首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The residual flow in the inlets of Venice lagoon subject to Bora and Sirocco winds has been studied. Current velocities have been monitored since 2001 using Acoustic Doppler Current Profilers (ADCP) installed on the beds of the inlets that connect the lagoon to the Adriatic Sea; these inlets are Lido, Malamocco and Chioggia. Wind velocity data have also been continuously measured at an oceanographic platform 14.8 km offshore from the lagoon; these data were subsequently decomposed into Principal Components, which are associated with Bora and Sirocco wind directions. Analyses show that the inflow in Lido inlet is strongly related to the Bora wind. The outflow in Chioggia inlet occurs during Bora events but shows a slightly weaker correlation with the wind speed, while Malamocco inlet shows little or no influence of Bora winds on flow patterns. A net residual inflow through Lido and Malamocco inlet was found, while outflow prevails in Chioggia inlet. During Bora events, the average residual inflow increased three-fold in Lido inlet, whereas the outflow in Chioggia inlet doubled. The current velocities in Lido and Chioggia inlets are best described by an exponential function of wind velocity with exponents of −0.1187 and −0.0924, respectively. The response to Sirocco events was evident mainly in Chioggia inlet. Specifically, there was a slow down of the outflow in linear proportion to wind speed. In excess of 10 m/s a complete current reversal was observed. Lido and Malamocco inlets showed little or no response to Sirocco winds, except during rare cases when wind speeds exceeded 15 m/s.  相似文献   

2.
A shallow water hydrostatic 2D hydrodynamic numerical model, based on the boundary conforming coordinate system, was used to simulate aspects of both general and small scale oceanic features occurring in the composite system constituted by the Adriatic Sea and the Lagoon of Venice (Italy), under the influence of tide and realistic atmospheric forcing. Due to a specific technique for the treatment of movable lateral boundaries, the model is able to simulate efficiently dry up and flooding processes within the lagoon. Firstly, a model calibration was performed by comparing the results of the model, forced using tides and ECMWF atmospheric pressure and wind fields, with observations collected for a set of 33 mareographic stations uniformly distributed in the Adriatic Sea and in the Lagoon of Venice. A second numerical experiment was then carried out by considering only the tidal forcing. Through a comparison between the results obtained in the two experiments it was possible to assess the reliability of the estimated parameter through the composite forcing. Model results were then verified by comparing simulated amplitude and phase of each tidal constituent as well as tidal velocities simulated at the inlets of the lagoon and in the Northern Adriatic Sea with the corresponding observed values. The model accurately reproduces the observed harmonics: mean amplitude differences rarely exceed 1 cm, while phase errors are commonly confined below 15°. Semidiurnal and diurnal currents were correctly reproduced in the northern basin and a good agreement was obtained with measurements carried out at the lagoon inlets. On this basis, the outcomes of the hydrodynamic model were analyzed in order to investigate: (i) small-scale coastal circulation features observed at the interface between the adjoining basins, which consist often of vortical dipoles connected with the tidal flow of Adriatic water entering and leaving the Lagoon of Venice and with along-shore current fields connected with specific wind patterns; (ii) residual oscillations, which are often connected to meteorological forcing over the basin. In particular, it emerges that small-scale vortical features generated near the lagoon inlet can be efficiently transported toward the open sea, thus contributing to the water exchange between the two marine regions, and a realistic representation of observed residual oscillations in the area would require a very detailed knowledge of atmospheric as well as remote oceanic forcing.  相似文献   

3.
A hydrodynamic model of the Venice Lagoon and the Adriatic Sea has been developed in order to study the exchanges at the inlets of the Venice Lagoon, a complex morphological area connecting the sea and the lagoon. The model solves the shallow water equations on a spatial domain discretized by a staggered finite element grid. The grid represents the Adriatic Sea and the Venice Lagoon with different spatial resolutions varying from 30 m for the smallest channels of the lagoon to 30  km for the inner areas of the central Adriatic Sea. Data from more than ten tide gauges displaced in the Adriatic Sea have been used in the calibration of the simulated water levels. After the calibration, the tidal wave propagation in the North Adriatic and in the Venice Lagoon is well reproduced by the model. To validate the model results, empirical flux data measured by acoustic Doppler current profiler probes installed inside the inlets of Lido and Malamocco have been used and the exchanges through the three inlets of the Venice Lagoon have been analyzed. The comparison between modeled and measured fluxes at the inlets outlines the efficiency of the model to reproduce both tide- and wind-induced water exchanges between the sea and the lagoon. Even in complex areas, where highly varying resolution is needed, the model is suitable for the simulation of the dominating physical processes.  相似文献   

4.
To describe the exchange of water and sediment through the Venice Lagoon inlets a 3-D hydrodynamic and sediment transport model has been developed and applied to a domain comprising Venice Lagoon and a part of the Adriatic Sea. The model has been validated for both current velocities and suspended particle concentration against direct observations and from observations empirically derived fluxes from upward-looking acoustic Doppler current profiler probes installed inside each inlet. The model provides estimates of the suspended sediment transport in the lower 3 m of the water column that is not detected by acoustic Doppler current profiler sensors. The bedload model prediction has been validated against measured sand transport rates collected by sand traps deployed in the Lido and Chioggia inlets. Results indicate that, in the Lido inlet, 87% of the total load is in suspension, while the rest moves as bedload.  相似文献   

5.
Modeling studies of future changes in coastal hydrodynamics, in terms of storm surges and wave climate, need appropriate wind and atmospheric forcings, a necessary requirement for the realistic reproduction of the statistics and the resolution of small scale features. This work compares meteorological results from different climate models in the Mediterranean area, with a focus on the Adriatic Sea, in order to assess their capability to reproduce coastal meteorological features and their possibility to be used as forcings for hydrodynamic simulations. Five meteorological datasets are considered. They are obtained from two regional climate models, implemented with different spatial resolutions and setups and are downscaled from two different global climate models. Wind and atmospheric pressure fields are compared with measurements at four stations along the Italian Adriatic coast. The analysis is carried out both on simulations of the control period 1960–1990 and on the A1B Intergovernmental Panel for Climate Change scenario projections (2070–2100), highlighting the ability of each model in reproducing the statistical coastal meteorological behavior and possible changes. The importance of simulated global- and regional-scale meteorological processes, in terms of correct spatial resolution of the phenomena, is also discussed. Within the Adriatic Sea, the meteorological climate is influenced by the local orography that controls the strengthening of north-eastern katabatic winds like Bora. Results show indeed that the increase in spatial resolution provides a more realistic wind forcing for the hydrodynamic simulations. Moreover, the chosen setup and the global climate models that drive the regional downscalings appear to play an important role in reproducing correct atmospheric pressure fields. The comparison between scenario and control simulations shows a small increase in the mean atmospheric pressure values, while a decrease in mean wind speed and in extreme wind events is observed, particularly for the datasets with higher spatial resolution. Finally, results suggest that an ensemble of downscaled climate models is likely to provide the most suitable climatic forcings (wind and atmospheric pressure fields) for coastal hydrodynamic modeling.  相似文献   

6.
《Continental Shelf Research》2007,27(3-4):431-451
The sediment-transport mechanisms that contribute to and redistribute the modern sediment deposits on the western Adriatic continental shelf were evaluated utilizing data collected from two instrumented benthic tripods deployed at 12-m water depth, one in the northern Adriatic basin on the Po River subaqueous delta, and the other in the central Adriatic basin on the Pescara River shelf. Sediment-resuspension events driven by cold, northeasterly Bora winds dominate the along-shelf transport climatology at both tripod locations, but at the Po delta site, the southwesterly Scirocco wind events also play a significant role. At the Pescara shelf site, interaction between Bora wind-driven currents and the Western Adriatic Coastal Current strongly contributes to the resuspension and advection of suspended sediment. Interannual variability of the forcing mechanisms (including strength, frequency, and relative mix of Bora and Scirocco wind events) is evident in the three winters of data collected on the Po River subaqueous delta. In both types of wind events, and throughout all years of data collection, the net along-shelf sediment transport is significantly larger than the net across-shelf transport at the 12-m sites. This may be characteristic of low-energy environments, where sediment resuspension and transport occurs in such shallow water that it is not subjected to strong downwelling features characteristic of higher-energy environments.  相似文献   

7.
A comparison of 1927, 1970 and 2002 bathymetric surveys in the Lagoon of Venice was used to reconstruct historical changes in sedimentation. A detailed GIS-based analysis of the charts revealed the timing and pattern of geomorphic changes and allowed calculation of sediment deposition and erosion for the entire lagoon and each of its four sub-basins: Treporti, Lido, Malamocco and Chioggia.  相似文献   

8.
The authors studied surface sediments from 102 stations in four areas of the three port entrances to the Lagoon of Venice, examining the relationships between textural character, mineralogical composition, and Hg, Pb, Cd, Cu, Ni, Cr, Zn, Co and Fe content. Heavy metal distribution allowed boundaries to be fixed between polluted and nonpolluted zones. While the Cavallino area is not polluted, very high concentrations of Zn, Pb and Hg in the two central areas, facing the Lido and Malamocco port entrances, respectively, suggest that wastes mainly from industrial production of zinc are present. High concentrations of Cr in the southern part of the Chioggia area are probably due to tannery wastes reaching the sea from the Brenta river.  相似文献   

9.
This study reports the role of waves, tide, wind and freshwater discharges over the sea level in Óbidos Lagoon, a coastal system connected to the sea through a narrow and shallow mobile inlet. To address the hydrodynamic features of this coastal system, the relative importance of different physical forcings were evaluated. For this purpose, observations together with realistic and idealized numerical modeling were used. Both model and measurements show that the lagoon sea level remains above offshore sea level during storm wave periods. Hence, a simplified inlet-lagoon idealized model was described through mathematical expressions, to understand and highlight the physical processes responsible for sea-level elevation.  相似文献   

10.
The local wind bora is a well-known phenomenon on the eastern coast of the Adriatic Sea, where steep mountains, the Dinaric Alps, closely follow the coast. In a relatively undisturbed atmosphere the coastal thermal effect and the dynamic effect of orography give rise to a cool downslope land breeze, theborino, which develops at night-time, and particularly in the winter season, when the land-sea temperature contrast is large. The causes ofcold bora, with strong and gusty winds, are then attributed to the synoptic scale effects upon the local flow intensification and inland cold air supply. Since the interaction processes on various scale motions are involved in a sequence of bora spells, it is shown how the large scale anomalies may subsequently change the mesoscale characteristics of the bora environment and eventually make the bora appear as a relatively warm wind.  相似文献   

11.
The problem of resolving or parameterising small-scale processes in oceanographic models and the extent to which small-scale effects influence the large scale are briefly discussed and illustrated for a number of cases. For tides and surges in near-shore regions, the advantages of using a graded mesh to resolve coastal and estuarine small-scale features are demonstrated in terms of a west coast of Britain unstructured mesh model. The effect of mesh resolution upon the accuracy of the overall solution is illustrated in terms of a finite element model of the Irish Sea and Mersey estuary. For baroclinic motion at high Froude number, the effect of resolving small-scale topography within a non-hydrostatic model is illustrated in terms of tidally induced mixing at a single sill, or two closely spaced sills. The question of how to parameterise small-scale non-linear interaction processes that lead to significant mixing, in a form suitable for coarser grid hydrostatic models, is briefly considered. In addition, the importance of topographically induced mixing that occurs in the oceanic lateral boundary layer, namely, the shelf edge upon the large-scale ocean circulation is discussed together with the implications for coarse grid oceanic climate models. The use of unstructured grids in these models to enhance resolution in shelf-edge regions in a similar manner to that used in storm surge models to enhance near coastal resolution is suggested as a suitable “way forward” in large-scale ocean circulation modelling.  相似文献   

12.
Persistent scatterer interferometry (PSI) provides a new perspective to monitor the movements of coastal structures due to long-term consolidation using satellite-borne remote sensors. The method has the advantages of detecting the displacements at a very high spatial (from 1 to a few meters) and temporal (from 10 to 30?days) resolution. Cost-effective monitoring of complex and large (some kilometer long) structures can be done over long time (up to 10?years) intervals and at large scales (tens times tens km2) of investigation. Here, these measurements are integrated with geotechnical, site-specific measurements to characterize in a unique framework the long-term compressibility of coastal soils over large areas. The approach is tested on the 60-km-long coastland of the Venice Lagoon, Italy. An accurate quantification of the movements of coastal infrastructures at the Venice coastland is carried out by PSI using ENVISAT ASAR and TerraSAR-X images acquired from April 2003 to December 2009 and from March 2008 to January 2009, respectively. Several nearshore and offshore structures were constructed over the decades to protect Venice and its coastal environment from sea storms and high tides. Long jetties were built at the lagoon inlets since the end of the 18th century, significantly reinforced between 1994 and 1997, and finally reshaped since 2003 in the framework of the MOSE construction (i.e., the project of mobile barriers for the temporarily closure of the lagoon to the sea). The measured displacements range from a few mm/year for the structures older than 10?years to 50–70?mm/year for those realized a few years ago. The PSI measurements are combined with the outcome of a detailed geomechanical characterization of the lagoon subsoil obtained by a field-scale experiment started at the end of 2002 and monitored to 2008. The use of the stress-strain properties derived from the trial embankment and the actual lithostratigraphy below the coastal structures, which is available from several piezocone profiles and boreholes, allows for the computation of secondary compression (consolidation) rates that match very well the PSI-derived movements. The results provide important information on the potential of using PSI to characterizing geotechnical properties (magnitude and distribution) of coastal deposits, as well as to estimate the expected time-dependent geomechanical response of coastal structures or other large constructions.  相似文献   

13.
The Adriatic Sea general circulation model coupled to a third generation wave model SWAN and a sediment transport model was implemented in the Adriatic Sea to study the dynamics of the sediment transport and resuspension in the northern Adriatic Sea (NAS) during the Bora event in January 2001. The bottom boundary layer (BBL) was resolved by the coupled model with high vertical resolution, and the mechanism of the wave–current interaction in the BBL was also represented in the model. The study found that, during the Bora event of 13–17 January 2001, large waves with significant wave height 2 m and period of 5 s were generated by strong winds in the northwestern shelf of the Adriatic where the direction of wave propagation was orthogonal to the current. The combined motion of the wave and current in the BBL increased the bottom stress over the western Adriatic shelf, resulting in stronger sediment resuspension there. Combining stronger bottom resuspension and strong upward vertical flux of resuspended sediments due to turbulent mixing, the model predicted that sediment concentration near the Po River was much higher than that predicted by the model run without wave forcing. The study also shows that wave–current interaction in the BBL reduced the western Adriatic Coastal Currents (WACCs) in the shallower north. It is concluded that wave forcing significantly changed the sediment distributions and increased the total horizontal fluxes over the western shelf. These results signified wave effect on sediment flux and distribution in the NAS, and suggested that waves cannot be neglected in the study of dynamics of sediment transport and resuspension in the shallow coastal seas. By including the tidal forcing in the coupled model, we also examined the effect of tides on the sediment transport dynamics in the NAS.  相似文献   

14.
Observations of the Hudson River plume were taken in the spring of 2006 in conjunction with the Lagrangian Transport and Transformation Experiment using mooring arrays, shipboard observations, and satellite data. During this time period, the plume was subjected to a variety of wind, buoyant, and shelf forcings, which yield vastly different responses in plume structure including a downstream recirculating eddy. During weak and downwelling winds, the plume formed a narrow buoyant coastal current that propagated downstream near the internal wave speed. Freshwater transport during periods when the downwelling wind was closely aligned with the coast was near the river discharge values. During periods with a cross-shore component to the wind, freshwater transport in the coastal current estimated by the mooring array is less than the river discharge due to a widening of the plume that leads to the internal Rossby radius scaling for the plume width to be invalid. The offshore detachment of plume and formation of a downstream eddy that is observed surprisingly persisted for 2 weeks under a variety of wind forcing conditions. Comparison between mooring, shipboard, and satellite data reveal the downstream eddy is steady in time. Shipboard transects yield a freshwater content equal to the previous 3 days of river discharge. The feature itself was formed due to a large discharge following a strong onshore wind. The plume was then further modified by a brief upwelling wind and currents influenced by the Hudson Shelf Valley. The duration of the detachment and downstream eddy can be explained using a Wedderburn number which is largely consistent with the wind strength index described by Whitney and Garvine (J Geophys Res 110:C03014 1997).  相似文献   

15.
The purpose of this study is to evaluate the degree of PCB contamination of Venice lagoon water. The PCB determination was made on the filtrate ("dissolved PCBs") and on the particulate collected on the filters ("particulate PCBs") by continuous liquid-liquid extraction and sonication, respectively, and by HRGC-LRMS analysis. An estimation of the procedural and "working" blanks was also made. Water samples were collected at six sites, selected to represent all the pollution situations present in the lagoon, and at a site in the Adriatic Sea. The range of the total sum ("dissolved plus particulate") of 49 congener concentrations falls between 355 and 1868 pgl(-1); the "dissolved" fraction concentrations (250-792 pgl(-1)) are greater at six sites than that of the "particulate" fraction (105-1273 pgl(-1)). Chemometric analyses suggest that the PCB congener pattern in the Venice Lagoon is different from that in the Adriatic Sea.  相似文献   

16.
《Continental Shelf Research》2007,27(3-4):452-474
Crenulated clinoforms of complex and uncertain origin characterize large portions of the Late-Holocene prograding mud wedge in the western Adriatic continental shelf. Sediment failure was originally postulated as the most plausible mechanism for the formation of the crenulations. Subsequent work has shown that, although the origin of the crenulations may have been related to deformation processes, their maintenance through time seems to be better explained by different sediment accumulation rates in the flat and steep flanks. In order to establish relationships between active sediment dynamics, across-shelf transport and sediment accumulation in these crenulated clinoforms, two tripods and a mooring were deployed off the Pescara River during autumn and winter 2002–2003 as part of the EuroSTRATAFORM program, and in combination with the Po and Apennine Sediment Transport and Accumulation (PASTA) study. The tripods were placed on the shallow topset region and close to the clinoform roll-over point (i.e., offlap break), at 12 and 20-m water depth, respectively, and the mooring was located at 50-m depth, in the crenulated foreset region. Several sediment-resuspension events were recorded, mainly related to Bora and Sirocco storms, during which wave–orbital and current velocities increased considerably. Sediment transport in the topset region was predominantly towards the SE, following the direction of the coastal current and the bathymetry, but showing a significant offshore component at the roll-over point that was intensified during storm events. Currents at the foreset region were also directed to the SE. In mid-waters they were clearly aligned with the local bathymetry, whereas near the bottom they had an important and persistent offshore component. This current behavior seems to be associated with an intense bottom Ekman transport that causes the near-bottom current to be deflected to the left (i.e., offshore) with respect to the direction of the surface current. This mechanism enhances the suspended-sediment transport from the topset down the foreset region along the Adriatic prograding mud wedge, contributing to the basinward clinoform progradation and controlling the depth of the clinoform roll-over point. In addition, activity of near-inertial internal waves was also recorded by the near-bottom instrument deployed in the foreset region. During periods characterized by a strong near-inertial signal, increases of the water turbidity clearly coincided with an intensified offshore velocity component, which suggest that this mechanism also contributes to the transport of suspended sediment across the clinoform. Both the bottom Ekman transport and the internal waves are mechanisms that could be responsible for the formation/maintenance of the Adriatic seafloor crenulations until present-day, although several arguments suggest that the latter likely plays the major role.  相似文献   

17.
The western Baltic Sea infront of the German coast is a highly variable dynamical system, dominated by a complex and small-scale morphometry, the water exchange between the Baltic and North Seas, and driven by local wind. Neither data collection, nor satellite images or model simulations alone were able to explain the observed spatial patterns and transport processes. Therefore, all these methods were combined to explain the dynamical features and to systematise them according to the typical local wind pattern and time series. The aim was to develop an instrument for regional authorities which supports the interpretation of coastal water monitoring data and forms a basis for an improved monitoring strategy. Satellite data of sea surface temperature and ocean colour from the sensors NOAA-AVHRR and SeaWiFS were applied for synoptic investigations in the entire region and Landsat-7-ETM+ for regional studies. Model simulations were performed for the western Baltic using a 3D model MOM-3 and for the Szczecin Lagoon using 2D model FEMFLOW. For the first time, regional particularities in the coastal dynamical features and processes are derived for the main wind directions and for transitions between dominant wind situations west and east as derived from wind statistics. The simulated transport of particles released from different coastal and open sea sources indicate the affected areas during changing forcing conditions. The results support the interpretation of acquired coastal monitoring data as well as the assessment and optimisation of the monitoring programme.  相似文献   

18.
The Odra river flood of July through August 1997 transported a large additional volume of water into the Szczecin Lagoon area for a period of about one month. The dispersion of this water in the Szczecin Lagoon and Pomeranian Bight was simulated using the operational hydrodynamic model of the North Sea and Baltic Sea operated by the Federal Maritime and Hydrographic Agency of Germany (BSH). The model system receives as input meteorological forecast fields from the EUROPA model of the German Weather Service. As a result of the model simulation, the temporal development of the river plume can be described as follows: First the eastern part of Szczecin Lagoon, the Zalew Wielki, filled with flood water displacing θnormalρ Odra river water from that area. After about a week, Odra river flood water started to flow into the Pomeranian Bight. Its dispersion within Szczecin Lagoon was by no means uniform. The Kleines Haff, the western part of the Lagoon, was not much affected at first. When large labelled water masses had already left the Zalew Wielki area through the Swina river, at most only about half the water volume in Kleines Haff had been replaced by Odra flood water. In the Pomeranian Bight, the concentration was higher at the coast of Usedom – at least initially – than at the coast of Wolin. After 30 August 1997, northwesterly winds caused undiluted Baltic water to flow from the northern to the southern part of the Pomeranian Bight, pushing the water body marked, or distinguished, by Odra water eastward along the coast of Wolin. At the same time, outflow began from Kleines Haff through the Peenestrom into the Greifswalder Bodden. Due to light winds, and hence limited vertical mixing in summer, the proportion of freshwater in Baltic surface water reached about 50% in the southern Pomeranian Bight. Near Rügen, it fell below 10%. Within 2 months of stronger wind caused major shifts of the water bodies concerned. The scale considerations and model simulations discussed in this paper allowed qualitative estimates to be made in the course of the flood event, which were later confirmed by measurements, presented at a HELCOM (Helsinki Commission, Baltic Marine Environment Protection Commission) Scientific Workshop in January 1998.  相似文献   

19.
Major river systems discharging into continental shelf waters frequently form buoyant coastal currents that propagate along the continental shelf in the direction of coastal trapped wave propagation (with the coast on the right/left, in the northern/southern hemisphere). The combined flow of the Uruguay and Paraná Rivers, which discharges freshwater into the Río de la Plata estuary (Lat. ∼36°S), often gives rise to a buoyant coastal current (the ‘Plata plume’) that extends northward along the continental shelf off Uruguay and Southern Brazil. Depending upon the prevailing rainfall, wind and tidal conditions, the Patos/Mirim Lagoon complex (Lat. ∼32°S) may also produce a freshwater outflow plume that expands across the inner continental shelf. Under these circumstances the Patos outflow plume can be embedded in temperature, salinity and current fields that are strongly influenced by the larger Plata plume. The purpose of this paper is to present observations of such an embedded plume structure and to determine the dynamical characteristics of the ambient and embedded plumes.  相似文献   

20.
Clay mineralogy, texture size and statistical analyses were carried out on surface sediments from the continental shelf of Chennai, Bay of Bengal, India. The purpose of this study is to characterize the clay mineral distribution and its relation to the hydrodynamics off Chennai to identify the sources and transport pathways of the marine sediments. Characterization of clay minerals in coastal sediments by Fourier Transform Infrared (FTIR) spectroscopy has provided the association of quartz, feldspar, kaolinite, chlorite, illite and iron oxides (magnetite and hematite) derived from river catchments and coastal erosion. Kaolinite, chlorite, illite, iron oxides, and organic matter are the dominant minerals in Cooum, and Adayar region. High quartz and feldspar zones were identified in Marina, which are being confined the sand zone and paralleling the coast. The strong relationships among the wave energy density, sand, quartz and carbonate revealed that wave induced littoral drift system play a dominant role in transportation and deposition of sediments in the Chennai coast. The sediment texture and minerals data are in agreement well with the previous results of hydrodynamics and littoral drift models in this region. Multivariate statistical analyses (correlation, cluster and factor analyses) were carried out and obtained results suggested that clay minerals and organic matter are trapped in silt and clay particles, whereas quartz, feldspar and carbonate are associated with sand particles. Results of sediment sources and transport processes from this study will be useful to predict the fate of the pollutants released from land or the potential change in sediment delivery to coastal areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号