首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We observed the H2CO(110–111) absorption lines and H110α radio recombination lines (RRL) toward 180 NH3 sources using the Nanshan 25-m radio telescope. In our observation, 138 sources were found to have H2CO lines and 36 have H110α RRLs. Among the 138 detected H2CO sources, 38 sources were first detected. The detection rates of H2CO have a better correlation with extinction than with background continuum radiation. Line center velocities of H2CO and NH3 agree well. The line width ratios of H2CO and NH3 are generally larger than unity and are similar to that of 13CO. The correlation between column densities of H2CO and extinction is better than that between NH3 and extinction. These line width relation and column density relation indicate H2CO is distributed on a larger scale than that of NH3, being similar to the regions of 13CO. The abundance ratios between NH3 and H2CO were found to be different in local clouds and other clouds.  相似文献   

2.
T.Y Brooke  H.A Weaver  G Chin  S.J Kim 《Icarus》2003,166(1):167-187
High resolution infrared spectra of Comet C/1995 O1 (Hale-Bopp) were obtained during 2-5 March 1997 UT from the NASA Infrared Telescope Facility on Mauna Kea, Hawaii, when the comet was at r≈1.0 AU from the Sun pre-perihelion. Emission lines of CH4, C2H6, HCN, C2H2, CH3OH, H2O, CO, and OH were detected. The rotational temperature of CH4 in the inner coma was Trot=110±20 K. Spatial profiles of CH4, C2H6, and H2O were consistent with release solely from the nucleus. The centroid of the CO emission was offset from that of the dust continuum and H2O. Spatial profiles of the CO lines were much broader than those of the other molecules and asymmetric. We estimate the CO production rate using a simplified outflow model: constant, symmetric outflow from the peak position. A model of the excitation of CO that includes optical depth effects using an escape probability method is presented. Optical depth effects are not sufficient to explain the broad spatial extent. Using a parent+extended-source model, the broad extent of the CO lines can be explained by CO being produced mostly (∼90% on 5 March) from an extended source in the coma. The CO rotational temperature was near 100 K. Abundances relative to H2O (in percent) were 1.1±0.3 (CH4), 0.39±0.10 (C2H6), 0.18±0.04 (HCN), 0.17±0.04 (C2H2), 1.7±0.5 (CH3OH), and 37-41 (CO, parent+extended source). These are roughly comparable to those obtained for other long-period comets also observed in the infrared, though CO appears to vary.  相似文献   

3.
There are relatively few H2CO mappings of large-area giant molecular cloud (GMCs). H2CO absorption lines are good tracers for low-temperature molecular clouds towards star formation regions. Thus, the aim of the study was to identify H2CO distributions in ambient molecular clouds. We investigated morphologic relations among 6-cm continuum brightness temperature (CBT) data and H2CO (111−110; Nanshan 25-m radio telescope), 12CO (1–0; 1.2-m CfA telescope) and midcourse space experiment (MSX) data, and considered the impact of background components on foreground clouds. We report simultaneous 6-cm H2CO absorption lines and H110α radio recombination line observations and give several large-area mappings at 4.8 GHz toward W49 (50′×50′), W3 (70′×90′), DR21/W75 (60′×90′) and NGC2024/NGC2023 (50′×100′) GMCs. By superimposing H2CO and 12CO contours onto the MSX color map, we can compare correlations. The resolution for H2CO, 12CO and MSX data was ∼10′, ∼8′ and ∼18.3″, respectively. Comparison of H2CO and 12CO contours, 8.28-μm MSX colorscale and CBT data revealed great morphological correlation in the large area, although there are some discrepancies between 12CO and H2CO peaks in small areas. The NGC2024/NGC2023 GMC is a large area of HII regions with a high CBT, but a H2CO cloud to the north is possible against the cosmic microwave background. A statistical diagram shows that 85.21% of H2CO absorption lines are distributed in the intensity range from −1.0 to 0 Jy and the ΔV range from 1.206 to 5 km s−1.  相似文献   

4.
Abstract— Detailed laboratory studies have been carried out in order to simulate the interaction between nanometer‐sized kamacite metal particles and different gas mixtures consisting of H2:H2S (250:0.1), H2:CO (250:1), and H2:CO:H2S (250:1:0.1) under nebular‐type conditions (5 × 10?4 atm and 473 K). Reaction of H2 + H2S with kamacite particles for 1000 h leads to the formation of pyrrhotite. Incorporation of CO into the gaseous reactant mixture results in the formation of both sulfide and carbide phases. At the same time, amorphous C is deposited onto the metal particles and organic molecules are evolved, namely hydrocarbons and thiols in the C1‐C5 and C1‐C2 range, respectively. Carbon deposition and production of organics are enhanced with respect to experiments performed with H2 + CO, where a carbide phase is formed. There is no evidence for the existence of S‐poisoning effects on the metal‐catalysed hydrogenation of CO through Fischer‐Tropsch‐type reactions in nebular environments. In fact, it is experimentally demonstrated that S‐containing organic species could be synthesized by such reactions from nebular gas.  相似文献   

5.
Abstract. We have constructed a chemical reaction system in a contracting interstellar cloud. In paper (I) we have presented the details of the physical and chemical scheme and the method of solution. The results of our chemical model produce fractional abundances of H2CO, CO, OH, H2O, SO and OCS which are in good agreement with the results of observations. On the other hand, the results of chlorine-bearing species are not in agreement with those of the observations. The calculated abundances of H2CO, CO, OH, H2O, SO, OCS and Cl+ are in agreement with the results of previous theoretical studies.  相似文献   

6.
C/2006 P1 McNaught is a dynamically new comet from the Oort cloud that passed very close to the Sun, driving overall volatile production rates up to about 1031 molecules s−1. Post-perihelion observations were obtained in a target-of-opportunity campaign using the CSHELL instrument at the NASA Infrared Telescope Facility atop Mauna Kea, Hawaii, on UT 2007 January 27 and 28. Eight parent volatiles (H2O, CH4, C2H2, C2H6, HCN, CO, NH3, H2CO) and two daughter fragments (OH and NH2) were detected, enabling the determination of a rotational temperature and production rate for H2O on UT January 27 and absolute and relative production rates for all the detected parent species on UT January 28. The chemical composition measured in the coma suggests that this close perihelion passage stripped off processed outer surface layers, likely exposing relatively fresh primordial material during these observations. The post-perihelion abundances we measure for CO and CH4 (relative to H2O) are slightly depleted while C2H2, NH2 and possibly NH3 are enhanced when compared to the overall comet population. Measured abundances for other detected molecular species were within the range typically observed in comets.  相似文献   

7.
The transition 111 ? 110 at 4.829 GHz of formaldehyde (H2CO) was the first one showing the anomalous absorption, i.e., the absorption against the cosmic microwave background. Anomalous absorption is an unusual phenomena. Structure of H2CC is very similar to that of H2CO and H2CS. Both H2CO and H2CS have already been identified in a number of cosmic objects. Though H2CC is not yet identified in the cosmic objects, we propose that H2CC may be identified in cool cosmic objects through its transition 111 ? 110 at 4.85 GHz in anomalous absorption.  相似文献   

8.
We present a comparative study on molecular abundances in comets basedon millimetre/submillimetre observations made with the IRAM 30-m,JCMT, CSO and SEST telescopes. This study concerns a sample of 24comets (6 Jupiter-family, 3 Halley-family, 15 long-period) observedfrom 1986 to 2001 and 8 molecular species (HCN, HNC, CH3CN,CH3OH, H2CO, CO, CS, H2S). HCN was detected in all comets,while at least 2 molecules were detected in 19 comets. From the sub-sample of comets for which contemporary H2O productionrates are available, we infer that the HCN abundance relative to water variesfrom 0.08% to 0.25%. With respect to other species, HCN is the moleculewhich exhibits the lowest abundance variation from comet to comet. Therefore,production rates relative to that of HCN can be used for a comparative study ofmolecular abundances in the 19 comets. It is found that: CH3OH/HCN varies from ≤ 9 to 64; CO/HCN varies from ≤ 24 to 180; H2CO/HCN varies between 1.6 and 10; and H2S/HCN varies between 1.5 and 7.6. This study does not show any clear correlation between the relative abundancesand the dynamical origins of the comets, or their dust-to-gas ratios.  相似文献   

9.
SCIAMACHY (SCanning Imaging Absorption spectrometer for Atmospheric CHartographY) is a space based spectrometer designed to measure sunlight transmitted, reflected and scattered by the Earth atmosphere or surface. It is a contribution to the Envisat-1 satellite to be launched in late 1999.SCIAMACHY measurements will provide amounts and distribution of 03, BrO, OCl0, ClO, S02, H2CO, N02, CO, CO2, CH4, H2O, N20, pressure, temperature, aerosol, radiation, cloud cover and cloud top height from atmospheric measurements in nadir, limb and occultation geometry.By the combination of the near simultaneous limb and nadir observations SCIAMACHY is one of a limited number of instruments which is able to detect tropospheric column amounts of 03, N02, CO, CH4, H2O, N20, S02, H2CO, and BrO down to the planetary boundary layer under cloud free conditions.  相似文献   

10.
Experimental results on the spectral identification of new infrared absorption features and the changes of their absorbances produced through vacuum ultraviolet-extreme ultraviolet (VUV-EUV) photon-induced chemical reactions in the C2H2-H2O mixed ices at 10 K are obtained. To the best of our knowledge, this is the first time that EUV photons have been employed in the study of the photolysis of ice analogues. Two different compositions, i.e., C2H2:H2O=1:4 and 1:1, were investigated in this work. A tunable intense synchrotron radiation light source available at the Synchrotron Radiation Research Center, Hsinchu, Taiwan, was employed to provide the required VUV-EUV photons. In this study, the photon wavelengths selected to irradiate the icy samples corresponded to the prominent solar hydrogen, helium, and helium ion lines at 121.6 nm, 58.4 nm, and 30.4 nm, respectively. The photon dosages used were typically in the range of 1×1015 to 2×1017 photons. Molecular species produced and identified in the ice samples at 10 K resulting from VUV-EUV photon irradiation are mainly CO, CO2, CH4, C2H6, CH3OH, and H2CO. In addition to several unidentified features, we have tentatively assigned several absorption features to HCO, C3H8, and C2H5OH. While new molecular species were formed, the original reactants, i.e., H2O and C2H2, were detectably depleted due to their conversion to other species. The new chemical species produced by irradiation of photons at 30.4 nm and 58.4 nm can be different from those produced by the 121.6-nm photolysis. In general, the product column density of CO reaches saturation at a lower photon dosage than that of CO2. Furthermore, the production yield of CO is higher than that of CO2 in the photon irradiation. In the present study, we also observe that the photon-induced chemical reaction yields are high using photons at 30.4 and 58.4 nm. The results presented in this work are essential to our understanding of chemical synthesis in ice analogues, e.g., the cometary-type ices and icy satellites of planetary systems.  相似文献   

11.
Synthetic spectra of Comet Halley between 2.5 and 15 μm are calculated on the basis of current cometary models. This study shows that molecules which are most likely detectable in the infrared range include H2O, CO, CO2, CH4, NH3, N2H4, and H2CO. The flux emitted by these molecules, mostly due to resonant scattering, should be sufficient for detection by a flyby mission.  相似文献   

12.
Abstract— The reaction between kamacite grains and H2 + CO gas mixture has been tested in the laboratory under experimental conditions presumed for interplanetary dust particle (IDP) formation in a nebular-type environment (H2:CO = 250:1; 5 × 10?4 atm total pressure, and 473 K). Carbon deposition, hydrocarbon production in the C1–C4 range, and the formation of an ?-carbide phase occur when well-defined model FeNi bcc alloy (kamacite) particles are exposed to a mixture of H2 + CO during 103 h. These results strongly support the idea that gas-solid reactions in the solar nebula during CO hydrogenation represent a plausible scenario for the formation of carbides and carbonaceous materials in IDPs, as well as for the production of hydrocarbons through Fischer-Tropsch-type reactions.  相似文献   

13.
This paper presents a current experimental program concerning the study of the photochemical evolution of the organic matter ejected from the cometary nucleus. The aim of the work is to better understand, using laboratory simulations, the mechanisms which are involved in the degradation of the high molecular weight organics in cometary ices and dust when they are submitted to the warming up and to the bombardment of photons in the surrounding area of the Sun. This experimental study will establish correlations between the nucleus and the molecular composition of the coma. Furthermore, experimental data will provide useful information to bring to a close the question of the origin of the extended sources of H2CO and CO. Polyoxymethylene, suspected to be present in the cometary nucleus, is often mentioned as a possible parent molecule for the extended source of H2CO. In order to test this hypothesis, irradiation of POM has been performed at 147 nm. The preliminary results show effectively H2CO as one photodegradation product as well as CO. C02 and HCOOH. Tentative detections of CH30CH3, CH3OCH2OCH3, CH3OCHO and C3H6O3 are also presented.  相似文献   

14.
We used the NIRSPEC instrument on the Keck-2 telescope atop Mauna Kea, HI to observe Comet C/2001 A2 (LINEAR) in a Target of Opportunity campaign on UT 2001 July 9.5, 10.5 August 4.4, 10.5. We measured seven organic parent volatiles (C2H6, C2H2, HCN, CH4, CO, CH3OH, H2CO) simultaneously with H2O. We obtained absolute production rates and relative abundances for parent volatiles, and also measured rotational temperatures for several of these species. The chemical composition of C/2001 A2 differs substantially from any comet we have observed to date. The abundances we measure (relative to H2O) for C2H6, C2H2, HCN, and CH3OH are enriched by a factor of ∼2 to 3 in C/2001 A2 compared with most comets in our database. Other molecular species were detected within the typical range of measured abundances. C/2001 A2 presented a unique opportunity to study the chemistry of a fragmenting comet where pristine areas are exposed to the Sun.  相似文献   

15.
Radiation synthesis has been proposed as a mechanism for changing the nature of the outer few meters of ice in a comet stored 4.6 billion years in the Oort cloud and may explain some of the differences observed between new and more evolved comets. Cometary-type ice mixtures were studied in a laboratory experiment designed to approximately simulate the expected temperature, pressure, and radiation environment of the interstellar Oort cloud region. The 2.5- to 15-μm infrared absorption features of thin ice films were analyzed near 20°K before and after 1 MeV proton irradiation. Various ice mixtures included the molecules H2O, NH3, CH4, N2, C3H8, CO, and CO2. All experiments confirm the synthesis of new molecular species in solid phase mixtures at 20°K. The synthesized molecules, identified by their infrared signatures, are C2H6, CO2, CO, N2O, NO, and CH4 (weak). Synthesized molecules, identified by gas chromatographic (GC) analysis of the volatile fraction of the warmed irradiated ice mixture, are C2H4 or C2H6, and C3H8. When CH4 is present in the irradiated ice mixture, long-chained volatile hydrocarbons and CO2 are synthesized along with high-molecular-weight carbon compounds present in the room temperature residue. Irradiated mixtures containing CO and H2O synthesize CO2 and those CO2 and H2O synthesize CO. Due to radiation synthesis, ~1% of the ice was converted into a nonvolatile residue containing complicated carbon compounds not present in blank samples. These results suggest that irrespective of the composition of newly accreted comets, initial molecular abundances can be altered and new species created as a result of radiation synthesis. Irradiated mixtures exhibited thermoluminescence and pressure enhancements during warming; these phenomena suggest irradiation synthesis of reactive species. Ourbursts in new comets resulting from similar radiation induced exothermic activity would be expected to occur beginning at distances of the order of 100 AU.  相似文献   

16.
We present new experimental results on impact shock chemistry into icy satellites of the outer planets. Icy mixtures of pure water ice with CO2, Na2CO3, CH3OH, and CH3OH/(NH4)2SO4 at 77 K were ablated with a powerful pulsed laser—a new technique used to simulate shock processes which can occur during impacts. New products were identified by GC-MS and FTIR analyses after laser ablation. Our results show that hydrogen peroxide is formed in irradiated H2O/CO2 ices with a final concentration of 0.23%. CO and CH3OH were also detected as main products. The laser ablation of frozen H2O/Na2CO3 generates only CO and CO2 as destruction products from the salt. Pulsed irradiation of water ice containing methanol leads also to the formation of CO and CO2, generates methane and more complex molecules containing carbonyl groups like acetaldehyde, acetone, methyl formate, and a diether, dimethyl formal. The last three compounds are also produced when adding ammonium sulfate to H2O/CH3OH ice, but acetone is more abundant. The formation of two hydrocarbons, CH4 and C2H6 is observed as well as the production of three nitrogen compounds, nitrous oxide, hydrogen cyanide, and acetonitrile.  相似文献   

17.
A. Bar-Nun  M. Podolak 《Icarus》1985,64(1):112-124
The lightning energy dissipation rate on Jupiter from Voyager's observation is used, together with shock-tube experimental results and reasonable eddy diffusion coefficients for the various atmospheric layers, to compute the column abundances of lightning-produced CO, C2H2, and HCN. Shock-tube experiments on the hydrogenation of CO clearly rule out chemical “freezing” of CO at the 1064°K and 400-bar level and its subsequent upwelling to the upper atmosphere. Also, lightning in the water cloud cannot produce enough CO to meet its observed abundance. Hence, the CO is formed from an external source of oxygen or water. The production of acetylene both by lightning above the water cloud and by startospheric methane photolysis is required to maintain its observed abundance against destruction processes. This explains the decrease in the C2H2/C2H6 ratio from the equator to the pole, as observed in the IR. HCN production by lightning above the water cloud is sufficient to account for its observed abundance and meets the observational requirement of a tropospheric HCN source.  相似文献   

18.
Absorption against the Cosmic Microwave Background (CMB), called the anomalous absorption, is an unusual phenomenon. The transition 111–110 at 4.829 GHz of formaldehyde (H2CO) was the first one showing the anomalous absorption. The c-C3H2 is the second molecule showing anomalous absorption through its transition 220–211 at 21.590 GHz. Structure of thioformaldehyde (H2CS) is very similar to that of the H2CO. Therefore, we have investigated about the physical conditions under which the transition 111– 110 at 1.0465 GHz of H2CS would be found in anomalous absorption in cool cosmic objects. As in case of H2CO, the anomalous absorption of 111–110 of H2CS is found sensitive to the relative collisional rates and it requires that the collisional rate for the transition 111–211 must be smaller than that for the transition 110–212.  相似文献   

19.
The bright comet Hale–Bopp provided the first opportunity to follow the outgassing rates of a number of molecular species over a large range of heliocentric distances. We present the results of our observing campaign at radio wavelengths which began in August 1995 and ended in January 2002. The observations were carried out with the telescopes of Nançay, IRAM, JCMT, CSO and, since September 1997, SEST. The lines of nine molecules (OH, CO, HCN, CH3OH, H2CO, H2S, CS, CH3CN and HNC) were monitored. CS, H2S, H2CO, CH3CN were detected up to rh= 3–4 AU from the Sun, while HCN and CH3OH were detected up to 6 AU. CO, which is the main driver of cometary activity at heliocentric distances larger than 3–4 AU, was last detected in August 2001, at rh= 14 AU. The gas production rates obtained from this programme contain important information on the nature of cometary ices, their thermal properties and sublimation mechanisms.Line shapes allow to measure gas expansion velocities, which, at large heliocentric distances, might be directly connected to the temperature of the nucleus surface. Inferred expansion velocity of the gas varied as rh -0.4 within 7 AU from the Sun, but remained close to 0.4 km s-1 further away. The CO spectra obtained at large rhare strongly blueshifted and indicative of an important day-to-night asymmetry in outgassing and expansion velocity. The kinetic temperature of the coma, estimated from the relative intensities of the CH3OH and CO lines, increased with decreasing rh, from about 10 K at 7 AU to 110 K around perihelion.  相似文献   

20.
The neutral gas environment of a comet is largely influenced by dissociation of parent molecules created at the surface of the comet and collisions of all the involved species. We compare the results from a kinetic model of the neutral cometary environment with measurements from the Neutral Mass Spectrometer and the Dust Impact Detection System onboard the Giotto spacecraft taken during the fly-by at Comet 1P/Halley in 1986. We also show that our model is in good agreement with contemporaneous measurements obtained by the International Ultraviolet Explorer, sounding rocket experiments, and various ground based observations.The model solves the Boltzmann equation with a Direct Simulation Monte Carlo technique (Tenishev, V., Combi, M., Davidsson, B. [2008]. Astrophys. J. 685, 659-677) by tracking trajectories of gas molecules and dust grains under the influence of the comet’s weak gravity field with momentum exchange among particles modeled in a probabilistic manner. The cometary nucleus is considered to be the source of dust and the parent species (in our model: H2O, CO, H2CO, CO2, CH3OH, C2H6, C2H4, C2H2, HCN, NH3, and CH4) in the coma. Subsequently our model also tracks the corresponding dissociation products (H, H2, O, OH, C, CH, CH2, CH3, N, NH, NH2, C2, C2H, C2H5, CN, and HCO) from the comet’s surface all the way out to 106 km.As a result we are able to further constrain cometary the gas production rates of CO (13%), CO2 (2.5%), and H2CO (1.5%) relative to water without invoking unknown extended sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号