首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study examines the petrology and geochemistry of the Early Paleozoic Motai serpentinites, the South Kitakami Belt, northeast Japan, to reveal the subduction processes and tectonics in the convergent margin of the Early Paleozoic proto-East Asian continent. Protoliths of the serpentinites are estimated to be harzburgite to dunite based on the observed amounts of bastite (orthopyroxene pseudomorph). Relic chromian spinel Cr# [=Cr/(Cr + Al)] increases with decreasing amount of bastite. The compositional range of chromian spinel is similar to that found in the Mariana forearc serpentinites. This fact suggests that the protoliths of the serpentinites are depleted mantle peridotites developed beneath the forearc regions of a subduction zone. The Motai serpentinites are divided into two types, namely, Types 1 and 2 serpentinites; the former are characterized by fine-grained antigorite and lack of olivine, and the latter have coarse-grained antigorite and inclusion-rich olivine. Ca-amphibole occurs as isolated crystals or vein-like aggregates in the Type 1 serpentinites and as needle-shaped minerals in the Type 2 serpentinites. Ca-amphibole of the Type 1 serpentinites is more enriched in LILEs and LREEs, suggesting the influence of hydrous fluids derived from slabs. By contrast, the mineral assemblage, mineral chemistry, and field distribution of the Type 2 serpentinites reflect the thermal effect of contact metamorphism by Cretaceous granite. The Ca-amphibole of the Type 1 serpentinites is different from that of the Hayachine–Miyamori Ophiolite in terms of origin; the latter was formed by the infiltration of melts produced in an Early Paleozoic arc–backarc system. Chemical characteristics of the Ca-amphibole in the ultramafic rocks in the South Kitakami Belt reflect the tectonics of an Early Paleozoic mantle wedge, and the formation of the Motai metamorphic rocks in the forearc region of the Hayachine–Miyamori subduction zone system, which occurred at the Early Paleozoic proto-East Asian continental margin.  相似文献   

2.
The Precambrian and lower Paleozoic units of the Japanese basement such as the Hida Oki and South Kitakami terranes have geological affinities with the eastern Asia continent and particularly strong correlation with units of the South China block. There are also indications from units such as the Hitachi metamorphics of the Abukuma terrane and blocks in the Maizuru terrane that some material may have been derived from the North China block. In addition to magmatism, the Japanese region has seen substantial growth due to tectonic accretion. The accreted units dominantly consist of mudstone and sandstone derived from the continental margin with lesser amounts of basaltic rocks associated with siliceous deep ocean sediments and local limestone. Two main phases of accretionary activity and related metamorphism are recorded in the Jurassic Mino–Tanba–Ashio, Chichibu, and North Kitakami terranes and in the Cretaceous to Neogene Shimanto and Sanbagawa terranes. Other accreted material includes ophiolitic sequences, e.g. the Yakuno ophiolite of the Maizuru terrane, the Oeyama ophiolite of the Sangun terrane, and the Hayachine–Miyamori ophiolite of the South Kitakami terrane, and limestone‐capped ocean plateaus such as the Akiyoshi terrane. The ophiolitic units are likely derived from arc and back‐arc basin settings. There has been no continental collision in Japan, meaning the oceanic subduction record is more complete than in convergent orogens seen in intracontinental settings making this a good place to study the geological record of accretion. Hokkaido lacks most of the Paleozoic history recognized in Honshu, Shikoku, Kyushu, and the Ryukyu Islands to the south and its geology reflects the Cenozoic development of two convergent domains with volcanic arcs, their approach, and eventual collision. The Hidaka terrane reveals a cross section through a volcanic arc and the main accretionary complex of the convergent system is represented by the Sorachi–Yezo terrane.  相似文献   

3.
Takayuki  Uchino  Makoto  Kawamura 《Island Arc》2010,19(1):177-191
The Nedamo Terrane, an Early Carboniferous accretionary complex, is the oldest biostratigraphically dated accretionary complex in Japan. The purpose of this study is to describe and interpret a conglomerate from the Nedamo Terrane that contains clasts of high-pressure/low-temperature (high- P/T ) schist (mainly garnet-bearing phengite schist) and ultramafic rock, and to infer the tectonics of an Early Carboniferous arc–trench system at the eastern margin of the paleo-Asian continent. Clasts of high- P/T schist and ultramafic rock within the conglomerate make up 8.4 and 6.7% of the total clasts, respectively, based on modal counts. These clasts are subangular to subrounded, whereas volcanic clasts are well rounded. The source of the schist clasts, which yield a radiometric age of 347–317 Ma, is considered to be the Renge Metamorphic Rocks of Southwest Japan or equivalent rocks. Based on the chemical composition of chromian spinel, the source of ultramafic clasts is inferred to be the island-arc-type Ordovician Miyamori and Hayachine ultramafic complexes in the Kitakami Massif. The conglomerate records multiple provenance regions, including an island arc (South Kitakami Terrane) and a forearc ridge; the high P/T schist and ultramafic rocks were exhumed in the forearc region. The duration of the interval from the early stages of exhumation of the schist to its deposition in the trench as clasts is estimated to have been less than 30 my.  相似文献   

4.
Basement rocks that occur along the northern margin of the South Kitakami Terrane in Japan consist of Ordovician ultramafic rocks (Hayachine ultramafic complex), gneissose amphibolite (Kuromoriyama amphibolite), and mafic rocks (Kagura igneous rocks, KIR). The KIR are composed of metagabbro, metadolerite, metabasalt, and minor felsic–intermediate dikes. Although the KIR contain green hornblende due to metamorphism of greenschist to epidote–amphibolite facies, they rarely retain primary brown hornblende. Approximately 30% of the metabasalt shows porphyritic textures, with phenocrysts of saussuritized plagioclase and/or altered mafic minerals. The geochemistry of the common metadolerite and metabasalt of the KIR shows a tholeiite trend, a low TiO2 content, and high Th/Nb and Ti/V ratios. The KIR are therefore indicative of a supra‐subduction zone tectonic setting, which implies a backarc origin (as also indicated by discrimination diagrams). Trace element patterns of the KIR resemble those of the backarc‐basin basalt of the Japan and Yamato basins in the Japan Sea. We propose that the KIR formed during backarc spreading from the Ordovician to Early Silurian. This view is supported by the geochemical data, the tectonic setting of the Hayachine ultramafic rocks, and the provenance of clastics within Silurian sedimentary rocks.  相似文献   

5.
Masahiro  Fujii  Yasutaka  Hayasaka  Kentaro  Terada 《Island Arc》2008,17(3):322-341
Abstract The Maizuru terrane, distributed in the Inner Zone of southwest Japan, is divided into three subzones (Northern, Central and Southern), each with distinct lithological associations. In clear contrast with the Southern zone consisting of the Yakuno ophiolite, the Northern zone is subdivided into the western and eastern bodies by a high-angle fault, recognized mainly by the presence of deformed granitic rocks and pelitic gneiss. This association suggests an affinity with a mature continental block; this is supported by the mode of occurrence, and petrological and isotopic data. Newly obtained sensitive high mass-resolution ion microprobe (SHRIMP) zircon U–Pb ages reveal the intrusion ages of 424 ± 16 and 405 ± 18 Ma (Siluro–Devonian) for the granites from the western body, and 249 ± 10 and 243 ± 19 Ma (Permo–Triassic) for the granodiorites from the eastern body. The granites in the western body also show inherited zircon ages of around 580 and 765 Ma. In addition, electron probe microanalysis (EPMA) monazite U–Th–total Pb dating gives around 475–460 Ma. The age of intrusion, inherited ages, mode of occurrence, and geological setting of the Siluro–Devonian granites of the Northern zone all show similarities with those of the Khanka Massif, southern Primoye, Russia, and the Hikami granitic rocks of the South Kitakami terrane, Northeast Japan. We propose that both the Siluro–Devonian and Permo–Triassic granitic rocks of the Northern zone are likely to have been juxtaposed through the Triassic–Late Jurassic dextral strike-slip movement, and to have originated from the Khanka Massif and the Hida terrane, respectively. This study strongly supports the importance of the strike-slip movement as a mechanism causing the structural rearrangement of the Paleozoic–Mesozoic terranes in the Japanese Islands, as well as in East Asia.  相似文献   

6.
Piera  Spadea  Massimo  D'Antonio 《Island Arc》2006,15(1):7-25
Abstract The Southern Uralides are a collisional orogen generated in the Late Devonian–Early Carboniferous by the collision of the Magnitogorsk island arc (MA) generated in the Early to Middle Devonian by intra‐oceanic convergence opposite to the continental margin, and the continental margin of the East European craton. A suture zone of the arc to the continental margin, the Main Uralian Fault (MUF), is marked by ophiolites and exhumed high‐pressure–low‐temperature metamorphic rocks of continental origin. The pre‐orogenic events of the Southern Urals and their geodynamic setting are traced by means of fluid‐immobile incompatible trace elements (rare earth elements and high field strength elements) and Sr–Nd–Pb isotope geochemistry of the MA suites, in particular the protoarc suite with boninites and probably ankaramites, and the mature arc comprised of island arc tholeiitic (IAT) suites, transitional IAT to calc‐alkaline (CA), and CA suites. The MA volcanics result in genetically distinct magmatic source components. In particular, depleted normal‐mid‐oceanic ridge basalt‐type mantle sources with various enrichments in a slab‐derived aqueous fluid component are evident. The enriched component is not involved in significant amounts, as testified by the rather radiogenic Nd isotopes and unradiogenic Pb isotopes. Further information on the pre‐orogenic events is provided by the Mindyak Massif metagabbros derived from diverse gabbroic protoliths that were affected by oceanic rodingitization, and subsequently by a high‐temperature (HT) metamorphism related to the development of a metamorphic sole. The HT metamorphism has the same age as the protoarc volcanism, and constrains the initiation of subduction at approximately 410 Ma. Consequently, the maximum timespan between initial intra‐oceanic convergence and final collision is approximately 31 my, a duration consistent with that of present‐day ongoing collisions in the western Pacific. The characteristics of early volcanism and the traces of a metamorphic sole provide useful criteria to attribute most MUF ophiolites to the Tethyan type with a complex pre‐orogenic evolution.  相似文献   

7.
Fossil assemblages of the Ordovician to Devonian successions of Japan suggest complex temporal, environmental and geographical controls on their biogeographical signature. Thus, limited similarity at the species‐level between the trilobite, brachiopod and ostracod faunas of the South Kitakami, Hida‐Gaien and Kurosegawa terranes in part reflects the sporadic stratigraphic distribution of shelly fauna within these terranes. As a result, and with the exception of corals and pan‐tropical radiolarians, species‐level similarities are greater with other regions of East Asia and Australia than amongst the Japanese terranes. The Silurian faunas of the South Kitakami Terrane have affinities with North America, Europe, Central Asia and Australia, but there is no overriding signature to support proximity either to South China or Gondwana. Notably, brachiopod and trilobite faunas of the Middle Devonian suggest strong connections with North China. Trilobite, coral and ostracod faunas of the Hida‐Gaien Terrane show affinity, including at species level, with Siluro‐Devonian faunas from westerly‐situated palaeocontinents, especially those of Central Asian and European affinity, suggesting a continuation of the Central Asian Orogenic Belt, or of its associated lithofacies. Greater diversity of groups such as ostracods and trilobites in this terrane may signal closer links with continental shelf faunas of East Asia. The dominant biogeographical signature of the Kurosegawa Terrane is from corals and trilobites, suggesting links with the Siluro‐Devonian of Central Asia, Australia and South China. The variable biogeographic signal of the Japanese faunas may reflect the lifestyles of organisms with different physiologies and larval dispersal mechanisms, as well as the relative incompleteness of the Japanese fossil record. The present state of knowledge of the faunas cautions against placing Japan in relative proximity to the North or South China plates, or of presenting the Japanese terranes as a unified island arc to the north of the South China Plate during the Early Palaeozoic.  相似文献   

8.
Abstract The Eocene Zambales Ophiolite Complex that exhibits transitional mid-ocean ridge basalt-island arc tholeiite (MORB-IAT) characteristics was formed in a subduction-related marginal basin. The different surrounding marginal basins of the Philippines, namely, the South China Sea, Sulu Sea Basin, Celebes Basin and the West Philippine Basin have all been modeled to be of probable provenance of this ophiolite complex. Certain information (e.g. age, rock geochemistry, paleomagnetic rotations) and limitations, nevertheless, are inconsistent with the ophiolite complex being generated in these regions. Recent geophysical evidence suggests that the southwest sub-basin of the South China Sea Basin is probably Cretaceous to Paleocene-Eocene in age. This makes it possible to speculate that the Zambales Ophiolite Complex could have come from this sub-basin. The present day rifting of the southern Izu-Mariana arc can be taken as a modern day analog of this type of ophiolite generation.  相似文献   

9.
Major and trace element compositions of amphibolites and quartzose rocks in the 230-m-thick metamorphic sole underlying the mantle section of the Oman ophiolite in Wadi Tayin area were determined to investigate the chemical characteristics of the hydrous fluid released from subducted amphiboltie-facies slab. The fluid-immobile element compositions indicate that protoliths of these rocks are mid-ocean ridge basalt-like tholeiite and deep-sea chert, which is consistent with the idea that these rocks represent Tethyan oceanic crust overridden during the early, intraoceanic thrusting stage of the Oman ophiolite emplacement. The rare-earth element (REE) and high field-strength element concentrations of the amphibolites show limited variations, within a factor of two except for a few evolved samples, throughout transect of the sole. On the other hand, concentrations of fluid-mobile elements, especially B, Rb, K and Ba, in amphibolites are highly elevated in upper 30 m of the sole (> 600 °C in peak metamorphic temperature), suggesting the equilibration with evolved, B-Rb-K-Ba-rich fluids during prograde metamorphism. The comparison with amphibolites in the lower 150 m (500 to 550 °C) demonstrates that the trace element spectra of the fluids equilibrated with the high-level amphibolites may vary as a function of metamorphic temperature. The fluids are characterized by striking enrichments of B, Rb, K and Ba and moderate to minor enrichments of Sr, Li, Be and Pb. At higher temperature (up to 700 °C), the fluids become considerably enriched in light REE and Nb in addition to the above elements. The estimated trace element spectra of the fluids do not coincide with the compositions of basalts from matured intra-oceanic arcs, but satisfactorily explain the characteristics of the low-Pb andesites and boninites found in the Oman ophiolite. Compositional similarity between the boninites of Oman and other localities suggests that the fluids estimated here well represent the amphibolite-derived fluids involved in the magmatism of immatured, hot, shallow subduction zones.  相似文献   

10.
The Kitakami Massif of the Tohoku district, Northeast Japan, consists mainly of the South Kitakami Belt (Silurian–Cretaceous forearc shallow-marine sediments, granitoids, and forearc ophiolite) and the North Kitakami Belt (a Jurassic accretionary complex). The Nedamo Belt (a Carboniferous accretionary complex) occurs as a small unit between those two belts. An accretionary unit in the Nedamo Belt is lithologically divided into the Early Carboniferous Tsunatori Unit and the age-unknown Takinosawa Unit. In order to constrain the accretionary age of the Takinosawa Unit, detrital zircon U–Pb dating was conducted. The new data revealed that the youngest cluster ages from sandstone and tuffaceous rock are 257–248 Ma and 288–281 Ma, respectively. The Early Triassic depositional age of the sandstone may correspond to a period of intense magmatic activity in the eastern margin of the paleo-Asian continent. A 30–40 my interval between the youngest cluster ages of the sandstone and the tuffaceous rock can be explained by the absence of syn-sedimentary zircon in the tuffaceous rock. The new detrital zircon data suggest that the Takinosawa Unit can be distinguished as an Early Triassic accretionary complex distinct from the Early Carboniferous Tsunatori Unit. This recognition establishes a long-duration northeastward younging polarity of accretionary units, from the Carboniferous to Early Cretaceous, in the northern Kitakami Massif. Lithological features and detrital zircon spectra suggest that the Early Triassic Takinosawa Unit in the Nedamo Belt is comparable with the Hisone and Shingai units in the Kurosegawa Belt in Shikoku. The existence of this Early Triassic accretionary complex strongly supports a pre-Jurassic geotectonic correlation and similarity between Southwest and Northeast Japan.  相似文献   

11.
Geochemical and mineralogical characteristics of the Eocene volcanic succession in Tafresh area of the Urumieh–Dokhtar Magmatic Assemblage (UDMA) are unique in the 2000‐km‐length assemblage. Demonstrating rather steep rare earth element (REE) patterns and the widespread presence of amphibole (+biotite) phenocrysts are two distinct characters that dominate the Eocene volcanic succession of mainly andesitic composition. Coincidence of the geochemical and mineralogical characteristics of the whole volcanic succession with adakites, rather amphibole‐ (+biotite) rich dacitic (with 61–64 wt% SiO2) stocks and dykes, is considered as the key in unraveling the role of ‘slab‐derived melt contribution’ in petrogenesis of the volcanic succession. Slab‐derived melting has been an ongoing process that metasomatized some parts of the mantle wedge from which hybrid rocks (andesites) are derived. Basalts with distinct signatures of slab melt metasomatism are yet another support for the occurrence of slab melting. Interlayering of normal, island‐arc‐type calc‐alkaline volcanic rocks with the slab‐melt metasomatized basalts and hybrid andesites suggests that the slab melting has been motivated by the subduction. Formation of the Tafresh Caldera, the likely consequence of an explosive eruption, is compatible with the volatile‐bearing nature of the adakitic volcanism in the study area. It is indicated by the ubiquitous presence of the hydrous minerals. Beneath the Tafresh area, in Eocene time, the subducting slab seems to have reached a critical high depth that is enough for the development of amphibolite–eclogite. The slab deformation, motivated by the geometry of subduction and/or the underlying mantle's steeper geotherms, is suggested to have resulted in the slab melting that helped develop a rock assemblage unique to the UDMA.  相似文献   

12.
Zircons separated from Cretaceous granitoids are dated from a south‐central transect of the Abukuma metamorphic and granitic terrane. The zircon ages do not follow ‘older’ and ‘younger’ granitoid ages that are used conventionally. In the western part of the study area (Zones I, II and III) where the Takanuki and Gosaisho metamorphic rocks are exposed, the Iritono quartz dioritic stock intruding the greenschist facies rocks in Zone III exhibits the oldest age of 121 Ma in the studied region. Quartz diorite located northward shows 112 Ma, but the other four granitoids intruding into the Takanuki and Gosaisho metamorphic rocks are younger and 103–99 Ma. Two‐mica and biotite granites belong to the youngest age group of 99 Ma. The granitic activities of both the Abukuma and Ryoke belts were initiated by intrusion of quartz dioritic magmas and were ended by two‐mica granite activity. The ages of the eastern two batholiths vary from 110 to 106 Ma (four samples), and show no age common to the Kitakami granitoids farther to the north. Throughout the Japanese Islands arc, Cretaceous granitic activities became younger toward the marginal sea side from the Kitakami Mountains, to the Abukuma Highland, and the Ryoke Belt, then to the Sanin belt of the Inner Zone of Southwest Japan.  相似文献   

13.
Collision, subduction and accretion events in the Philippines: A synthesis   总被引:7,自引:0,他引:7  
Abstract The Philippines preserves evidence of the superimposition of tectonic processes in ancient and present‐day collision and subduction zone complexes. The Baguio District in northern Luzon, the Palawan–Central Philippine region and the Mati–Pujada area in southeastern Mindanao resulted from events related to subduction polarity reversal leading to trench initiation, continent‐arc collision and autochthonous oceanic lithosphere emplacement, respectively. Geological data on the Baguio District in Northern Luzon reveal an Early Miocene trench initiation for the east‐dipping Manila Trench. This followed the Late Oligocene cessation of subduction along the west‐dipping proto‐East Luzon Trough. The Manila Trench initiation, which is modeled as a consequence of the counter‐clockwise rotation of Luzon, is attributed to the collision of the Palawan microcontinental block with the Philippine Mobile Belt. In the course of rotation, Luzon onramped the South China Sea crust, effectively converting the shear zone that bounded them into a subduction zone. Several collision‐related accretionary complexes (e.g. Romblon, Mindoro) are present in the Palawan–Central Philippine region. The easternmost collision zone boundary is located east of the Romblon group of islands. The Early Miocene southwestward shift of the collision boundary from Romblon to Mindoro started to end by the Pliocene. Continuous interaction between the Palawan microcontinental block and the Philippine Mobile Belt is presently taken up again along the collisional boundary east of the Romblon group of islands. The Mati–Pujada Peninsula area, on the other hand, is underlain by the Upper Cretaceous Pujada Ophiolite. This supra‐subduction zone ophiolite is capped by chert and pelagic limestones which suggests its derivation from a relatively deep marginal basin. The Pujada Ophiolite could be a part of a proto‐Molucca Sea plate. The re‐interpretation of the geology and tectonic settings of the three areas reaffirm the complex geodynamic evolution of the Philippine archipelago and addresses some of its perceived geological enigmas.  相似文献   

14.
Abstract The Isabela ophiolite, the Philippines, is characterized by a lherzolite‐dominant mantle section, which was probably formed beneath a slow‐spreading mid‐ocean ridge. Several podiform chromitites occur in the mantle section and grade into harzburgite to lherzolite. The chromitites show massive, nodular, layered and disseminated textures. Clinopyroxene (±orthopyroxene/amphibole) inclusions within chromian spinel (chromite hereafter) are commonly found in the massive‐type chromitites. Large chromitites are found in relatively depleted harzburgite hosts having high‐Cr? (Cr/(Cr + Al) atomic ratio = ~0.5) chromite. Light rare earth element (LREE) contents of clinopyroxenes in harzburgites near the chromitites are higher than those in lherzolite with low‐Cr? chromite, whereas heavy REE (HREE) contents of clinopyroxenes are lower in harzburgite than in lherzolite. The harzburgite near the chromitites is not a residual peridotite after simple melt extraction from lherzolite but is formed by open‐system melting (partial melting associated with influx of primitive basaltic melt of deeper origin). Clinopyroxene inclusions within chromite in chromitites exhibit convex‐shaped REE patterns with low HREE and high LREE (+Sr) abundances compared to the host peridotites. The chromitites were formed from a hybridized melt enriched with Cr, Si and incompatible elements (Na, LREE, Sr and H2O). The melt was produced by mixing of secondary melts after melt–rock interaction and the primitive basaltic melts in large melt conduits, probably coupled with a zone‐refining effect. The Cr? of chromites in the chromitites ranges from 0.65 to 0.75 and is similar to those of arc‐related magmas. The upper mantle section of the Isabela ophiolite was initially formed beneath a slow‐spreading mid‐ocean ridge, later introduced by arc‐related magmatisms in response to a switch in tectonic setting during its obduction at a convergent margin.  相似文献   

15.
The Chilas Complex is a major lower crustal component of the Cretaceous Kohistan island arc and one of the largest exposed slices of arc magma chamber in the world. Covering more than 8000 km2, it reaches a current tectonic width of around 40 km. It was emplaced at 85 Ma during rifting of the arc soon after the collision of the arc with the Karakoram plate. Over 85% of the Complex comprises homogeneous, olivine‐free gabbronorite and subordinate orthopyroxene–quartz diorite association (MGNA), which contains bodies of up to 30 km2 of ultramafic–mafic–anorthositic association (UMAA) rocks. Primary cumulate textures, igneous layering, and sedimentary structures are well preserved in layered parts of the UMAA in spite of pervasive granulite facies metamorphism. Mineral analyses show that the UMAA is characterized by more magnesian and more aluminous pyroxene and more calcic plagioclase than those in the MGNA. High modal abundances of orthopyroxene, magnetite and ilmenite (in MGNA), general Mg–Fe–Al spatial variations, and an MFA plot of whole‐rock analyses suggest a calc‐alkaline origin for the Complex. Projection of the pyroxene compositions on the Wo–En–Fs face is akin to those of pyroxenes from island arcs gabbros. The presence of highly calcic plagioclase and hornblende in UMAA is indicative of hydrous parental arc magma. The complex may be a product of two‐stage partial melting of a rising mantle diaper. The MGNA rocks represent the earlier phase melting, whereas the UMAA magma resulted from the melting of the same source depleted by the extraction of the earlier melt phase. Some of the massive peridotites in the UMAA may either be cumulates or represent metasomatized and remobilized upper mantle. The Chilas Complex shows similarities with many other (supra)subduction‐related mafic–ultramafic complexes worldwide.  相似文献   

16.
The North China Craton (NCC) has been thinned from >200 km to <100 km in its eastern part. The ancient subcontinental lithospheric mantle (SCLM) has been replaced by the juvenile SCLM in the Meoszoic. During this period, the NCC was destructed as indicated by extensive magmatism in the Early Cretaceous. While there is a consensus on the thinning and destruction of cratonic lithosphere in North China, it has been hotly debated about the mechanism of cartonic destruction. This study attempts to provide a resolution to current debates in the view of Mesozoic mafic magmatism in North China. We made a compilation of geochemical data available for Mesozoic mafic igneous rocks in the NCC. The results indicate that these mafic igneous rocks can be categorized into two series, manifesting a dramatic change in the nature of mantle sources at ~121 Ma. Mafic igneous rocks emplaced at this age start to show both oceanic island basalts (OIB)-like trace element distribution patterns and depleted to weakly enriched Sr-Nd isotope compositions. In contrast, mafic igneous rocks emplaced before and after this age exhibit both island arc basalts (IAB)-like trace element distribution patterns and enriched Sr-Nd isotope compositions. This difference indicates a geochemical mutation in the SCLM of North China at ~121 Ma. Although mafic magmatism also took place in the Late Triassic, it was related to exhumation of the deeply subducted South China continental crust because the subduction of Paleo-Pacific slab was not operated at that time. Paleo-Pacific slab started to subduct beneath the eastern margin of Eruasian continent since the Jurrasic. The subducting slab and its overlying SCLM wedge were coupled in the Jurassic, and slab dehydration resulted in hydration and weakening of the cratonic mantle. The mantle sources of ancient IAB-like mafic igneous rocks are a kind of ultramafic metasomatites that were generated by reaction of the cratonic mantle wedge peridotite not only with aqueous solutions derived from dehydration of the subducting Paleo-Pacific oceanic crust in the Jurassic but also with hydrous melts derived from partial melting of the subducting South China continental crust in the Triassic. On the other hand, the mantle sources of juvenile OIB-like mafic igneous rocks are also a kind of ultramafic metasomatites that were generated by reaction of the asthenospheric mantle underneath the North China lithosphere with hydrous felsic melts derived from partial melting of the subducting Paleo-Pacific oceanic crust. The subducting Paleo-Pacific slab became rollback at ~144 Ma. Afterwards the SCLM base was heated by laterally filled asthenospheric mantle, leading to thinning of the hydrated and weakened cratonic mantle. There was extensive bimodal magmatism at 130 to 120 Ma, marking intensive destruction of the cratonic lithosphere. Not only the ultramafic metasomatites in the lower part of the cratonic mantle wedge underwent partial melting to produce mafic igneous rocks showing negative εNd(t) values, depletion in Nb and Ta but enrichment in Pb, but also the lower continent crust overlying the cratonic mantle wedge was heated for extensive felsic magmatism. At the same time, the rollback slab surface was heated by the laterally filled asthenospheric mantle, resulting in partial melting of the previously dehydrated rocks beyond rutile stability on the slab surface. This produce still hydrous felsic melts, which metasomatized the overlying asthenospheric mantle peridotite to generate the ultramafic metasomatites that show positive εNd(t) values, no depletion or even enrichment in Nb and Ta but depletion in Pb. Partial melting of such metasomatites started at ~121 Ma, giving rise to the mafic igneous rocks with juvenile OIB-like geochemical signatures. In this context, the age of ~121 Ma may terminate replacement of the ancient SCLM by the juvenile SCLM in North China. Paleo-Pacific slab was not subducted to the mantle transition zone in the Mesozoic as revealed by modern seismic tomography, and it was subducted at a low angle since the Jurassic, like the subduction of Nazca Plate beneath American continent. This flat subduction would not only chemically metasomatize the cratonic mantle but also physically erode the cratonic mantle. Therefore, the interaction between Paleo-Pacific slab and the cratonic mantle is the first-order geodynamic mechanism for the thinning and destruction of cratonic lithosphere in North China.  相似文献   

17.
Yoga A.  Sendjaja  Jun-Ichi  Kimura  Edy  Sunardi 《Island Arc》2009,18(1):201-224
The Sunda Arc of Indonesia developed along the convergent margin between the Eurasian and the Australian Plates. More than 100 Quaternary volcanic centers occur along the arc. The West Java Arc is a segment of the Sunda Arc in which more than 10 volcanic centers are located, corresponding to the 120 to 200 km depth contours of the Wadati–Benioff zone. The geochemistry of 207 Quaternary lavas from six centers across the arc was investigated. The lavas range from basalt to dacite. Incompatible element abundances increase from the volcanic front to the rear‐arc in response to a change from low‐K to high‐K suites. Nd–Sr isotope compositions of the basalts scatter between mid‐ocean ridge basalt (MORB) source mantle and Indian Ocean sediment (SED) compositions, with volcanic front low‐K basalts having more radiogenic Nd than the rear‐arc basalts. It is suggested that mixing between slab‐derived fluids mainly from the SED and melt from MORB source mantle played a significant role in determining the geochemistry of the West Java basalts. Incompatible element patterns in primitive mantle normalized multi‐element plots are almost identical across the arc, except for greater inclination and weaker positive Sr spikes in the rear‐arc basalts. This suggests a lower degree of partial melting in the rear‐arc mantle, accompanied by change in SED fluid composition between the volcanic front and the rear‐arc. The latter is confirmed by fluid‐fluxed melting model calculations using multiple trace elements and Nd and Sr isotopes. All the West Java Arc lavas require deficit of Sr from the slab SED. This may occur due to selective breakdown of Sr‐rich hydrous silicate minerals, such as zoisite, at shallower depths before the SED component reaches the depth of dehydration effective for magma genesis. The rear‐arc basalts need further Sr deficits along with lesser fluid. These features are commonly observed in many arc basalts, and are likely attributable to the same mechanism.  相似文献   

18.
Abstract The Kokchetav Massif of Kazakhstan includes high to ultrahigh-pressure (HP–UHP) metamorphic rocks (some of which were recrystallized at depths in excess of 150 km), juxtaposed against much lower pressure metamorphic components. We investigated the relationship between the HP–UHP metamorphic unit and the low pressure (LP) unit (Daulet Suite) in the Sulu–Tjube area, where the metamorphic rocks have previously been interpreted as constituting a megamelange with subvertical structural attitudes. Analyses of fold structures suggest that the HP–UHP metamorphic unit overlies the LP unit across a west-dipping subhorizontal boundary. In addition, kinematic indicators display top-to-the-north senses of shear along the tectonic contact between the two units, indicating that the HP–UHP unit has been extruded northward onto the LP unit. Following the juxtaposition of the two units, upright folds developed in both units, and these are associated with the previously reported steeply dipping metamorphic foliations. These data have important implications for the mode of exhumation of the UHP rocks from upper mantle to shallow crustal depths.  相似文献   

19.
Abstract The Permian ophiolite emplaced in the Yakuno area, Kyoto Prefecture, consists of metavolcanic sequences, metagabbro and a troctolitic intrusion. The metavolcanics are associated with thick mudstone through a contact that shows the flowage of lava over unconsolidated mud layers on the sea floor. The metavolcanics and metagabbro have rare earth element (REE) patterns that are similar to enriched (E)‐ and transitional (T)‐types ([La/Yb]N = 0.77–11.2) of mid‐oceanic ridge basalts (MORB), whereas their Nb/La ratios (0.40–1.20) are as low as those of back‐arc basin basalts (BABB). Cr‐spinels in the metavolcanic rocks have Cr? of 40–73 and an Fe3+? of 9–24, numbers which are comparable to the values of BABB. These lines of evidence suggest that the Yakuno ophiolite originated more likely from an early stage back‐arc basin rather than from an oceanic plateau, as has been suggested by some researchers. The troctolitic body that intrudes as a 0.5‐km long lens in the metagabbro is composed of troctolite, olivine gabbro and microgabbro. The troctolite is marked by an olivine–plagioclase crystallization sequence, different from the commonly observed olivine–clinopyroxene sequence in other mafic/ultramafic cumulates of the Yakuno ophiolite. The microgabbro, with a composition close to that of the parental magma of the troctolite, is depleted in light REE ([La/Yb]N = 0.18–0.55) so that it has an REE pattern that mimics normal (N)‐type MORB. The interstitial clinopyroxene of the troctolite has highly variable TiO2 contents (0.2–1.4 wt%), which is interpreted to result from postcumulus crystallization of heterogeneous intercumulus melts. The troctolitic intrusion may represent a late stage intrusion that formed in an off‐ridge environment during sea floor spreading of the back‐arc basin. The geochemical variation observed in the Yakuno ophiolite, ranging from N‐ to E‐MORB affinities, reflects the changes in both mantle source compositions and processes involved in magma generation during the evolution of the back‐arc basin.  相似文献   

20.
The dating of radiolarian biostratigraphic zones from the Silurian to Devonian is only partially understood. Dating the zircons in radiolarian‐bearing tuffaceous rocks has enabled us to ascribe practical ages to the radiolarian zones. To extend knowledge in this area, radiometric dating of magmatic zircons within the radiolarian‐bearing Hitoegane Formation, Japan, was undertaken. The Hitoegane Formation is mainly composed of alternating beds of tuffaceous sandstones, tuffaceous mudstones and felsic tuff. The felsic tuff and tuffaceous mudstone yield well‐preserved radiolarian fossils. Zircon grains showing a U–Pb laser ablation–inductively coupled plasma–mass spectrometry age of 426.6 ± 3.7 Ma were collected from four horizons of the Hitoegane Formation, which is the boundary between the Pseudospongoprunum tauversi to Futobari solidus–Zadrappolus tenuis radiolarian assemblage zones. This fact strongly suggests that the boundary of these assemblage zones is around the Ludlowian to Pridolian. The last occurrence of F. solidus is considered to be Pragian based on the reinterpretation of a U–Pb sensitive high mass‐resolution ion microprobe (SHRIMP) zircon age of 408.9 ± 7.6 Ma for a felsic tuff of the Kurosegawa belt, Southwest Japan. Thus the F. solidus–Z. tenuis assemblage can be assigned to the Ludlowian or Pridolian to Pragian. The present data also contribute to establishing overall stratigraphy of the Paleozoic rocks of the Fukuji–Hitoegane area. According to the Ordovician to Carboniferous stratigraphy in this area, Ordovician to Silurian volcanism was gradually reduced to change the sedimentary environment into a tropical lagoon in the early Devonian. And the quiet Carboniferous environment was subsequently interrupted, throwing it once more into the volcanic conditions in the Middle Permian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号