首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report Permian (ca. 272 Ma ±5.4 Ma) felsic dykes that intrude into the Neoproterozoic (ca. 750 Ma) magmatic suite of the Nagar Parkar Igneous Complex (NPIC), the western extension of the Malani Igneous Suite (MIS). The NPIC consists of Neoproterozoic basement amphibolites and granites (riebeckite–aegirine gray granites and the biotite–hornblende pink granites), all of which are intruded by several generations of mafic and felsic dykes. Granitic magmatism occurred in the Late Neoproterozoic (ca. 750 Ma) due to the subduction‐, followed by the rift‐related tectonic regime during the breakup of the Rodinia supercontinent. U–Th–Pb zircon and monazite CHIME age data of 700–800 Ma from the earlier generation porphyritic felsic dykes suggest the dyke intrusion was coeval or soon after the emplacement of the host granites. Our findings of Permian age orthophyric felsic dykes provide new insights for the prevalence of active tectonics in the MIS during late Paleozoic. Textural features and geochemistry also make the orthophyric dykes distinct from the early‐formed porphyritic dykes and the host granites. Our newly obtained age data combined with geochemistry, suggest the existence of magmatism along the western margin of India (peri‐Gondwana margin) during Permian. Like elsewhere in the region, the Permian magmatism in the NPIC could be associated with the rifting of the Cimmerian micro‐continents from the Gondwana.  相似文献   

2.
In order to provide references of the subduction process of the Paleo‐Pacific Plate beneath the Jiamusi Block, this paper studied the clastic rocks of the Nanshuangyashan Formation using modal analysis of sandstones, mudstone elements geochemistry, and detrital zircon U–Pb dating. These results suggest the maximum depositional age of the Nanshuangyashan Formation was between the Norian and Rhaetian (206.8 ±4.6 Ma, mean standard weighted deviation (MSWD) = 0.17). Whole‐rock geochemistry of mudstone indicates that source rocks of the Nanshuangyashan Formation were primarily felsic igneous rocks and quartzose sedimentary rocks, which were mainly derived from the stable continental block and a magmatic arc. Detrital zircon analysis showed the Nanshuangyashan Formation samples recorded four main age groups: 229–204 Ma, 284–254 Ma, 524–489 Ma and 930–885 Ma, and the provenances were attributed to the Jiamusi Block and a Late Triassic magmatic arc near the study area. Furthermore, the eastern Jiamusi Block was a backarc basin, affected by the subduction of the Paleo‐Pacific Plate in the Late Triassic, but the magmatic arc related to the subduction near the study area finally died out due to tectonic changes and stratigraphic erosion.  相似文献   

3.
U–Pb Sensitive High‐Resolution Ion MicroProbe (SHRIMP) dating of zircon in combination with (U–Th)/He dating of zircon and apatite is applied to constrain the emplacement and exhumation history of the youngest granitic rocks in the Western Carpathians collected in the Central Slovakian Neovolcanic Field. Two samples of diorite from the locality Banky, and granodiorite from Banská Hodru?a yield the U–Pb zircon concordia ages of 15.21 ±0.19 Ma and 12.92 ±0.27 Ma, respectively, recording the time of zircon crystallization and the intrusions’ emplacement. Zircon (U–Th)/He ages of 14.70 ±0.94 (Banky) and 12.65 ±0.61 Ma (Banská Hodru?a), and apatite (U–Th)/He ages of 14.45 ±0.70 Ma (diorite) and 12.26 ±0.77 Ma (granodiorite) are less than 1 Myr younger than the corresponding zircon U–Pb ages. For both diorite and granodiorite rocks their chronological data thus document a simple cooling process from magmatic crystallization/solidification temperatures to near‐surface temperatures in the Middle Miocene, without subsequent reheating. Geospeedometry data suggest for rapid cooling at an average rate of 678 ±158 °C/Myr, and the exhumation rate of 5 mm/year corresponding to active tectonic‐forced exhumation. The quick cooling is interpreted to record the exhumation of the studied granitic rocks complex that closely followed its emplacement, and was likely accompanied by a drop in the paleo‐geothermal gradient due to cessation of volcanic activity in the area.  相似文献   

4.
The new result of SHRIMP U–Pb zircon dating of the Kinshozan Quartz Diorite from the Kanto Mountains, Japan, provides 281.5 ± 1.8 Ma. The age is 30 m.y. older than the available age of the Kinshozan Quartz Diorite obtained by hornblende K–Ar method. The new U–Pb zircon age represents the time of crystallization of the Kinshozan Quartz Diorite. The hornblende K–Ar age indicates the time that the Kinshozan Quartz Diorite cooled down to 500 °C which is the closure temperature of the systematics. Permian granites are found in small exposures in Japan, and frequently referred to as 250 Ma granites. The Kinshozan Quartz Diorite is considered as a type of the 250 Ma granites, and the age was influential in establishing a model of Paleozoic tectonic evolution for the Japanese Islands. The new age of the Kinshozan Quartz Diorite provides the opportunity to re‐examine the model. The Kinshozan Quartz Diorite and other Permian granites in the south of the Median Tectonic Line of Japan were constituents of the Paleo‐Ryoke Belt. The geochemical characteristics of the granitic rocks in the Paleo‐Ryoke Belt indicated that the granitic rocks were formed in a primitive island arc environment, and the new trace element data also support this interpretation. Examination of the available data and results of the present study suggests the late Paleozoic granitic activity in Japan as follows. At about 310–290 Ma, arc magmatism generated adakitic granites and other granites in the South Kitakami Belt. Quartz diorite and tonalites of primitive characteristic, such as the Kinshozan Quartz Diorite and granites in the Maizuru Belt appear to have been formed at the immature island arc, and accreted to the Japanese Islands at the end of Paleozoic or early Mesozoic era. During 260–240 Ma, granitic activity took place in the Hida and Maizuru Belts as a part of the Asian continent.  相似文献   

5.
The belt boundary thrust within the Cretaceous–Neogene accretionary complex of the Shimanto Belt, southwestern Japan, extends for more than ~ 1 000 km along the Japanese islands. A common understanding of the origin of the thrust is that it is an out of sequence thrust as a result of continuous accretion since the late Cretaceous and there is a kinematic reason for its maintaining a critically tapered wedge. The timing of the accretion gap and thrusting, however, coincides with the collision of the Paleocene–early Eocene Izanagi–Pacific spreading ridges with the trench along the western Pacific margin, which has been recently re‐hypothesized as younger than the previous assumption with respect to the Kula‐Pacific ridge subduction during the late Cretaceous. The ridge subduction hypothesis provides a consistent explanation for the cessation of magmatic activity along the continental margin and the presence of an unconformity in the forearc basin. This is not only the case in southwestern Japan, but also along the more northern Asian margin in Hokkaido, Sakhalin, and Sikhote‐Alin. This Paleocene–early Eocene ridge subduction hypothesis is also consistent with recently acquired tomographic images beneath the Asian continent. The timing of the Izanagi–Pacific ridge subduction along the western Pacific margin allows for a revision of the classic hypothesis of a great reorganization of the Pacific Plate motion between ~ 47 Ma and 42 Ma, illustrated by the bend in the Hawaii–Emperor chain, because of the change in subduction torque balance and the Oligocene–Miocene back arc spreading after the ridge subduction in the western Pacific margin.  相似文献   

6.
Abstract   The development of voluminous granitic magmatism and widespread high-grade metamorphism in Mid-Cretaceous southwest Japan have been explained by the subduction of a spreading ridge (Kula–Pacific or Farallon–Izanagi plate boundaries) beneath the Eurasian continent and the formation of a slab window. In the present study, the thermal consequences of the formation of a slab window beneath a continental margin are evaluated through a 2-D numerical simulation. The model results are evaluated by comparison with the Mid-Cretaceous geology of southwest Japan. Of particular interest are the absence of an amphibolite- to granulite-facies metamorphic belt near the Wadati–Benioff plane, and significant melting of the lower crustal-mafic rocks sufficient to form a large amount of granitic magma. Because none of the model results simultaneously satisfied these two geological interpretations, it is suggested that subduction of plate boundaries in Mid-Cretaceous southwest Japan was not associated with the opening of a slab window. According to previous studies, and the results of the present study, two different tectonic scenarios could reasonably explain the geological interpretations for Mid-Cretaceous southwest Japan: (i) The spreading ridge did not subduct beneath the Eurasian continent, but was located off the continental margin, implying the continuous subduction of very young oceanic lithosphere; (ii) ridge subduction beneath the continental margin occurred after active spreading had ceased. Consequently, in both tectonic scenarios, the subduction of plate boundaries at the Mid-Cretaceous southwest Japan was not associated with a slab window, but very young (hot) oceanic lithosphere.  相似文献   

7.
Timing of the initial collision between the Indian and Asian continents   总被引:3,自引:0,他引:3  
There exist three mainstream opinions regarding the timing of the initial collision between the Indian and Eurasian continents,namely,65±5,45±5,and 30±5 Ma.Five criteria are proposed for determining which tectonic event was related to the initial collision between India and Asia:the rapid decrease in the rate of plate motion,the cessation of magmatic activity originating from the subduction of oceanic crust,the end of sedimentation of oceanic facies,the occurrence of intracontinental deformation,and the exchange of sediments sourced from two continents.These criteria are used to constrain the nature of these tectonic events.It is proposed that the 65±5 Ma tectonic event is consistent with some of the criteria,but the upshot of this model is that the magmatic activity originating from the Tethyan subduction since the Mesozoic restarted along the southern margin of the Asian continent in this time after a brief calm,implying that the subduction of the Neotethys slab was still taking place.The magmatic activity that occurred along the southern margin of the Asian continent had a 7-Myr break during 72-65 Ma,which in this study is interpreted as having resulted from tectonic transformation from subduction to transform faulting,indicating that the convergence between the Indian and Asian continents was once dominated by strike-slip motion.The 30±5 Ma tectonic event resulted in the uplift of the Tibetan Plateau,which was related to the late stage of the convergence between these two continents,namely,a hard collision.The 45±5 Ma tectonic event is in accordance with most of the criteria,corresponding to the initial collision between these two continents.  相似文献   

8.
The Yongchun pluton is a Late Cretaceous adakitic intrusion in South Fujian Province, Southeast China, with associated metal mineralization. An understanding of the Yongchun pluton is helpful in tectono‐magmatic evolutionary processes, and is important in explaining the origin of related porphyry‐type deposits. Zircons from three samples of the pluton were analyzed by laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS), yielding U–Pb ages of 99.50 ±0.87 Ma, 97.74 ±0.59 Ma, and 99.65 ±0.92 Ma. These ages are similar to those of the Sifang, Luoboling, and Sukeng plutons, all of which are related to Cu–Pb–Zn–Mo mineralization within the study area. The Yongchun pluton comprises high‐potassium, calc‐alkaline, metaluminous rocks, with average A/CNK values of 0.91, 87Sr/86Sr ratios of 0.705 51 to 0.706 83, εNd(t) values of ?4.63 to ?5.90, and two‐stage Nd model (T2DM) ages of 1.49–1.39 Ga, indicating the magmas were generated by partial melting of Mesoproterozoic continental crust mixed with mantle‐derived magmas. The pluton has geochemical characteristics typical of adakites, such as a high Sr content (average 553 ppm), and low Y (average 15.2 ppm) and Yb (average 1.61 ppm) contents, indicating that the parental magma was formed under high‐pressure conditions. The magmatism was associated with thickening of the lower crust during a change in subduction angle and convergence rate of the paleo‐Pacific Plate at 100 Ma. The compression was limited to South Fujian Province.  相似文献   

9.
Within the Tethyan realm, data for the subduction history of the Permo–Triassic Tethys in the form of accretionary complexes are scarce, coming mainly from northwest Turkey and Tibet. Herein we present field geological, petrological and geochronological data on a Triassic accretionary complex, the A?vanis metamorphic rocks, from northeast Turkey. The A?vanis metamorphic rocks form a SSE–NNW trending lozenge‐shaped horst, ~20 km long and ~6 km across, bounded by the strands of the active North Anatolian Fault close to the collision zone between the Eastern Pontides and the Menderes–Taurus Block. The rocks consist mainly of greenschist‐ to epidote‐amphibolite‐facies metabasite, phyllite, marble and minor metachert and serpentinite, interpreted as a metamorphic accretionary complex based on the oceanic rock types and ocean island basaltic, mid‐ocean ridge basaltic and island‐arc tholeiitic affinities of the metabasites. This rock assemblage was intruded by stocks and dikes of Early Eocene quartz diorite, leucogranodiorite and dacite porphyry. Metamorphic conditions are estimated to be 470–540°C and ~0.60–0.90 GPa. Stepwise 40Ar/39Ar dating of phengite–muscovite separates sampled outside the contact metamorphic aureoles yielded steadily increasing age spectra with the highest incremental stage corresponding to age values ranging from ~180 to 209 Ma, suggesting that the metamorphism occurred at ≥ 209 Ma. Thus, the A?vanis metamorphic rocks represent the vestiges of the Late Triassic or slightly older subduction in northeast Turkey. Estimated P–T conditions indicate higher temperatures than those predicted by steady state thermal models for average subduction zones, and can best be accounted for by a hot subduction zone, similar to the present‐day Cascadia. Contact metamorphic mineral assemblages around an Early Eocene quartz diorite stock, on the other hand, suggest that the present‐day erosion level was at depths of ~14 km during the Early Eocene, indicative of reburial of the metamorphic rocks. Partial disturbance of white‐mica Ar–Ar age spectra was probably caused by the reburial coupled with heat input by igneous activity, which is probably related to thrusting due to the continental collision between Eastern Pontides and the Menderes–Taurus Block.  相似文献   

10.
The Ryoke Metamorphic complex has undergone low‐P/T metamorphism and was intruded by granitic magmas around 100 Ma. Subsequently, the belt was uplifted and exposed by the time deposition of the Izumi Group began. The tectonic history of uplift, such as the timing and processes, are poorly known despite being important for understanding the spatiotemporal evolution of the Ryoke Metamorphic Belt. U–Pb zircon ages from sedimentary rocks in the forearc and backarc basins are useful for constraining uplift and magmatism in the provenance. U–Pb dating of detrital zircons from 12 samples (four sandstones and eight granitic clasts) in the Yuasa–Aridagawa basin, a Cretaceous forearc basin in the Chichibu Belt of Southwest Japan, gave mostly ages of 60–110 Ma. Granitic clasts contained in conglomerate suggest that granitic intrusions predate the formation of Coniacian and Maastrichtian conglomerate. Emplacement ages of granitic bodies originated from granitic clasts in Coniacian conglomerate are (110.2 ±1.3) Ma, (106.1 ±1.8) Ma, (101.8+5.8–3.8) Ma, and (95.3 ±1.4) Ma; for granitic clasts in Maastrichtian conglomerate, (89.6 ±1.8) Ma, (87.3+2.4–1.8) Ma, (85.7 ±1.2) Ma, and (82.7 ±1.2) Ma. The results suggest that detrital zircons in the sandstones were mainly derived from volcanic eruptions contemporaneous with depositional age, and plutonic rocks of the Ryoke Metamorphic Belt. Zircon ages of the granitic clast samples also indicate that uplift in the provenance began after Albian and occurred at least during the Coniacian to Maastrichtian. Our results, together with the difference of provenance between backarc and forearc basins suggest that the southern marginal zone of the Ryoke Metamorphic Belt was uplifted and supplied a large amount of clastic materials to the forearc basins during the Late Cretaceous.  相似文献   

11.
The subduction of “hot” Shikoku Basin and the mantle upwelling related to the Japan Sea opening have induced extensive magmatism during the middle Miocene on both the back-arc and island-arc sides of southwest Japan. The Goto Islands are located on the back-arc side of northwestern Kyushu, and middle Miocene granitic rocks and associated volcanic, hypabyssal, and gabbroic rocks are exposed. The igneous rocks at Tannayama on Nakadori-jima in the Goto Islands consist of gabbronorite, granite, granite porphyry, diorite porphyry, andesite, and rhyolite. We performed detailed geological mapping at a 1:10 000 scale, as well as petrographical and geochemical analyses. We also determined the zircon U–Pb age dating of the igneous rocks from Tannayama together with a granitic rock in Yagatamesaki. The zircon U–Pb ages of the Tannayama igneous rocks show the crystallization ages of 14.7 Ma ± 0.3 Ma (gabbronorite), 15.9 Ma ± 0.5 Ma (granite), 15.4 Ma ± 0.9 Ma (granite porphyry), and 15.1 Ma ± 2.1 Ma (rhyolite). Zircons from the Yagatamesaki granitic rock yield 14.5 Ma ± 0.7 Ma. Considering field relationships, new zircon data indicate that the Tannayama granite formed at ~16–15 Ma, and the gabbronorite, granite porphyry, diorite porphyry, andesite, and subsequently rhyolite formed at 15–14 Ma, which overlaps a plutonic activity of the Yagatamesaki. The geochemical characteristics of the Tannayama igneous rocks are similar to those of the tholeiitic basalts and dacites of Hirado, and the granitic rocks of Tsushima in northwestern Kyushu. This suggests that the Tannayama igneous rocks can be correlated petrogenetically with the igneous rocks in those areas, with all of them generated by the upwelling of hot mantle diapirs during crustal thinning in an extensional environment during the middle Miocene.  相似文献   

12.
The Mawat ophiolite is part of the Mesozoic Neo‐Tethyan ophiolite belt of the Middle East and is located in the Zagros Imbricate Zone of Iraq. It represents fossil fragments of the Neo‐Tethyan oceanic lithosphere within the Alpine collisional system between the Arabian and Eurasia Plates. The first U–Pb zircon dating of the Daraban leucogranite from the Mawat ophiolite provides a 207Pb–206Pb age of 96.8 ± 6.0 Ma. The age is 59.0 ± 6.0 m.y. older than the previously published age of the Daraban leucogranite obtained by 40Ar–39Ar muscovite dating method. The U–Pb dating of magmatic zircons collected from the Daraban leucogranite, which intrudes into the Mawat ophiolite, reveals that melting of the pelagic sediment beneath the hot Zagros proto‐ophiolite in an intra‐oceanic arc environment led to anatexis at the subduction front and the generation of granitic melts at 96.8 ± 6.0 Ma, which were emplaced in the overlaying mantle wedge. This process was a response to the initial formation of the Neo‐Tethys ophiolite above a northeast‐dipping intra‐oceanic subduction zone at 96.8 ± 6.0 Ma. Published 40Ar–39Ar muscovite dating from the same leucogranite dike yields plateau ages of 37.7 ± 0.3 Ma, reflecting that the age was reset during the Arabia–Eurasia continental collision. Therefore, the bimodal age populations from the granitic intrusion in the Mawat ophiolite preserve a record of the subduction to the collision cycle of the Zagros Orogenic Belt. The 59.0 ± 6.0 m.y. age difference from the Daraban leucogranite represents the duration of the subduction‐collision cycle of the Zagros Orogenic Belt in the Kurdistan region of Iraq and the time span for the closure of the Neo‐Tethys Ocean along the northern margin of the Arabian plate.  相似文献   

13.
The Solonker Suture Zone is thought to record the terminal evolution of the Central Asian Orogenic Belt (CAOB) in Inner Mongolia. However, two contrasting interpretations of the timing of suturing of the Solonker Suture Zone exist: (i) Permian to Early Triassic; and (ii) Middle Devonian or Late Devonian to Carboniferous. The Shuangjing Schist is exposed in the Linxi area along the Xar Moron Fault Zone, which marks the southern boundary of the Solonker Suture Zone in the eastern section of the CAOB, and thus provides insight into the timing of suturing of the Solonker Suture Zone. Detailed and systematic analysis of the petrology and geochemistry of the Shuangjing Schist shows that the Shuangjing Schist developed by greenschist facies prograde metamorphism of a volcanisedimentary rock series protolith. The volcanic parts of the Shuangjing Schist are a calc‐alkaline series with large volumes of intermediate members and subordinate acidic members. Volcanism occurred in a magmatic arc on the continental margin and was induced by subduction‐related magmatism resulting from mantle metasomatism. The sedimentary parts of the Shuangjing Schist reflect a transition from continental shelf to abyssal plain sedimentation. The formation of the Shuangjing Schist is suggested to be related to closure of an arc/forearc‐related ocean basin. The timing is constrained by a laser ablation inductively coupled plasma–mass spectrometry (LA‐ICP–MS) U–Pb magmatic zircon age of 298 ± 2 Ma from a carbonaceous biotite–plagioclase schist that was intruded by granite at 272 ± 2 Ma. In the Linxi area, southward subduction of the arc/forearc basin led to uplift, thickening, collapse, and erosion of the overriding continental crust. Collapse induced extension and widespread magmatism along the volcanic arc at the northern margin of the North China Craton. The closure of the arc/forearc‐related oceanic basin led to the formation of Late Permian to Middle Triassic collisional granites and the subsequent end of the collision of the Solonker Suture Zone.  相似文献   

14.
Kenshiro  Otsuki 《Island Arc》1992,1(1):51-63
Abstract The Izanagi plate subducted rapidly and obliquely under the accretionary terrane of Japan in the Cretaceous before 85 Ma. A chain of microcontinents collided with it at about 140 Ma. In southwest Japan the major part of it subducted thereafter, but in northeast Japan it accreted and the trench jumped oceanward, resulting in a curved volcanic front. The oblique subduction and the underplated microcon-tinent caused uplifting of high-pressure (high-P) metamorphic rocks and large scale crustal shortening in southwest Japan. The oblique subduction caused left-lateral faulting and ductile shearing in northeast Japan. The arc sliver crossed over the high-temperature (high-T) zone of arc magmatism, resulting in a wide high-T metamorphosed belt. At about 85 Ma, the subduction mode changed from oblique to normal and the tectonic mode changed drastically. Just after this the Kula/Pacific ridge subducted and the subduction rate of the Pacific plate decreased gradually, causing the intrusion of huge amounts of granite magma and the eruption of acidic volcanics from large cauldrons. The oblique subduction of the Pacific plate resumed at 53 Ma and the left-lateral faults were reactivated.  相似文献   

15.
Regional metamorphic belts of the Japanese Islands   总被引:1,自引:0,他引:1  
Takashi  Nakajima 《Island Arc》1997,6(1):69-90
Abstract An overview of the regional metamorphic belts of Japan is given in the context of the tectonic evolution of the Japanese Islands. The Japanese Islands were situated on an active margin of the Eurasian continent or its constituent landmass before their assembly during the Phanerozoic. The Japanese Islands are composed mainly of metamorphosed and unmetamorphosed accretionary complexes, granitoids and their effusive equivalents that were formed by the Cordilleran-type orogeny. The metamorphic belts are regarded essentially as a deep-seated portion of an accretionary complex. In spite of continuous subduction of oceanic plates beneath the continents, these orogenic rocks were formed quite episodically, as evidenced by discontinuous matrix ages of the accretionary complexes and a striking concentration of isotopic ages of the granitoids. A systematic along-arc age shift of Cretaceous large-scaled granitic magmatism and regional metamorphism suggests a tectonic control such as ridge subduction, which triggered the episodic orogeny. A tectonic model based on the paired metamorphic belts, combined with the non-steady tectonic control, works well to explain this magmatism and metamorphism in a single arc-trench system as a continental margin process. However, the juxtapositional process of the paired metamorphic belts is still a problem. Two possible cases, namely transcurrent displacement and back-arc overthrusting are discussed.  相似文献   

16.
Pseudosections for two sediments and one basalt calculated in the system K2O–Na2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–SiO2–H2O for the P–T range 10 to 35 kbar, 300 to 900°C give useful insights into the amount of H2O released from oceanic crust in subduction zones. In cold subduction zones (20 kbar–300°C to 35 kbar–500°C) hydrous minerals storing 3 to 4 wt% H2O are still present in metasediments at depths of 120 km. In the same environment, metabasite releases 1 wt% H2O in the depth range 100 to 120 km, but 4.5 wt% H2O is transported to greater depths. In hot subduction zones (300°C hotter than the cold subduction zone at 100 km depth), dehydration events of metasediments in the depth range 50 to 80 km correspond to the breakdown of chlorite and paragonite. In the calculations no further water is released at greater depths because the modal content of phengite, the only hydrous mineral phase at these depths, remains almost constant. For the same P–T path, metabasite shows continuous dehydration between 40 and 80 km releasing almost 3 wt% H2O. At 120 km depth less than 0.4 wt% of H2O remains. In an average modern subduction zone (~6°C/km) most dehydration of sediments occurs at depths of 70 to 100 km and that of basalts at depths of 80 to 120 km. Only 1.3 wt% H2O in metasediments and 1.6 wt% H2O in metabasalt has the potential to be subducted to depths greater than 120 km. The dehydration behavior of sediments concurs with the generally held idea that subduction zone fluids are most effectively transported to great depths by cold subduction. In hot subduction zones, such as those characteristic of early Earth, most H2O carried by oceanic crust is liberated at depths less than 120 km and, thus, would not contribute to island‐arc magmatism.  相似文献   

17.
Widespread Mesozoic magmatism occurs in the Korean Peninsula (KP). The status quo is poles apart between the northern and southern parts in characterizing its distribution and nature, with the nearly absence of any related information in North Korea. We have the opportunity to have conducted geological investigations in North Korea and South Korea during the past ten years through international cooperation programs. This led to the revelation of a number of granitoids and related volcanic rocks and thus facilitates the comparison with those in East China and Japan. Mesozoic granitoids in the KP can be divisible into three age groups: the Triassic group with a peak age of ~220 Ma, the Jurassic one of ~190–170 Ma and the late Early Cretaceous one of ~110 Ma. The Triassic intrusions include syenite, calc-alkaline to alkaline granite and minor kimberlite in the Pyeongnam Basin of North Korea. They have been considered to form in post-orogenic settings related to the Central Asian Orogenic Belt (CAOB) or the Dabie-Sulu Orogenic Belt (DSOB). The Jurassic granitoids constitute extensive occurrence in the KP and are termed as the Daebo-period magmatism. They correlate well with coeval counterparts in NE China encompassing the northeastern part of the North China Craton (NCC) and the eastern segment of the CAOB. They commonly consist of biotite or two-mica granites and granodiorites, with some containing small dark diorite enclaves. On one hand, Early Jurassic to early Middle Jurassic magmatic rocks are rare in most areas of the NCC, whilst Middle-Late Jurassic ones are not developed in the KP. On the other hand, both NCC and KP host abundant Cretaceous granites. However, the present data revealed contrasting age peaks, with ~130–125 Ma in the NCC and ~110–105 Ma in the KP. Cretaceous granites in the KP comprise the dominant biotite granites and a few amphibole granites. The former exhibit mildly fractionated REE patterns and zircon ε Hf(t) values from -15 to -25, whereas the latter feature strongly fractionated REE patterns and zircon ε Hf(t) values from -10 to -1. Both granites contain inherited zircons of ~1.8–1.9 or ~2.5 Ga. These geochemical characters testify to their derivation from re-melting distinct protoliths in ancient basement. Another Cretaceous magmatic sub-event has been entitled as the Gyeongsang volcanism, which is composed of bimodal calc-alkaline volcanic rocks of 94–55 Ma and granitic-hypabyssal granitic bodies of 72–70 Ma. Synthesizing the Mesozoic magmatic rocks across the KP, NCC and Japan can lead to the following highlights: (1) All Triassic granites in the NCC, KP and Japan have similar characteristics in petrology, chronology and geochemistry. Therefore, the NCC, KP and Japan tend to share the same tectonic setting during the Triassic, seemingly within the context of Indosinian orogensis. (2) Jurassic to earliest Cretaceous magmatic rocks in the NCC seem to define two episodes: episode A from 175 to 157 Ma and episode B from 157 to 135 Ma. Jurassic magmatic rocks in the KP span in age mainly from 190 to 170 Ma, whereas 160–135 Ma ones are rare. With the exception of ~197 Ma Funatsu granite, Jurassic magmatic rocks are absent in Japan. (3) Cretaceous granites in the KP have a peak age of ~110, ~20 Ma younger than those in the NCC, while Japan is exempt from ~130–100 Ma granites. (4) The spatial-temporal distribution and migratory characteristics of the Jurassic-Cretaceous magmatic rocks in Japan, KP, and NE China-North China indicate that the subduction of the Paleo-Pacific plate might not be operative before Late Cretaceous (~130–120 Ma). (5) Late Cretaceous magmatic rocks (~90–60 Ma) occur in the southwestern corner of the KP and also in Japan, coinciding with the metamorphic age of ~90–70 Ma in the Sanbagawa metamorphic belt of Japan. The magmatic-metamorphic rock associations and their spatial distribution demonstrate the affinities of sequentially subduction zone, island arc and back-arc basin from Japan to Korea, arguing for the Pacific plate subduction during Late Cretaceous. (6) This study raises another possibility that the Mesozoic cratonic destruction in the NCC, which mainly occurred during ~150–120 Ma, might not only be due to the subduction of the Paleo-Pacific Plate, but also owe much to the intraplate geodynamic forces triggered by other adjacent continental plates like the Eurasian and Indian plates.  相似文献   

18.
High-resolution reconstruction of Benioff zone depth–dip angle trajectory for Burma–Java subduction margin between 2° and 17°N Lat. reveals two major episodes of plate geometry change expressed as abrupt deviation in subduction angle. Estimation of effective rate of subduction in different time slices (and then length of subducted slab) allowed drawing of isochrones in Ma interval through these trajectories for the time period 5–12 Ma. With these isochrones, the deformation events on the subducting Indian plate are constrained in time as of 4–5 and 11 Ma old. This well-constrained time connotation offered scope for the correlation of slab deformation events with the well-established two-phase opening history of the Andaman Sea. While the 11 Ma event recorded from southern part of the study area is correlated with early stretching and rifting phase, the 4–5 Ma event is interpreted as major forcing behind the spreading phase of the Andaman Sea. Systematic spatio-temporal evaluation of Indian plate obliquity on the Andaman Sea evolution shows its definite control on the early rifting phase, initiated towards south near northwest Sumatra. The much young spreading phase recorded towards north of 7° Lat. is possibly the result of late Miocene–Pliocene trench retreat and follow-up transcurrent movement (along Sagaing and Sumatran fault system) with NW–SE pull-apart extension.Nonconformity between plate shape and subduction margin geometry is interpreted as the causative force behind Mid-Miocene intraplate extension and tearing. Enhanced stretching in the overriding plate consequently caused active forearc subsidence, recorded all along this plate margin. Initial phase of the Andaman Sea opening presumably remains concealed in this early–middle Miocene forearc subsidence history. The late Miocene–Pliocene pull-apart opening and spreading was possibly initiated near the western part of the Mergui–Sumatra region and propagated northward in subsequent period. A temporary halt in rifting at this pull-apart stage and northeastward veering of the Andaman Sea Ridge (ASR) are related with uplifting of oceanic crust in post-middle Miocene time in form of Alcock and Sewell seamounts, lying symmetrically north and south of this spreading ridge.  相似文献   

19.
K–Ar ages have been determined for 14 late Miocene to Pliocene volcanic rocks in the north of the Kanto Mountains, Japan, for tracking the location of the volcanic front through the time. These samples were collected from volcanoes located behind the trench–trench–trench (TTT) triple junction of the Pacific, Philippine Sea, and North American plates. This junction is the site of subduction of slabs of the Pacific and the Philippine Sea plates, both of which are thought to have influenced magmatism in this region. The stratigraphy and K–Ar ages of volcanic rocks in the study area indicate that volcanism occurred between the late Miocene and the Pliocene, and ceased before the Pleistocene. Volcanism in adjacent areas of the southern NE Japan and northern Izu–Bonin arcs also occurred during the Pliocene and ceased at around 3 Ma with the westward migration of the volcanic front, as reported previously. Combining our new age data with the existing data shows that before 3 Ma the volcanic front around the TTT junction was located about 50 km east of the preset‐day volcanic front. We suggest that northward subduction of the Philippine Sea Plate slab ended at ~3 Ma as a result of collision between the northern margin of the plate with the surface of the Pacific Plate slab. This collision may have caused a change in the subduction vector of the Philippine Sea Plate from the original north‐directed subduction to the present‐day northwest‐directed subduction. This indicates that the post ~3 Ma westward migration of the volcanic front was a result of this change in plate motion.  相似文献   

20.
Shunsuke Endo 《Island Arc》2010,19(2):313-335
Evidence for eclogite‐facies metamorphism is widespread in the Western Iratsu body of the oceanic subduction type Sanbagawa Belt, Southwest Japan. Previous studies in this region focused on typical mafic eclogites and have revealed the presence of an early epidote‐amphibolite facies metamorphism overprinted by a phase of eclogite facies metamorphism. Ca‐rich and titanite‐bearing eclogite, which probably originated from a mixture of basaltic and calc‐siliceous sediments, is also relatively common in the Western Iratsu body, but there has been no detailed petrological study of this lithology. Detailed petrographic observations reveal the presence of a relic early epidote‐amphibolite facies metamorphism preserved in the cores of garnet and titanite in good agreement with studies of mafic eclogite in the area. Thermobarometric calculations for the eclogitic assemblage garnet + omphacite + epidote + quartz + titanite ± rutile ± phengite give peak‐P of 18.5–20.5 kbar at 525–565°C and subsequent peak‐T conditions of about 635°C at 14–16 kbar. This eclogite metamorphism initiated at about 445°C/11–15 kbar, implying a significantly lower thermal gradient than the earlier epidote‐amphibolite facies metamorphism (~650°C/12 kbar). These results define a PT path with early counter‐clockwise and later clockwise trajectories. The overall PT path may be related to two distinct phases in the tectono‐thermal evolution in the Sanbagawa subduction zone. The early counter‐clockwise path may record the inception of subduction. The later clockwise path is compatible with previously reported PT paths from the other eclogitic bodies in the Sanbagawa Belt and supports the tectonic model that these eclogitic bodies were exhumed as a large‐scale coherent unit shortly before ridge subduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号