首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study deals with the effect of Fe2+ on degradation kinetics of imidacloprid in moist soil under UV system. The moist soil samples were spiked with imidacloprid and irradiated in specially designed UV-photoreactor. The analysis of imidacloprid was carried out by using HPLC–DAD system. UV irradiation caused about ten fold increase in photodegradation rate of the pesticide. Amendment of soil with Fe2+ at concentrations of 30 mg/kg led to a further increase in the rate of photodegradation, i.e., a 98 % degradation of imidacloprid was observed in the presence of iron after 32 days of irradiation. Moreover, the half-life of imidacloprid in Fe2+ -amended soil was observed to be reduced to 7 days that in the absence of Fe2+ was recorded to be 21 days. Iron was also observed to affect the half-life of imidacloprid in dark. When compared with unsterilized Fe2+-amended batch treatments, the t 1/2 in sterilized Fe2+-amended batch treatments increased from 58 to 96 days. Imidacloprid-urea was detected by HPLC as the only stable photodegradation byproduct of imidacloprid in the soil.  相似文献   

2.
In this study, the photocatalytic degradation of Congo red has been investigated in N-doped TiO2 (N-TiO2) aqueous suspensions under visible light irradiation. Visible light-active N-TiO2 was successfully prepared at three different weight contents (2.5, 5, and 7%) employing sol–gel method. It was able to harvest the visible irradiation with wavelength suitable for activation. X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometer, diffused reflectance UV–Vis spectroscopy, nitrogen adsorption Brunauer–Emmert–Teller, Raman spectroscopy, photoluminescence and X-ray photoelectron spectrometer were used to characterize the doped catalyst. The samples had a relatively large specific Brunauer–Emmert–Teller surface areas of about 42 m2 g?1 with average X-ray diffraction crystalline size of 52 nm and showed visible light photocatalytic activity at about 408 nm. The impacts of several operating parameters on the Congo red photodegradation process were examined. Langmuir–Hinshelwood model exhibited pseudo-first-order degradation kinetics. N-TiO2-assisted plausible photodegradation mechanism has been suggested based on the qualitatively detected intermediate compounds.  相似文献   

3.
The objective of this study was to propose a method for efficient degradation of tetracycline as a water contaminant. UV-C rays, ozonation, and iron chelates were used for removal of tetracycline from water. Aqueous solution of tetracycline (5 × 10?5 M) was exposed to UV-C rays (in two doses—6 and 12 W), ozonation (at 6–12 mg ozone), or iron chelates: iron(III) sodium ethylenediaminetetraacetate, iron(III) trisglycinate, and iron(III) citrate. For each of iron compounds, three doses were studied: 2.5 × 10?5 M, 5 × 10?5 M, 10 × 10?5 M. The experiments have shown that aqueous solution of tetracycline (5 × 10?5 M) is immediately degraded as a result of ozonation with 12 mg ozone. Absorbance of tetracycline decreased from A = 0.78 to A = 0.35 after 20-min ozone treatment of sample. The fluorescence spectra revealed the presence of two ozone-induced TC degradation products with fluorescence maxima at 523 and 531 nm appearing immediately after the ozonation treatment. On the other hand, iron(III) sodium ethylenediaminetetraacetate and iron(III) trisglycinate gave rise to a single TC degradation product with a fluorescence maximum at 531 nm, observed after 10 days of the experiment. On application of iron(III) trisglycinate, at any studied concentration, tetracycline becomes degraded faster—in 4 days. Iron(III) citrate degraded 90 % of tetracycline, when used at the level 10 × 10?5 M. The biggest changes in tetracycline concentration were obtained as a result of ozonation and iron(III) citrate treatments.  相似文献   

4.
Biomass-Cover Relationship for Eelgrass Meadows   总被引:1,自引:0,他引:1  
Eelgrass meadows play key roles in coastal ecosystems, and the extent of the standing biomass is focal to address ecosystem functioning. Eelgrass cover is commonly assessed in marine monitoring programs while biomass sampling is destructive and expensive. Therefore, we have proposed a functional relationship that translates eelgrass cover into aboveground biomass using site-specific information on Secchi depth or light attenuation. The relationship was estimated by non-linear regression on 791 combined observations of eelgrass cover and biomass from eight different coastal sites in Denmark. Eelgrass biomass initially increased with cover and flattened out as cover exceeded 40–50 % due to increased self-shading. Decreasing light energy with depth reduced the eelgrass biomass potential (assessed at 100 % cover), and this reduction was stronger for coastal sites with lower water transparency. Moreover, the biomass potential varied seasonally from around 110–140 g DW m?2 in spring months to a peak of 241 g DW m?2 in August, consistent with other seasonal studies. The model explained 56 % of the variation in log-transformed biomasses, but significant variation between coastal sites still remained, deviating between ?23 and 39 % from the mean relationship. These site-specific deviations could be due to differences in losses related to grazing, drifting algae and epiphytes, better light capture by dense canopies, as well as differences in how well light conditions within eelgrass meadows are represented by actual measurements of Secchi depth and light attenuation. The relationship can be employed to estimate eelgrass biomass of entire coastal ecosystems from observations of eelgrass cover and depth.  相似文献   

5.
Groundwater is a vital source for domestic and irrigation purposes in the loess area of Northwest China where climate is arid. However, the quality of groundwater in this area is deteriorating due to intensive industrial and agricultural activities, and this has a great adverse impact on human health. In order to better understand the pollution status of groundwater and the health risks to local residents, comprehensive water quality index was applied to assess the quality of drinking water in Yulin City, Northwest China, and sodium adsorption ratio, sodium percentage, residual sodium carbonate and permeability index were used to evaluate the quality of irrigation water. Moreover, the health risks caused by ingestion of groundwater were evaluated using the model proposed by the Ministry of Environmental Protection of the PR China. The results show that all groundwater samples for irrigation will not induce soil salinization, but more than half of them are not suitable for drinking, and Fe, Mn, TH, Mg2+ and NO3–N are the common contaminants which are mainly from natural processes, industrial and agricultural activities. The health risk assessment indicates that children face greater non-carcinogenic risk than adults. The order of contribution of contaminants to non-carcinogenic risk is NO3 ? > As > F? > Fe > Mn > Ba2+ > Cr6+ > Zn > NO2 ?. The average carcinogenic risk of carcinogens (Cr6+ and As) is 1.17 × 10?4 and 1.37 × 10?4 for adults and children, respectively, which surpasses the permissible level (1 × 10?6) stipulated by the Ministry of Environmental Protection of the PR China. Hence, effective measures are highly demanded to manage groundwater pollution and reduce the risks to human health.  相似文献   

6.
Nanoscale zero-valent iron flakes for groundwater treatment   总被引:1,自引:0,他引:1  
Even today the remediation of organic contaminant source zones poses significant technical and economic challenges. Nanoscale zero-valent iron (NZVI) injections have proved to be a promising approach especially for source zone treatment. We present the development and the characterization of a new kind of NZVI with several advantages on the basis of laboratory experiments, model simulations and a field test. The developed NZVI particles are manufactured by milling, consist of 85 % Fe(0) and exhibit a flake-like shape with a thickness of <100 nm. The mass normalized perchloroethylene (PCE) dechlorination rate constant was 4.1 × 10?3 L/g h compared to 4.0 × 10?4 L/g h for a commercially available reference product. A transport distance of at least 190 cm in quartz sand with a grain size of 0.2–0.8 mm and Fe(0) concentrations between 6 and 160 g/kg (sand) were achieved without significant indications of clogging. The particles showed only a low acute toxicity and had no longterm inhibitory effects on dechlorinating microorganisms. During a field test 280 kg of the iron flakes was injected to a depth of 10–12 m into quaternary sand layers with hydraulic conductivities ranging between 10?4 and 10?5 m/s. Fe(0) concentrations of 1 g/kg (sand) or more [up to 100 g/kg (sand)] were achieved in 80 % of the targeted area. The iron flakes have so far remained reactive for more than 1 year and caused a PCE concentration decrease from 20.000–30.000 to 100–200 µg/L. Integration of particle transport processes into the OpenGeoSys model code proved suitable for site-specific 3D prediction and optimization of iron flake injections.  相似文献   

7.
Environmental contamination resulting from dyes has become a serious concern for today’s world. The textile effluents are highly colored, and the disposal of these in water bodies causes severe damage to the environment by reducing the solar light penetration which may affect the photosynthetic activity and the aquatic life in water. Further, the high water solubility of dyes also leads to surface and ground water contamination. Thus, in this study, we attempt to develop a cost-effective and eco-friendly method for removal of toxic dyes from aqueous using biosynthesized iron nanoparticles (INPs). Various complimentary instruments such as a thermogravimetric analysis, scanning electron microscopy/energy dispersive X-ray spectrometer, and X-ray diffraction were employed for identification and characterization of INPs. The biosynthesized INPs were applied as a Fenton-like catalyst for decolorization of toxic dyes solution like methylene blue, methyl orange, allura red, brilliant blue, and green S using hydrogen peroxide under solar radiation. The decolorization of the toxic dyes solution using INPs was monitored by UV–visible spectrophotometer, and the data obtained were utilized to evaluate the kinetic rate of the reactions. The kinetic data suggest that the decolorization of all studied toxic dyes solution follows first-order rate with rate constant values in the range of 13.1 × 10?3–17.7 × 10?3 min?1. Therefore, such a clean method employing non-toxic plant extract in INP synthesis and the application of INPs as a Fenton-like catalyst in toxic dyes decolorization can be considered as an alternative technique to the expensive and toxic chemical methods.  相似文献   

8.
The main scope of this work is applying an aerobic composting model for remediation of petroleum hydrocarbon-contaminated soil. For this purpose, the reaction kinetics was integrated with the mass and energy balances over the composting system. Literature pilot scale data for bioremediation of diesel oil-contaminated soil was used for model validation. Comparisons of simulation results with experimental data for diesel concentration and oxygen concentration showed good agreement during the remediation process. With validated model for bioremediation of diesel oil-contaminated soil, the influence of amendment type, bulking agent, amendment/soil ratio, bulking agent/soil ratio, moisture content and airflow rate were investigated on diesel biodegradation. The simulation results showed that maximum degradation of diesel occurred in the presence of yard waste as amendment. Furthermore, addition of bulking agent (wood chips) increased the diesel degradation about 6 %. In presence of yard waste as amendment and wood chips as bulking agent, the optimal values for maximum remediation were amendment/soil ratio (2.5 kg kg?1), bulking agent/soil ratio (2.25 kg kg?1), initial moisture content (62.5 %) and airflow (0.520 mday?1 kgBVS?1).  相似文献   

9.
It is demonstrated that single titanium dioxide (TiO2) has high potential for photodegradation of pollutants. However, it is still far from becoming an effective photocatalyst system, due to issues of adsorption process, separation, as well as dissolution. Therefore, this study highlights the high adsorption capacity, simplified separation, and the promising stability of TiO2(SY) (synthesized via sol–gel method) photocatalyst, fabricated using chitosan–TiO2(SY) and supported by glass substrate (Cs–TiO2(SY)/glass substrate) photocatalysts. Chitosan (Cs), with abundant –R–NH and NH2 groups, promotes the adsorption sites of methyl orange (MO) and OH groups for major attachment to TiO2(SY). Meanwhile, the glass substrate increases stability and assists separation of the photocatalysts. Initially, nano-TiO2(SY) has been characterized using high-resolution transmission electron microscope. Cs–TiO2(SY)/glass substrate was fabricated via dip-coating. The distribution and interface between the photocatalytic components were characterized by Fourier transform infrared absorption spectroscopy, UV–Vis diffuse reflectance spectroscopy, field emission scanning electron microscopy, and energy-dispersive spectrometer. UV–Vis analysis of the multilayer photocatalyst (2, 4, 6, and 8 layers) was further carried out by the adsorption–photodegradation, with MO as model of pollutant. Seventy percent of the total removal of MO via optimized eight layers of photocatalyst was achieved within 1 h of UV irradiation. The adsorption photocatalyst achieved 50 % with no exposure to UV light for 15 min of irradiation. It is concluded that suitable photocatalytic conditions and sample parameters possessing the multilayer photocatalyst of Cs–TiO2(SY) are beneficial toward the adsorption–photodegradation process in wastewater treatment.  相似文献   

10.
The increasing emission of primary and gaseous precursors of secondarily formed atmospheric particulate matter due to continuing industrial development and urbanization are leading to an increased public awareness of environmental issues and human health risks in China. As part of a pilot study, 12-h integrated fine fraction particulate matter (PM2.5) filter samples were collected to chemically characterize and investigate the sources of ambient particulate matter in Guiyang City, Guizhou Province, southwestern China. Results showed that the 12-h integrated PM2.5 concentrations exhibited a daytime average of 51 ± 22 µg m?3 (mean ± standard deviation) with a range of 17–128 µg m?3 and a nighttime average of 55 ± 32 µg m?3 with a range of 4–186 µg m?3. The 24-h integrated PM2.5 concentrations varied from 15 to 157 µg m?3, with a mean value of 53 ± 25 µg m?3, which exceeded the 24-h PM2.5 standard of 35 µg m?3 set by USEPA, but was below the standard of 75 µg m?3, set by China Ministry of Environmental Protection. Energy-dispersive X-ray fluorescence spectrometry (XRF) was applied to determine PM2.5 chemical element concentrations. The order of concentrations of heavy metals in PM2.5 were iron (Fe) > zinc (Zn) > manganese (Mn) > lead (Pb) > arsenic (As) > chromium (Cr). The total concentration of 18 chemical elements was 13 ± 2 µg m?3, accounting for 25% in PM2.5, which is comparable to other major cities in China, but much higher than cities outside of China.  相似文献   

11.
We have undertaken a study of the common green or orange-brown spots at the surface of rough diamond specimens, which are caused by alpha particles emanating from radioactive sources outside the diamond. Richly coloured haloes represent elevated levels of structural damage, indicated by strong broadening of the main Raman band of diamond, intense strain birefringence, and up-doming of spots due to their extensive volume expansion. Green radio-colouration was analogously generated through the irradiation of diamond with 8.8 MeV helium ions. The generation of readily visible radio-colouration was observed after irradiating diamond with ≥1015 He ions per cm2. The accumulation of such a high number of alpha particles requires irradiation of the diamond from a radioactive source over long periods of time, presumably hundreds of millions of years in many cases. In the samples irradiated with He ions, amorphisation was observed in volume areas where the defect density exceeded 5 × 10?3 Å?3 (or 0.03 dpa; displacements per target atom). In contrast, graphitisation as a direct result of the ion irradiation was not observed. The green colouration transformed to brown at moderate annealing temperatures (here 450 °C). The colour transformation is associated with only partial recovery of the radiation damage. The colour change is mainly due to the destruction of the GR1 centre, explained by trapping of vacancies at A defects to form the H3 centre. An activation energy of ~2.4 ± 0.2 eV was determined for the GR1 reduction. The H3 centre, in turn, causes intense yellowish-green photoluminescence under ultraviolet illumination. Radio-colouration and associated H3 photoluminescence are due to point defects created by the ions irradiated, whereas lattice ionisation is of minor importance. This is concluded from the depth distribution of the colouration and the photoluminescence intensity (which corresponds to the defect density but not the ionisation distribution pattern). The effect of the implanted He ions themselves on the colour and photoluminescence seems to be negligible, as radio-colouration and H3 emission were analogously produced through irradiation of diamond with C ions. The photoluminescence emission becomes observable at extremely low defect densities on the order of 10?6 Å?3 (or 0.000006 dpa) and is suppressed at moderate defect densities of ~5 × 10?4 Å?3 (or ~0.003 dpa). Intensely brown-coloured diamond hence does not show the H3 emission anymore. Anneals up to 1,600 °C has reduced considerably irradiation damage and radio-colouration, but the structural reconstitution of the diamond (and its de-colouration) was still incomplete.  相似文献   

12.
Rice cultivation in the Ebro Delta (Catalonia, Spain) has inverted the natural hydrological cycles of coastal lagoons and decreased water salinities for over 150 years. Adjustments in the water management practices—in terms of source and amount of freshwater inputs—have resulted in changes in the diversity, distribution and productivity of submerged angiosperms. Between the 1970s and late 1980s, a massive decline of the aquatic vegetation occurred in the Encanyissada–Clot and Tancada lagoons, but little information on the status is available after the recovery of macrophytes in the 1990s. Here, we evaluate the influence of salinity regimes resulting from current water management practices on the composition, distribution, seasonal abundance and flowering rates of submersed macrophytes, as well as on the occurrence of epiphyte and drift macroalgae blooms in three coastal lagoons. Our results show that Ruppia cirrhosa is the dominant species in the Encanyissada lagoon (185.97?±?29.74 g?DW?m?2?year?1; 12–27?‰ salinity) and the only plant species found in the Tancada lagoon (53.26?±?10.94 g?DW?m2?year?1; 16–28?‰ salinity). Flowering of R. cirrhosa (up to 1,011?±?121 flowers?m?2) was only observed within the Encanyissada and suggests that mesohaline summer conditions may favor these events. In contrast, low salinities in Clot lagoon (~3–12?‰) favor the development of Potamogeton pectinatus (130.53?±?13.79 g?DW?m2?year?1) with intersperse R. cirrhosa (8.58?±?1.71 g?DW?m?2) and mixed stands of P. pectinatus and Najas marina (up to ~57 g?DW?m?2?year?1) in some reduced areas. The peak biomasses observed during the study are 88 to 95 % lower than maximum values reported in the literature at similar salinities, and there is also little or no recovery in some areas compared to last reports more than 20 years ago. The main management actions to restore the natural diversity and productivity of submersed angiosperms, such as the recovering of the seagrass Zostera noltii, should be the increase of salinity during the period of rice cultivation, by reducing freshwater inputs and increasing flushing connections with the bays.  相似文献   

13.
With few available soil organic carbon (SOC) profiles and the heterogeneity of those that do exist, the estimation of SOC pools in karst areas is highly uncertain. Based on the spatial heterogeneity of SOC content of 23,536 samples in a karst watershed, a modified estimation method was determined for SOC storage that exclusively applies to karst areas. The method is a “soil-type method” based on revised calculation indexes for SOC storage. In the present study, the organic carbon contents of different soil types varied greatly, but generally decreased with increasing soil depth. The organic carbon content decreased nearly linearly to a depth of 0–50 cm and then varied at depths of 50–100 cm. Because of the large spatial variability in the karst area, we were able to determine that influences of the different indexes on the estimation of SOC storage decreased as follows: soil thickness > boulder content > rock fragment content > SOC content > bulk density. Using the modified formula, the SOC content in the Houzhai watershed in Puding was estimated to range from 3.53 to 5.44 kg m?2, with an average value of 1.24 kg m?2 to a depth of 20 cm, and from 4.44 to 14.50 kg m?2, with an average value of 12.12 kg m?2 to a depth of 100 cm. The total SOC content was estimated at 5.39 × 105 t.  相似文献   

14.
Incidence of high fluoride (F?) in groundwater (>1.5 mg/L) in two tribal belts of eastern India, one around Chukru in the Palamau district of Jharkhand and the other around Karlakot in the Nuapada district of Odisha, has been studied. The maximum concentration of F? in groundwater from dug wells and tube wells is 10.30 mg/L in Chukru and 4.62 mg/L in Karlakot. The groundwaters are mildly alkaline with pH ranges of 7.52–8.22 and 7.33–8.20 in Chukru and Karlakot, respectively. The F? concentration is positively correlated with pH, electrical conductivity and SO4 2? in both areas. The high F? in groundwater resulted mainly from dissolution of biotite and fluorapatite in quartzofeldspathic gneiss. The ionic dominance pattern (in meq/L) is mostly in the order Ca2+ > Na+ > Mg2+ > K+ among cations and HCO3 ? > SO4 2? > < Cl? > F? among anions in the Karlakot groundwater. Preliminary adsorption experiments were conducted on natural haematite iron ore and synthetic magnetite to evaluate their potential for F? removal from water. Effects of different parameters such as contact time, pH, adsorbent dose and initial F? concentration on the adsorption capacity of these materials were investigated. Strong dependence of F? removal on pH was observed for both the adsorbents. With natural haematite iron ore, the maximum F? removal of 66 % occurred at an initial pH of 3.2 for a solution with F? concentration of 3 mg/L, adsorbent dose of 7 g/L and overnight contact time. The haematite iron ore was observed to increase the pH of the F? solution. Adsorption equilibrium was not achieved with this adsorbent even after a contact time of 45.2 h. In the case of synthetic magnetite, 84 % F? removal was achieved after 2 min of contact time for a solution with F? concentration of 6 mg/L, adsorbent dose of 10 g/L and initial pH of 7. The results indicate high potential of both natural haematite iron ore and synthetic magnetite as adsorbents of F? in water.  相似文献   

15.
In order to examine the effects of solar ultraviolet radiation (UVR, 280–400 nm) on photosynthesis of differently cell-sized phytoplankton, natural phytoplankton assemblages from the coastal waters of the South China Sea were separated into three groups (>20, 5–20, and <5 μm) and exposed to four different solar UV spectral regimes, i.e., 280–700 nm (PAR?+?UVR), 400–700 nm (PAR), 280–400 nm (UV-A?+?B), and 315–400 nm (UV-A). In situ carbon fixation measurements revealed that microplankton (>20 μm) efficiently utilized UV-A for photosynthetic carbon fixation, with assimilation number of up to 1.01 μg C (μg chl a)?1?h?1 under 21.4 W?m?2 UV-A alone (about half of noontime irradiance at the surface), about 40 % higher than nanoplankton (5–20 μm). UV-B (280–315 nm) of 0.95 W?m?2 reduced the carbon fixation by approximately 20 and 57 % in microplankton and nanoplankton assemblages, respectively. In contrast, smaller picoplankton (<5 μm) was unable to utilize UV-A for the photosynthetic carbon fixation. In addition, only micro-sized assemblages demonstrated the UV enhancement on their primary productivity in the presence of PAR, by about 8 % under moderate intensities of solar radiation.  相似文献   

16.
The influence of alkaline aqueous solutions on the properties of bentonite was investigated to evaluate the performance of bentonitic engineered barriers when contacted with alkaline groundwater. Batch and hydraulic conductivity tests were conducted on Na-bentonite using six different alkaline aqueous solutions. For the batch tests, almost no change in the montmorillonite fraction of the bentonite was observed after reacting with alkaline solutions (pH = 8.4–13.1), regardless of the solution type. On the other hand, aluminosilicate minerals (e.g., albite) were dissolved and secondary minerals (e.g., anorthite) were formed in alkaline NaOH solutions (pH > 13). The cation (Ca or Na) concentration primarily affected the swelling properties of bentonite rather than the pH of the solution, which was comparable to the results of the hydraulic conductivity tests. For the Ca solutions, the hydraulic conductivity of the bentonite specimen to the 0.02 mol/L Ca(OH)2 solution (6.5 × 10?9 cm/s) was approximately an order of magnitude lower than that of the bentonite specimen to the 0.02 mol/L Ca(OH)2 + 1 mol/L CaCl2 solution (5.0 × 10?8 cm/s), whereas the hydraulic conductivity to the 0.02 mol/L Ca(OH)2 + 1 mol/L CaCl2 solution (pH = 11.3) (5.0 × 10?8 cm/s) was slightly higher than that to the 1 mol/L CaCl2 solution (pHi = 8.4) (4.4 × 10?8 cm/s). For the NaOH solutions with pH > 13, the hydraulic conductivity of the bentonite specimen decreased with increasing Na concentration, suggesting that the effect of Na concentration was more dominant than that of permeant pH.  相似文献   

17.
18.
The present analysis adjusts previous estimates of global ocean CaCO3 production rates substantially upward, to 133 × 1012 mol yr?1 plankton production and 42 × 1012 mol yr?1 shelf benthos production. The plankton adjustment is consistent with recent satellite-based estimates; the benthos adjustment includes primarily an upward adjustment of CaCO3 production on so-called carbonate-poor sedimentary shelves and secondarily pays greater attention to high CaCO3 mass (calcimass) and turnover of shelf communities on temperate and polar shelves. Estimated CaCO3 sediment accumulation rates remain about the same as they have been for some years: ~20 × 1012 mol yr?1 on shelves and 11 × 1012 mol yr?1 in the deep ocean. The differences between production and accumulation of calcareous materials call for dissolution of ~22 × 1012 mol yr?1 (~50 %) of shelf benthonic carbonate production and 122 × 1012 mol yr?1 (>90 %) of planktonic production. Most CaCO3 production, whether planktonic or benthonic, is assumed to take place in water depths of <100 m, while most dissolution is assumed to occur below this depth. The molar ratio of CO2 release to CaCO3 precipitation (CO2↑/CaCO3↓) is <1.0 and varies with depth. This ratio, Ψ, is presently about 0.66 in surface seawater and 0.85 in ocean waters deeper than about 1000 m. The net flux of CO2 associated with CaCO3 reactions in the global ocean in late preindustrial time is estimated to be an apparent influx from the atmosphere to the ocean, of +7 × 1012 mol C yr?1, at a time scale of 102–103 years. The CaCO3-mediated influx of CO2 is approximately offset by CO2 release from organic C oxidation in the water column. Continuing ocean acidification will have effects on CaCO3 and organic C metabolic responses to the oceanic inorganic C cycle, although those responses remain poorly quantified.  相似文献   

19.
An extreme rainfall event on August 9, 2009, which was close to setting a world record for 48-h accumulated rainfall, induced the Xiaolin deep-seated landslide, which was located in southwestern Taiwan and had volume of 27.6?×?106?m3, and caused the formation of a landslide dam. The landslide dam burst in a very short time, and little information remained afterward. We reconstructed the process of formation and failure of the Xiaolin landslide dam and also inferred the area of the impoundment and topographic changes. A 5?×?5-m digital elevation model, the recorded water stage of the Qishan River, and data from field investigation were used for analysis. The spectral magnitude of the seismic signals induced by the Xiaolin landslide and flooding due to failure of the landslide dam were analyzed to estimate the timing of the dam breach and the peak discharge of the subsequent flood. The Xiaolin landslide dam failure resulted from overtopping. We verified the longevity of the Xiaolin landslide dam at about 2 h relying on seismic signals and water level records. In addition, the inundated area, volume of the impoundment behind the Xiaolin landslide dam, and peak discharge of the flood were estimated at 92.3 ha, 19.5?×?106?m3, and 17?×?103?m3/s, respectively. The mean velocity of the flood-recession wave front due to the dam blockage was estimated at 28 km/h, and the peak flooding velocity after failure of the dam was estimated at 23 km/h. The Xiaolin landslide provides an invaluable opportunity for understanding the mechanism of deep-seated landslides and flooding processes following a landslide dam failure.  相似文献   

20.
In order to examine the fluxes of methane (CH4) from the Indian estuaries, measurements were carried out by collecting samples from 26 estuaries along the Indian coast during high discharge (wet) and low water discharge (dry) periods. The CH4 concentrations in the estuaries located along the west coast of India were significantly higher (113?±?40 nM) compared to the east coast of India (27?±?6 nM) during wet and dry periods (88?±?15 and 63?±?12 nM, respectively). Supersaturation of CH4 was observed in the Indian estuaries during both periods ((0.18 to 22.3?×?103 %). The concentrations of CH4 showed inverse relation with salinity indicating that freshwater is a significant source. Spatial variations in CH4 saturation were associated with the organic matter load suggesting that its decomposition may be another source in the Indian estuaries. Fluxes of CH4 ranged from 0.01 to 298 μmol m?2 day?1 (mean 13.4?±?5 μmol m?2 day?1) which is ~30 times lower compared to European estuaries (414 μmol m?2 day?1). The annual emission from Indian estuaries, including Pulicat and Adyar, amounted to 0.39?×?1010 g CH4?year?1 with the surface area of 0.027?×?106 km2 which is significantly lower than that in European estuaries (2.7?±?6.8?×?1010 g CH4?year?1 with the surface area of 0.03?×?106 km2). This study suggests that Indian estuaries are a weak source for atmospheric CH4 than European estuaries and such low fluxes were attributed to low residence time of water and low decomposition of organic matter within the estuary. The CH4 fluxes from the Indian estuaries are higher than those from Indian mangroves (0.01?×?1010 g CH4?year?1) but lower than those from Indian inland waters (210?×?1010 g CH4?year?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号