首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Late Quaternary stratigraphy and sedimentation in the Ganga Alluvial Plain and the Bengal Basin have influenced arsenic contamination of groundwater. Arsenic contaminated aquifers are pervasive within lowland organic rich, clayey deltaic sediments in the Bengal Basin and locally within similar facies in narrow, entrenched river valleys within the Ganga Alluvial Plain. These were mainly deposited during early-mid Holocene sea level rise. Arsenic was transported from disseminated sources as adsorbed on dispersed phases of hydrated-iron-oxide. These were preferentially entrapped as sediment coatings on organic-rich, fine-grained deltaic and floodplain sediments. Arsenic was released later to groundwater mainly by reductive dissolution of hydrated-iron-oxide and corresponding oxidation of sediment organic matter. Strong reducing nature of groundwater in the Bengal Basin and parts of affected middle Ganga floodplains is indicated by high concentration of dissolved iron (maximum 9-35 mg/l). Groundwater being virtually stagnant under these settings, released arsenic accumulates and contaminates groundwater. The upland terraces in the Bengal Basin and in the Central Ganga Alluvial Plain, made up of the Pleistocene sediments are free of arsenic contamination in groundwater. These sediments are weakly oxidised in nature and associated groundwater is mildly reducing in general with low concentration of iron (<1 mg/l), and thus incapable to release arsenic. These sediments are also flushed free of arsenic, released if any, by groundwater flow due to high hydraulic head, because of their initial low-stand setting and later upland terraced position.  相似文献   

2.
Late Quaternary stratigraphy and sedimentation in the Middle Ganga Plain (MGP) (Uttar Pradesh–Bihar) have influenced groundwater arsenic contamination. Arsenic contaminated aquifers are pervasive within narrow entrenched channels and flood plains (T0-Surface) of fine-grained grey to black coloured argillaceous organic rich Holocene sediments (Newer Alluvium). Contaminated aquifers are often located close to distribution of abandoned or existing channels and swamps. The Pleistocene Older Alluvium upland terraces (T2-Surface) made up of oxidized yellowish brown sediments with calcareous and ferruginous concretions and the aquifers within it are free of arsenic contamination. MGP sediments are mainly derived from the Himalaya with minor inputs from the Peninsular India. The potential source of arsenic in MGP is mainly from the Himalaya. The contaminated aquifers in the Terai belt of Nepal are closely comparable in nature and age to those of the MGP. Arsenic was transported from disseminated sources as adsorbed on dispersed phases of hydrated-iron-oxidea and later on released to groundwater mainly by reductive dissolution of hydrated-iron-oxide and corresponding oxidation of organic matter in aquifer. Strong reducing nature of groundwater is indicated by high concentration of dissolved iron (11.06 mg/l). Even within the arsenic-affected areas, dugwells are found to be arsenic safe due to oxyginated nature.  相似文献   

3.
Over a large area of the Bengal delta in West Bengal, India, arsenic distribution patterns in groundwater were studied. One hundred and ten boreholes at different target locations were made, subsurface sediments were logged and analysed, and arsenic values in sediments vis-à-vis groundwater were compared. The study elucidates the subsurface geology of the western part of Bengal delta and characterises the sediments that were intersected in different boreholes with contrasting values of arsenic in groundwater. It reveals an existence of multiple aquifers stacked over each other. Depending on the color and nature of aquifer-sands and their overlying clay beds six aquifer types (Type-1 to Type-6) are classified and described. Sediment-arsenic for all the varieties of aquifer sands are near similar but the groundwater-arsenic of these six aquifers varies widely. Type-2 and Type-5 aquifers host arsenic-contaminated groundwater whereas the other four aquifers are arsenic-free. Type-2 and Type-5 aquifers are capped by a grey to dark grey soft organic matter-rich clay unit which makes these aquifers semi-confined to leaky-confined. These contribute in releasing arsenic from the sediments. The results of this study are employed in a proposed georemedial measure against this hazardous toxic element.  相似文献   

4.
Arsenic contamination in groundwater affecting West Bengal (India) and Bangladesh is a serious environmental problem. Contamination is extensive in the low-lying areas of Bhagirathi–Ganga delta, located mainly to the east of the Bhagirathi River. A few isolated As-contaminated areas occur west of the Bhagirathi River and over the lower parts of the Damodar river fan-delta. The Damodar being a Peninsular Indian river, the arsenic problem is not restricted to Himalayan rivers alone. Arsenic contamination in the Bengal Delta is confined to the Holocene Younger Delta Plain and the alluvium that was deposited around 10,000–7,000 years bp, under combined influence of the Holocene sea-level rise and rapid erosion in the Himalaya. Further, contaminated areas are often located close to distribution of abandoned or existing channels, swamps, which are areas of surface water and biomass accumulation. Extensive extraction of groundwater mainly from shallow aquifers cause recharge from nearby surface water bodies. Infiltration of recharge water enriched in dissolved organic matter derived either from recently accumulated biomass and/or from sediment organic matter enhanced reductive dissolution of hydrated iron oxide that are present mainly as sediment grain coatings in the aquifers enhancing release of sorbed arsenic to groundwater.  相似文献   

5.
The authors’ survey of the Ganga–Meghna–Brahmaputra (GMB) plain (area 569,749 km2; population >500 million) over the past 20 years and analysis of more than 220,000 hand tube-well water samples revealed groundwater arsenic contamination in the floodplains of the Ganga–Brahmaputra river (Uttar Pradesh, Bihar, Jharkhand, West Bengal, and Assam) in India and the Padma–Meghna–Brahmaputra river in Bangladesh. On average, 50 % of the water samples contain arsenic above the World Health Organization guideline value of 10 μg/L in India and Bangladesh. More than 100 million people in the GMB plain are potentially at risk. The authors’ medical team screened around 155,000 people from the affected villages and registered 16,000 patients with different types of arsenical skin lesions. Arsenic neuropathy and adverse pregnancy outcomes have been recorded. Infants and children drinking arsenic-contaminated water are believed to be at high risk. About 45,000 biological samples analyzed from arsenic-affected villages of the GMB plain revealed an elevated level of arsenic present in patients as well as non-patients, indicating that many are sub-clinically affected. In West Bengal and Bangladesh, there are huge surface water in rivers, wetlands, and flooded river basins. In the arsenic-affected GMB plain, the crisis is not over water scarcity but about managing the available water resources.  相似文献   

6.
 Arsenic toxicity in groundwater in the Ganges delta and some low-lying areas in the Bengal basin is confined to middle Holocene sediments. Dissected terraces and highlands of Pleistocene and early Holocene deposits are free of such problems. Arsenic-rich pyrite or other arsenic minerals are rare or absent in the affected sediments. Arsenic appears to occur adsorbed on iron hydroxide-coated sand grains and clay minerals and is transported in soluble form and co-precipitated with, or is scavenged by, Fe(III) and Mn(IV) in the sediments. It became preferentially entrapped in fine-grained and organic-rich sediments during mid-Holocene sea-level rises in deltaic and some low-lying areas of the Bengal basin. It was liberated subsequently under reducing conditions and mediated further by microbial action. Intensive extraction of groundwater for irrigation and application of phosphate fertilizer possibly triggered the recent release of arsenic to groundwater. This practice has induced groundwater flow, mobilizing phosphate derived from fertilizer, as well as from decayed organic matter, which has promoted the growth of sediment biota and aided the further release of arsenic. However, the environment is not sufficiently reducing to mobilize iron and arsenic in groundwater in the Ganges floodplains upstream of Rajmahal. Thus, arsenic toxicity in the groundwater of the Bengal basin is caused by its natural setting, but also appears to be triggered by recent anthropogenic activities. Received: 23 August 1999 · Accepted: 16 November 1999  相似文献   

7.
The study area covers an about 100 km2 of the middle Ganga plain in Uttar Pradesh, experiencing intensive groundwater extraction. In order to recognize the arsenic contamination zones of the Varanasi environs, sixty eight groundwater samples have been collected and analyzed for major ions, iron and arsenic. Twenty one sediment samples in the four boreholes were also collected to deduce the source of arsenic in the groundwater. The preliminary survey reports for the first time indicates that part of rural and urban population of Varanasi environs are drinking and using for irrigation arsenic contaminated water mostly from hand tube wells (<70 m). The study area is a part of middle Ganga plain which comprises of Quaternary alluvium consists of an alternating succession of clay, clayey silt and sand deposits. The high arsenic content in groundwater samples of the study area indicates that 14% of the samples are exceeding the 10 μg/l and 5% of the samples are exceeding 50 μg/l. The high arsenic concentration is found in the villages such as Bahadurpur, Madhiya, Bhojpur, Ratanpur, Semra, Jalilpur, Kateswar, Bhakhara and Kodupur (eastern side of Ganga River in Varanasi), situated within the newer alluvium deposited during middle Holocene to Recent. The older alluvial aquifers situated in the western side of the Ganga River are arsenic safe (maximum As concentration of 9 μg/l) though the borehole sediments shows high arsenic (mean 5.2 mg/kg) and iron content (529 mg/kg) in shallow and medium depths. This may be due to lack of reducing conditions (i.e organic content) for releasing arsenic into the groundwater. Rainfall infiltration, organic matter from recently accumulated biomass from flood prone belt in the newer alluvium plays a critical role in releasing arsenic and iron present in sediments. The main mechanism for the release of As into groundwater in the Holocene sandy aquifer sediments of Varanasi environs may be due to the reductive dissolution of Fe oxyhydroxide present as coatings on sand grains as well as altered mica content. The high societal problems of this study will help to mitigate the severity of arsenic contamination by providing alternate drinking water resources to the people in middle Ganga plain and to arrange permanent arsenic safe drinking water source by the authorities.  相似文献   

8.
Groundwater extracted from shallow aquifers in the Bengal Delta is contaminated with arsenic. The fluviodeltaic process that creates aquifers, ironically, extends its role to also contaminating them with arsenic. The arsenic distribution maps show a spatial association of arsenic-contaminated wells with palaeo/cut-off/abandoned channels. Weight-on-evidences analysis indicates that the zones of contamination occur around palaeo-channels within a corridor of 500–700 m that contains most of the contaminated wells. These corridors are interpreted to be the zone of channel shifting. Contaminated wells represent point fractal geometry that can be separated into isolated points and clusters. Clusters occur within the zone of channel shifting as obtained by weight-on-evidences analysis. Isolated points occur within floodplain or back swamp areas. Clusters and isolated point fractals are interpreted to reflect the process of arsenic release into groundwater. The migration of biomass within the permeable sandy domain of channel deposits is proposed to be the predominant process in generating clusters. The isolated points represent restricted biomass spreading in less permeable clay-silt dominated floodplains.  相似文献   

9.
A groundwater arsenic (As) survey in Mirzapur, Varanasi, Ghazipur, Ballia, Buxar, Ara, Patna, and Vaishali districts of UP and Bihar shows that people from these districts are drinking As-contaminated groundwater (max. 1,300 μg/l). About 66 % of tubewells from Buxar to Mirzapur areas and 89 % of tubewells from Patna to Ballia areas have As?>?10 μg/l (WHO guideline). Moreover, 36 % of tubewells from Buxar to Mirzapur areas and 50 % of tubewells from Patna to Ballia areas have As above 50 μg/l. Most of the As-affected villages are located close to abandoned or present meander channels of the Ganga River. In contrast, tubewells located in Mirzapur, Chunar, Varanasi, Saidpur, Ghazipur, Muhammadabad, Ballia, Buxar, Ara, Chhapra, Patna, and Hazipur towns are As-safe in groundwater because of their positions on the Pleistocene Older Alluvium upland surfaces. The iron (Fe) content in tubewell water samples varies from 0.1 to 12.93 mg/l. About 77 % As-contaminated tubewells are located within the depth of 21 to 40 m in the Holocene Newer Alluvium aquifers. The potential source of As in sediments carried through the rivers from the Himalayas. Maximum As concentrations in the Older and Newer Alluvium sediments are 13.73 and 30.91 mg/kg, respectively. The Himalayas rivers, i.e. Yamuna, Ganga, Gomati, Ghaghara, Gondak, Buri Gandak, and Kosi rivers carrying suspended sediments have high content of As (max. 10.59 mg/kg).  相似文献   

10.
In this paper, numerical simulations of regional-scale groundwater flow of North Bengal Plain have been carried out with special emphasis on the arsenic (As)-rich alluvium filled gap between the Rajmahal hills on the west and the Garo hills on the east. The proposed concern of this modelling arose from development that has led to large water table declines in the urban area of English Bazar block, Malda district, West Bengal and possible transport of As in the near future from the adjacent As-polluted aquifer. Groundwater occurs under unconfined condition in a thick zone of saturation within the Quaternary alluvial sediments. Modelling indicates that current pumping has significantly changed the groundwater flowpaths from pre-development condition. At the present pumping rate, the pumping wells of the urban area may remain uncontaminated till the next 25 yrs, considering only pure advection of water but some water from the As-polluted zone may enter wells by 50 yrs. But geochemical and other processes such as adsorption, precipitation, redox reaction and microbial activity may significantly retard the predicted rate by advective transport. In the rural areas, majority of the water pumped from the aquifer is for irrigation, which is continuously re-applied on the surface. The near-vertical nature of the flowpaths indicates that, where As is present or released at shallow depths, it will continue to occur in pumping wells. Modelling also indicates that placing all the pumping wells at depths below 100 m may not provide As-free water permanently.  相似文献   

11.
孟加拉湾位于印度大陆以东、缅甸-安达曼-苏门答腊以西、孟加拉国南部海上地区,该区存在主动和被动两种不同类型的大陆边缘,并发育众多大陆边缘含油气盆地。根据板块位置和构造特征将其划分为三大类,分别是:被动大陆边缘盆地(马哈纳迪、K-G和高韦里盆地);主动大陆边缘盆地(若开、缅甸中央、马达班、安达曼和北苏门答腊盆地);残留洋盆地(孟加拉盆地)。根据火山岛弧带分布情况进一步将主动大陆边缘盆地划分为:①海沟型——若开盆地;②弧前型——缅甸中央盆地;③弧后型——马达班、安达曼和北苏门答腊盆地。对这些盆地油气勘探情况的统计与分析表明,该区大陆边缘盆地的油气分布主控因素为:烃源岩类型与有机质丰度决定了流体性质与资源强度;大型河流—三角洲形成富油气区;盆地类型、性质及晚期构造活动强度决定区带勘探潜力。  相似文献   

12.
Sediments from shallow aquifers in Bengal Delta, India have been found to contain arsenic. Rivers of Ganga-Brahmaputra system, responsible for depositing these sediments in the delta, have created a store of arsenic. Geomorphological domains with different depositional styles regulate the pattern of distribution of zones with widely different content of groundwater arsenic. The high arsenic zones occur as narrow sinuous strips confined to channel deposits. A few iron-bearing clastic minerals and two post-depositional secondary products are arsenic carriers. Secondary siderite concretions have grown on the surface of the clastic carriers in variable intensity. The quantity of arsenic in all clastic carriers is in excess of what is generally expected. Excess arsenic is contributed by the element adsorbed on the concretion grown on the surface of the carriers, which adds up to the arsenic in the structure of the minerals. Variable abundance of concretions is responsible for the variable quantity of arsenic in the carriers and the sediment samples. Fe2+ for the growth of siderite concretions is obtained from the iron-bearing clastic carriers. The reaction involves reduction of trivalent iron to bivalent and the required electron is obtained by transformation of As3+ to As5+. It is suggested that oxidation of As3+ to As5+ is microbially mediated. In the Safe zone arsenic is retained in the carriers and groundwater arsenic is maintained below 0.05 mg/l. In the Unsafe zone sorbed arsenic is released from the carriers in the water through desorption and dissolution of concretion, thereby elevating the groundwater arsenic level to above 0.05 mg/l.  相似文献   

13.
A comparative hydrogeochemical study evaluated arsenic release mechanism and differences in contamination levels in the shallow groundwater of two areas within the deltaic environment of West Bengal (i.e. Karimpur and Tehatta blocks of Nadia district) in India. Groundwaters from both the areas are Ca-Na(K)-Cl-HCO3 type with highly reducing character (−110.16 ± 16.85 to −60.77 ± 16.93 mV). Low correlations among As, Fe, and Mn and the higher association between As and DOC are indicative of microbial decomposition of organic matter enhancing the weathering of shallow aquifer materials. Arsenic contamination in groundwater is higher in Karimpur (95 ± 81.17 μg/L) than that in Tehatta (43.05 ± 41.06 μg/L). The release mechanism of arsenic into groundwater is very complex. Low Fe (0.27–4.78 mg/L and 0.81–4.13 mg/L), Mn (0.08–0.2 mg/L and 0.03–0.22 mg/L), and SO42− (3.82 ± 0.31 and 2.78 ± 0.40 mg/L) suggest that the mechanism of arsenic release is not a single mechanistic pathway. Clustering of redox-active parameters in the principal component planes indicate that the reductive dissolution, and/or weathering/co-precipitation of Fe/Mn-bearing minerals in the shallow aquifer sediments control the dominant mechanistic pathway of arsenic release.  相似文献   

14.
Morphological and sedimentary records at the exit of Brahmaputra River at Pasighat in the NE Himalaya inform about the climate–tectonic interplay during the past ca. 15 ka. The geomorphology of the area comprises (1) fan terrace T3, (2) a high‐angle fan (3) terrace T2, (4) terrace T1 and (5) a low‐angle fan. Geomorphic consideration suggests that the fan terrace T3 and high‐angle fans are the oldest units and were coeval. The low‐angle fan is the youngest geomorphic unit. Sedimentological studies and optically stimulated luminescence chronology suggest that (i) fan terrace T3 formed between 13 and 10.5 ka and comprised multiple events of debris flows separated by the aggradation as channel bars in a braided river environment; (ii) the high‐angle fan formed during 15–10 ka and comprises channel bar aggradation in braided river conditions; (iii) terrace T2 formed during 10–8 ka due to aggradation in a braided channel environment with lesser events of debris flows; (iv) terrace T1 formed during <7 and 3 ka took place as bars of the braided river. Sudden coarsening of the sediment indicated a tectonic rejuvenation in the provenance region between 7 and 3 ka; and (v) the low‐angle fans dated to <3 ka formed due to aggradation in a small tributary joining the Brahmaputra River. This implies a phase when the main channel of the Brahmaputra did not flood regularly and the tributaries were actively aggrading. The sedimentation style and incision of these geomorphic units responded to contemporary climatic changes and uplift in the Siwalik range along the Himalayan Frontal Fault. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The modal and chemical composition of sands from Cox’s Bazar beach (CBB) and Kuakata beach (KB) areas of Bangladesh has been investigated to infer their maturity, chemical weathering, and provenance signatures. The CBB and KB sands are typically high quartz, low feldspar, and lithic fragments, representing a recycled orogen source. Major element compositions of CBB sands are characterized by high SiO2 (83.52–89.84 wt%) and low Al2O3 (4.39–6.39 wt%), whereas KB sands contained relatively low SiO2 (63.28–79.14 wt%) and high Al2O3 (9.00–11.33 wt%) contents. The major, trace and rare earth element (REE) compositions of beach sands display comparable distribution patterns with enriched Th and SiO2 for both sands relative to upper continental crust (UCC). Pb, Rb, Y, and Fe for KB sands are little higher than UCC and the rest of the elements are marked depleted for both suites reflecting destruction of plagioclase and K-feldspar during fluvial transportation. The CBB and KB sands are compositionally low mature to immature in nature subsequently classified as subarkose and litharenite, respectively. Chondrite-normalized REE patterns for CBB and KB sands show LREE enrichment and nearly flat HREE (LaN/YbN, 7.64–9.38 and 5.48–8.82, respectively) coupled with prominent Eu anomalies (Eu/Eu*, 0.51–0.72 and 0.52–0.76, respectively), suggesting felsic source provenance. The provenance discrimination diagrams, immobile trace element ratios (Th/Sc, Zr/Sc, Ce/Sc, and Ti/Zr), and REE (∑LREE/HREE, Eu/Eu* and GdN/YbN) parameters indicate that CBB and KB sands were largely derived from felsic source rocks, with compositions close to average rhyolite, granodiorite, granite, and UCC.  相似文献   

16.
Low-permeability clayey and silty river terrace deposits are an important component in protecting underlying aquifers from contamination by agrochemicals and other contaminants. Such deposits also record deglaciation dynamics, meltwater drainage and local climatic variations. In this study, conducted over Mississippi River terraces near Savanna, Illinois, clayey slackwater terrace deposits and sandy terrace deposits are examined using resistivity soundings, ground-penetrating radar (GPR) profiles and direct-push conductivity logs. The clayey terrace deposits are characterized by low resistivity (10–35 ohm-m) and slow GPR wave velocity (0.07 m/ns), whereas non-clayey terrace deposits exhibit much higher resistivity (169–1,762 ohm-m) and faster GPR wave velocities (0.15 m/ns). Sandy and clayey terrace deposits may thus be differentiated and mapped on the basis of their geophysical response. Models based on resistivity soundings provide reasonably accurate estimates of the thickness of clayey slackwater deposits, but fail to reveal thin sands embedded in the clayey deposits. In some cases, the full thickness of the slackwater deposits was also not revealed. GPR profiles, however, imaged these embedded shallow sands and possibly imaged deeper sands below the base of the slackwater deposits, giving more accurate estimates of thickness. GPR also accurately resolved the thickness and character of sandy terrace deposits. Direct-push conductivity logs provide both accurate estimates of the thickness of clayey slackwater terrace deposits and a means of identifying thin embedded sands. In summary, resistivity soundings image these deposits at the lowest resolution with one-dimensional models, whereas GPR provides much higher resolution showing detailed layering within the upper several meters. Direct-push conductivity logs provide the highest resolution, but are invasive and only reveal stratigraphy at one location.  相似文献   

17.
山西河曲黄河阶地序列初步研究   总被引:13,自引:10,他引:3       下载免费PDF全文
黄河干流奇特的"几"字形格局是其复杂发育历史的表现。由于流域内的地质与气候条件复杂多样,分段开展深入研究是全面认识黄河的基础。晋陕峡谷是研究黄河演化的关键地段之一,河流阶地忠实地记录着河流发育的历史。文章选择山西河曲县城附近黄河阶地发育典型的河段进行研究,在实测河流阶地地貌剖面的基础上,系统采集了20个年代样品进行光释光(OSL)测年。依据地貌类型、沉积特征以及定年结果,建立了该河段黄河阶地的演化序列,得出以下结论:1)河曲地区黄河曲流凸岸形成有4级阶地,T4阶地的形成主要受构造控制,而T3,T2和T1阶地的形成主要与气候变化有关,各阶地的年龄分别是T4为90ka,T3为30ka,T2为20ka,T1为3.4ka。2)河曲地区约140ka以来河流地貌的演化经历了5个阶段,各阶段以下切侵蚀开始,结束于各阶地堆积面的塑造。约90ka以来,该地区河谷谷底下降速度和曲流可能最大侧蚀速度的平均值分别为0.9mm/a和33.4mm/a。在不同阶段,二者的大小变化及组合状况各异,在构造相对稳定条件下,河流以侧蚀作用为主,其侧蚀速度与气候和岩性条件有关。3)河曲地区的黄河曲流是在河流下切过程中逐渐侧蚀、演化而成的,具有内生曲流的特点。4)T4阶地的泥流沉积和加积堆积,可能记录了地方性气候变化,其范围和意义有待进一步研究,另外,T3,T2和T1形成过程中气候变化的作用也有待探讨。  相似文献   

18.
The Zhangjiajie Sandstone Peak Forest Geopark (Zhangjiajie World Geopark) of northwest Hunan, China hosts a well-preserved sequence of fluvial terraces and karst caves. In this contribution, a comparative study of fluvial terraces with karst caves along the middle-lower Suoxi River in Zhangjiajie World Geopark is presented to improve the understanding of the development of striking sandstone landscape in the upper Suoxi River. By integrating geomorphological, sedimentological, and geochronological techniques, the possible correlation between fluvial terraces and karst caves, as well as their climatic and tectonic implications is investigated. The available electron spin resonance and thermo-luminescence numerical ages coupled with morphostratigraphic analysis indicate that aggradation of fluvial terrace levels occurred at ca. 347 ± 34 ka (T4), 104.45 ± 8.88 to 117.62 ± 9.99 ka (T3), 60.95 ± 5.18 ka (T2), and Holocene (T1), followed by the stream incision. Fluvial terrace levels (T4 to T1) correlate morphologically with the karst cave levels (L1 to L4), yet the proposed chronology for the fluvial terrace levels is a bit later than the chronological data obtained from karst caves. In northwest Hunan, where a unique sandstone peak forest landscape was extensively developed, the fluvial terrace sequences as well as the cave systems are the important archives for studying the evolution of the sandstone landscape. The beginning of the sandstone landscape development must be earlier than the aggradation of the fluvial terrace T4, allowing this unique landscape to occur in the Middle Pleistocene.  相似文献   

19.
Groundwater arsenic contamination and its health effects in India   总被引:2,自引:0,他引:2  
During a 28-year field survey in India (1988–2016), groundwater arsenic contamination and its health effects were registered in the states of West Bengal, Jharkhand, Bihar and Uttar Pradesh in the Ganga River flood plain, and the states of Assam and Manipur in the flood plain of Brahamaputra and Imphal rivers. Groundwater of Rajnandgaon village in Chhattisgarh state, which is not in a flood plain, is also arsenic contaminated. More than 170,000 tubewell water samples from the affected states were analyzed and half of the samples had arsenic >10 μg/L (maximum concentration 3,700 μg/L). Chronic exposure to arsenic through drinking water causes various health problems, like dermal, neurological, reproductive and pregnancy effects, cardiovascular effects, diabetes mellitus, diseases of the respiratory and gastrointestinal systems, and cancers, typically involving the skin, lungs, liver, bladder, etc. About 4.5% of the 8,000 children from arsenic-affected villages of affected states were registered with mild to moderate arsenical skin lesions. In the preliminary survey, more than 10,000 patients were registered with different types of arsenic-related signs and symptoms, out of more than 100,000 people screened from affected states. Elevated levels of arsenic were also found in biological samples (urine, hair, nails) of the people living in affected states. The study reveals that the population who had severe arsenical skin lesions may suffer from multiple Bowens/cancers in the long term. Some unusual symptoms, such as burning sensation, skin itching and watering of eyes in the presence of sun light, were also noticed in arsenicosis patients.  相似文献   

20.
Bay of Bengal is well known for less saline waters in the surface layer of northern Indian Ocean. High saline waters of the Bay are considered as an influx from the Arabian Sea within a depth range of 200 to 900 m. Some of the recent observations in the western Bay of Bengal have shown salinity values higher than those reported earlier (35-2 × 10−3). Such values are explained on the basis of regional climatology suggesting their local formation on the shallow continental shelf during pre-monsoon months and their subsequent distribution along the coast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号