which could not be sustained if it depended only on P imported during the growing season.  相似文献   

15.
Wetland is a transition zone between terrestrial and aquatic ecosystems, and is the source and sink of various biogenic elements in the earth’s epipelagic zone. In order to investigate the driving force and coupling mechanism of carbon (C), nitrogen (N) and phosphorus (P) migration in the critical zone of lake wetland, this paper studies the natural wetland of Dongting Lake area, through measuring and analysing the C, N and P contents in the wetland soil and groundwater. Methods of Pearson correlation, non-linear regression and machine learning were employed to analyse the influencing factors, and to explore the coupling patterns of the C, N and P in both soils and groundwater, with data derived from soil and water samples collected from the wetland critical zone. The results show that the mean values of organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) in groundwater are 1.59 mg/L, 4.19 mg/L and 0.5 mg/L, respectively, while the mean values of C, N and P in the soils are 18.05 g/kg, 0.86 g/kg and 0.52 g/kg. The results also show that the TOC, TN and TP in the groundwater are driven by a variety of environmental factors. However, the concentrations of C, N and P in the soils are mainly related to vegetation abundance and species which influence each other. In addition, the fitted curves of wetland soil C-N and C-P appear to follow the power function and S-shaped curve, respectively. In order to establish a multivariate regression model, the soil N and P contents were used as the input parameters and the soil C content used as the output one. By comparing the prediction effects of machine learning and nonlinear regression modelling, the results show that coupled relationship equation for the C, N and P contents is highly reliable. Future modelling of the coupled soil and groundwater elemental cycles needs to consider the complexity of hydrogeological conditions and to explore the quantitative relationships among the influencing factors and chemical constituents.  相似文献   

16.
用镭同位素评价九龙江河口区的地下水输入   总被引:4,自引:0,他引:4       下载免费PDF全文
为评价九龙江河口区的地下水输入量及其输送的营养盐数量,建立了天然存在的镭同位素224Ra和226Ra的质量平衡模型。镭的源项考虑了河流的输入、河流悬浮颗粒的解吸、沉积物再悬浮颗粒的解吸、沉积物扩散输入、涨潮时外海的输入和地下水的输入;镭的汇项考虑了镭的放射性衰变,以及退潮时河口水的输出。根据镭的质量平衡计算,地下水输入的镭通量约占河口区镭总输入通量的41.9%~56.9%,转换成地下水输入量为1.65亿1.83亿m3/d,该地下水输入量是河流径流输入量的4倍多。以陆源地下淡水占总的地下水输入量的10%考虑,计算获得营养盐输入通量分别为461万mol/d(DIN)、22万mol/d(DIP)、694万mol/d(DSi),它们分别约是河流输入营养盐通量的23%(DIN)、28%(DIP)、77%(DSi)。结果表明九龙江河口的地下水输入量及其所输送的营养盐相当可观,所输入的营养盐是海域富营养化的潜在影响因素,在未来的河口环境管理中应引起重视。  相似文献   

17.
Coastal watersheds support more than one half of the world’s human population and are experiencing unprecedented urban, agricultural, and industrial expansion. The freshwater–marine continua draining these watersheds are impacted increasingly by nutrient inputs and resultant eutrophication, including symptomatic harmful algal blooms, hypoxia, finfish and shellfish kills, and loss of higher plant and animal habitat. In addressing nutrient input reductions to stem and reverse eutrophication, phosphorus (P) has received priority traditionally in upstream freshwater regions, while controlling nitrogen (N) inputs has been the focus of management strategies in estuarine and coastal waters. However, freshwater, brackish, and full-salinity components of this continuum are connected structurally and functionally. Intensification of human activities has caused imbalances in N and P loading, altering nutrient limitation characteristics and complicating successful eutrophication control along the continuum. Several recent examples indicate the need for dual N and P input constraints as the only nutrient management option effective for long-term eutrophication control. Climatic changes increase variability in freshwater discharge with more severe storms and intense droughts and interact closely with nutrient inputs to modulate the magnitude and relative proportions of N and P loading. The effects of these interactions on phytoplankton production and composition were examined in two neighboring North Carolina lagoonal estuaries, the New River and Neuse River Estuaries, which are experiencing concurrent eutrophication and climatically driven hydrologic variability. Efforts aimed at stemming estuarine and coastal eutrophication in these and other similarly impacted estuarine systems should focus on establishing N and P input thresholds that take into account effects of hydrologic variability, so that eutrophication and harmful algal blooms can be controlled over a range of current and predicted climate change scenarios.  相似文献   

18.
This study presents the diffuse pollution profile of a coastal watershed with respect to the dominating sector of agriculture including forestry. A rough estimation of the diffuse loads expressed by two major nutrients of nitrogen and phosphorous is realized by calculations based on unit loads obtained from the literature for each land-use activity. The key concern is to rank the different diffuse loads arising from the watershed. The major diffuse nitrogen loads are estimated to arise from agricultural activities with 54 %, followed by livestock breeding that contribute to the nitrogen budget by 11 %. Almost 7 % of the nitrogen loads come from meadows and pasture, and 5 % from forests. In the distribution of diffuse phosphorus loads, it is estimated that 48 % of the loads arise from agricultural activities, and 18 % from livestock breeding. Almost 14 % of the phosphorous loads come from septic tank effluents; however, 13 % of the loads are due to rural run-off. The future loads for 2028 and 2039 are also estimated; 30–40 % decrease is foreseen in the agricultural pollutants and animal manure through the stepwise application of ecological agriculture and livestock breeding. The basic aim of this study is to put forth a practical methodology for estimating diffuse loads in a watershed for the decision-makers and local administrative authorities with especially limited available data. Through such, distribution of various diffuse loads becomes available among the administrative units composing the watershed.  相似文献   

19.
太湖流域污染负荷模型研究   总被引:9,自引:0,他引:9       下载免费PDF全文
在大量参数试验和调查的基础上,通过研究太湖流域各种点源和非点源污染负荷的排放去向、产生量和处理系数,建立了太湖流域污染负荷模型。该模型的计算结果为太湖流域水质模型的模拟提供了污染源的各种污染负荷完整的输入资料,不再需要繁杂地整理和准备太湖流域水质模型必须输入的各种污染负荷数据。可以通过图形直观地显示太湖流域各种污染源的污染物产生量和处理量,使整个流域上难以直接量测的各种污染负荷得到量化。  相似文献   

20.
Calculations by others of the preindustrial deposition of inorganic nitrogen from the atmosphere in the area of Narragansett Bay compared with recent measurements suggest that this flux has increased almost 15 times over natural background. On the basis of modern studies of the export of nitrogen and phosphorus from temperate forests, the prehistoric watershed also probably contributed very little reactive N or P to the bay. New information from undisturbed old-growth forests suggests that most of the N that was exported from the watershed was probably associated with refractory dissolved organic matter and thus contributed little to the fertility of the bay. The largest source of reactive dissolved inorganic nitrogen (DIN) and phosphorus (DIP) for Narragansett Bay under prehistoric conditions was the coastal ocean water entrained in the bay in estuarine circulation. The total input of DIN to this estuary has increased about five-fold and the input of total DIP has approximately doubled as a result of human activities. Recent ecosystem-level experiments using large (13 m3, 5 m deep) mesocosms designed as living models of Narragansett Bay showed that the primary production of phytoplankton in the bay is limited by the supply of DIN and that annual phytoplankton production is strongly correlated with the rate of input of DIN. The relationship between DIN input and annual phytoplankton production in the mesocosms is consistent with observations published by others working in 10 different natural marine systems, and a functional regression of the field and experimental data provides a tool to calculate the rate of prehistoric phytoplankton production that would have been associated with the prehistoric DIN input estimates. The result of this calculation suggests that phytoplankton production in the bay has approximately doubled (from about 130 g C m?2 yr?1 to 290 g C m?2 yr?1 for a baywide average) since the time of European contact. It also seems likely that seagrasses and macroalgae once made a much larger contribution to total system production than they do today.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号