首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 485 毫秒
1.
A land-surface model (LSM) is coupled with a large-eddy simulation (LES) model to investigate the vegetation-atmosphere exchange of heat, water vapour, and carbon dioxide (CO2) in heterogeneous landscapes. The dissimilarity of scalar transport in the lower convective boundary layer is quantified in several ways: eddy diffusivity, spatial structure of the scalar fields, and spatial and temporal variations in the surface fluxes of these scalars. The results show that eddy diffusivities differ among the three scalars, by up to 10–12%, in the surface layer; the difference is partly attributed to the influence of top-down diffusion. The turbulence-organized structures of CO2 bear more resemblance to those of water vapour than those of the potential temperature. The surface fluxes when coupled with the flow aloft show large spatial variations even with perfectly homogeneous surface conditions and constant solar radiation forcing across the horizontal simulation domain. In general, the surface sensible heat flux shows the greatest spatial and temporal variations, and the CO2 flux the least. Furthermore, our results show that the one-dimensional land-surface model scheme underestimates the surface heat flux by 3–8% and overestimates the water vapour and CO2 fluxes by 2–8% and 1–9%, respectively, as compared to the flux simulated with the coupled LES-LSM.  相似文献   

2.
One-dimensional Lagrangian dispersion models, frequently used to relate in-canopy source/sink distributions of energy, water and trace gases to vertical concentration profiles, require estimates of the standard deviation of the vertical wind speed, which can be measured, and the Lagrangian time scale, T L , which cannot. In this work we use non-linear parameter estimation to determine the vertical profile of the Lagrangian time scale that simultaneously optimises agreement between modelled and measured vertical profiles of temperature, water vapour and carbon dioxide concentrations within a 40-m tall temperate Eucalyptus forest in south-eastern Australia. Modelled temperature and concentration profiles are generated using Lagrangian dispersion theory combined with source/sink distributions of sensible heat, water vapour and CO2. These distributions are derived from a multilayer Soil-Vegetation-Atmospheric-Transfer model subject to multiple constraints: (1) daytime eddy flux measurements of sensible heat, latent heat, and CO2 above the canopy, (2) in-canopy lidar measurements of leaf area density distribution, and (3) chamber measurements of CO2 ground fluxes. The resulting estimate of Lagrangian time scale within the canopy under near-neutral conditions is about 1.7 times higher than previous estimates and decreases towards zero at the ground. It represents an advance over previous estimates of T L , which are largely unconstrained by measurements.  相似文献   

3.
A 1-year set of measurements of CO2 and energy turbulent fluxes above and within a 25-m pine forest in southern Brazil is analyzed. The study focuses on the coupling state between two levels and its impact on flux determination by the eddy-covariance method. The turbulent series are split in their typical temporal scales using the multiresolution decomposition, a method that allows proper identification of the time scales of the turbulent events. Initially, four case studies are presented: a continually turbulent, a continually calm, a calm then turbulent, and an intermittent night. During transitions from calm to turbulent, large scalar fluxes of opposing signs occur at both levels, suggesting the transference of air accumulated in the canopy during the stagnant period both upwards and downwards. Average fluxes are shown for the entire period as a function of turbulence intensity and a canopy Richardson number, used as an indicator of the canopy coupling state. Above the canopy, CO2 and sensible heat fluxes decrease in magnitude both at the neutral and at the very stable limit, while below the canopy they increase monotonically with the canopy Richardson number. Latent heat fluxes decrease at both levels as the canopy air becomes more stable. The average temporal scales of the turbulent fluxes at both levels approach each other in neutral conditions, indicating that the levels are coupled in that case. Average CO2 fluxes during turbulent periods that succeed very calm ones are appreciably larger than the overall average above the canopy and smaller than the average or negative within the canopy, indicating that the transfer of air accumulated during calm portions at later turbulent intervals affects the flux average. The implications of this process for mean flux determination are discussed.  相似文献   

4.
Summary Measuring turbulent fluxes with the eddy covariance method has become a widely accepted and powerful tool for the determination of long term data sets for the exchange of momentum, sensible and latent heat, and trace gases such as CO2 between the atmosphere and the underlying surface. Several flux networks developed continuous measurements above complex terrain, e.g. AmeriFlux and EUROFLUX, with a strong focus on the net exchange of CO2 between the atmosphere and the underlying surface. Under many conditions basic assumptions for the eddy covariance method in its simplified form, such as stationarity of the flow, homogeneity of the surface and fully developed turbulence of the flow field, are not fulfilled. To deal with non-ideal conditions which are common at many FLUXNET sites, quality tests have been developed to check if these basic theoretical assumptions are valid.In the framework of the CARBOEUROFLUX project, we combined quality tests described by Foken and Wichura (1996) with the analytical footprint model of Schmid (1997). The aim was to identify suitable wind sectors and meteorological conditions for flux measurements. These tools were used on data of 18 participating sites. Quality tests were applied on the fluxes of momentum, sensible and latent heat, and on the CO2-flux, respectively. The influence of the topography on the vertical wind component was also checked. At many sites the land use around the flux towers is not homogeneous or the fetch may not be large enough. So the relative contribution of the land use type intended to be measured was also investigated. Thus the developed tool allows comparative investigations of the measured turbulent fluxes at different sites if using the same technique and algorithms for the determination of the fluxes as well as analyses of potential problems caused by influences of the surrounding land use patterns.  相似文献   

5.
A nocturnal gravity wave was detected over a south-western Amazon forest during the Large-Scale Biosphere–Atmosphere experiment in Amazonia (LBA) in the course of the dry-to-wet season campaign on October 2002. The atmospheric surface layer was stably stratified and had low turbulence activity, based on friction velocity values. However, the passage of the wave, an event with a period of about 180–300 s, caused negative turbulent fluxes of carbon dioxide (CO2) and positive sensible heat fluxes, as measured by the eddy-covariance system at 60 m (≈30 m above the tree tops). The evolution of vertical profiles of air temperature, specific humidity and wind speed during the wave movement revealed that cold and drier air occupied the sub-canopy space while high wind speeds were measured above the vegetation. The analysis of wind speed and scalars high frequency data was performed using the wavelet technique, which enables the decomposition of signals in several frequencies allowed by the data sampling conditions. The results showed that the time series of vertical velocity and air temperature were −90° out of phase during the passage of the wave, implying no direct vertical transport of heat. Similarly, the time series of vertical velocity and CO2 concentration were 90° out of phase. The wave was not directly associated with vertical fluxes of this variable but the mixing induced by its passage resulted in significant exchanges in smaller scales as measured by the eddy-covariance system. The phase differences between horizontal velocity and both air temperature and CO2 concentration were, respectively, zero and 180°, implying phase and anti-phase relationships. As a result, the wave contributed to positive horizontal fluxes of heat and negative horizontal fluxes of carbon dioxide. Such results have to be considered in nocturnal boundary-layer surface-atmosphere exchange schemes for modelling purposes.  相似文献   

6.
The flux-variance similarity relation and the vertical transfer of scalars exhibit dissimilarity over different types of surfaces,resulting in different parameterization approaches of relative transport efficiency among scalars to estimate turbulent fluxes using the flux-variance method.We investigated these issues using eddycovariance measurements over an open,homogeneous and flat grassland in the eastern Tibetan Plateau in summer under intermediate hydrological conditions during rainy season.In unstable conditions,the temperature,water vapor,and CO2 followed the flux-variance similarity relation,but did not show in precisely the same way due to different roles(active or passive) of these scalars.Similarity constants of temperature,water vapor and CO2 were found to be 1.12,1.19 and 1.17,respectively.Heat transportation was more efficient than water vapor and CO2.Based on the estimated sensible heat flux,five parameterization methods of relative transport efficiency of heat to water vapor and CO2 were examined to estimate latent heat and CO2 fluxes.The strategy of local determination of flux-variance similarity relation is recommended for the estimation of latent heat and CO2 fluxes.This approach is better for representing the averaged relative transport efficiency,and technically easier to apply,compared to other more complex ones.  相似文献   

7.
Ultrasonic wind measurements, sonic temperature and air temperature data at two heights in the advection experiment MORE II were used to establish a complete budget of sensible heat including vertical advection, horizontal advection and horizontal turbulent flux divergence. MORE II took place at the long-term Carbo-Europe IP site in Tharandt, Germany. During the growing period of 2003 three additional towers were established to measure all relevant parameters for an estimation of advective fluxes, primarily of CO2. Additionally, in relation to other advection experiments, a calculation of the horizontal turbulent flux divergence is proposed and the relation of this flux to atmospheric stability and friction velocity is discussed. In order to obtain a complete budget, different scaling heights for horizontal advection and horizontal turbulent flux divergence are tested. It is shown that neglecting advective fluxes may lead to incorrect results. If advective fluxes are taken into account, the sensible heat budget based upon vertical turbulent flux and storage change only, is reduced by approximately 30%. Additional consideration of horizontal turbulent flux divergence would in turn add 5–10% to this sum (i.e., the sum of vertical turbulent flux plus storage change plus horizontal and vertical advection). In comparison with available energy horizontal advection is important at night whilst horizontal turbulent flux divergence is rather insignificant. Obviously, advective fluxes typically improve poor nighttime energy budget closure and might change ecosystem respiration fluxes considerably.  相似文献   

8.
In order to provide high quality data for climate change studies, the data quality of turbulent flux measurements at the station of SACOL (Semi-Arid Climate & Environment Observatory of Lanzhou University), which is located on a semi-arid grassland over the Loess Plateau in China, has been analyzed in detail. The effects of different procedures of the flux corrections on CO2, momentum, and latent and sensible heat fluxes were assessed. The result showed that coordinate rotation has a great influence on the momentum flux but little on scalar fluxes. For coordinate rotation using the planar fit method, different regression planes should be determined for different wind direction sectors due to the heterogeneous nature of the ground surface. Sonic temperature correction decreased the sensible heat flux by about 9%, while WPL correction (correction for density fluctuations) increased the latent heat flux by about 10%. WPL correction is also particularly important for CO2 fluxes. Other procedures of flux corrections, such as the time delay correction and frequency response correction, do not significantly influence the turbulent fluxes. Furthermore, quality tests on stationarity and turbulence development conditions were discussed. Parameterizations of integral turbulent characteristics (ITC) were tested and a specific parameterization scheme was provided for SACOL. The ITC test on turbulence development conditions was suggested to be applied only for the vertical velocity. The combined results of the quality tests showed that about 62%–65% of the total data were of high quality for the latent heat flux and CO2 flux, and as much as about 76% for the sensible heat flux. For the momentum flux, however, only about 35% of the data were of high quality.  相似文献   

9.
Fluxes of CO2, water vapor and sensible heat were measured in a grassland ecosystem near Manhattan, Kansas, employing the eddy correlation technique. The vegetation at this site is dominated by big bluestem (Andropogon gerardii), switchgrass (Panicum virgatum), and indiangrass (Sorghastrum nutans). Diurnal patterns of the energy budget components and CO2 fluxes are evaluated on a few selected days. Influence of high atmospheric evaporative demand and low availability of soil water are examined on (a) energy partitioning, and (b) the magnitudes and patterns of atmospheric carbon dioxide exchange.Published as Paper No. 8470, Journal Series, Nebraska Agricultural Research Division.  相似文献   

10.
A modified infrared CO2 gas analyzer, a small thermocouple assembly, a heated-thermocouple anemometer for horizontal wind, and a propeller-type vertical wind sensor were used to measure the eddy fluxes of heat and CO2 above a corn crop. Experimental results of these fluxes are discussed. The main sources of errors of the eddy fluxes using these instruments were estimated:
  1. Sensors with a time constant of 0.5 s appear to be fast enough to detect most of the vertical CO2 transfer as long as the sensors are located at least one meter above the crop surface.
  2. The deviation from steady-state conditions for 10-min periods was found to have a significant effect on the eddy flux estimates.
  3. Temperature fluctuations of the air sample passing through the CO2 infrared gas analyzer were found to be non-negligible but could be easily corrected.
  4. A 1° misalignment of the vertical anemometer affected these eddy fluxes by less than 10% under all circumstances studied.
  相似文献   

11.
Parametrisations of meridional energy and moisture transport used in zonally averaged climate models are validated using reanalysis data and results from a doubling CO2-experiment from a general circulation model. Global meridional fluxes of moisture and sensible heat are calculated by integrating surface and top-of-the-atmosphere vertical fluxes from one pole to the other. The parametrisations include an eddy-diffusion term, representing down-gradient transport of specific humidity and temperature due to the transient atmospheric eddies at mid- and high latitudes, and simple representations of the mean meridional circulation. Qualitative and quantitative agreement between the increased hydrological cycle in the 2×CO2-run from the GCM and the parametrisation is found. The performance for the sensible heat flux shows larger differences to the GCM results, particularly at low latitudes. Seasonal variations of the moisture and sensible heat transport are well captured by parametrisations including the influence of the mean meridional circulation. Interannual variability cannot be simulated. An examination of the parametrisations on different spatial scales suggests that they should not be used for small scales. Furthermore, two closures for the zonal distribution of precipitation were examined. They are used in zonally averaged atmosphere models coupled to an ocean model with different ocean basins at one latitudinal belt. An assessment of both the reanalysis data and the GCM results shows that both closures exhibit very similar behaviour and are valid in the long-term mean and seasonal cycle. Interannual variability is not captured well. They become invalid for spatial scales smaller than 10. Received: 30 November 1998 / Accepted: 4 July 1999  相似文献   

12.
Energy and CO2 fluxes are commonly measured above plant canopies using an eddy covariance system that consists of a three-dimensional sonic anemometer and an H2O/CO2 infrared gas analyzer. By assuming that the dry air is conserved and inducing mean vertical velocity, Webb et al. (Quart. J. Roy. Meteorol. Soc. 106, 85-100, 1980) obtained two equations to account for density effects due to heat and water vapour transfer on H2O/CO2 fluxes. In this paper, directly starting with physical consideration of air-parcel expansion/compression, we derive two alternative equations to correct for these effects that do not require the assumption that dry air is conserved and the use of the mean vertical velocity. We then applied these equations to eddy flux observations from a black spruce forest in interior Alaska during the summer of 2002. In this ecosystem, the equations developed here led to increased estimates of CO2 uptake by the vegetation during the day (up to about 20%), and decreased estimates of CO2 respiration by the ecosystem during the night (approximately 4%) as compared with estimates obtained using the Webb et al. approach.  相似文献   

13.
Forest-Air Fluxes Of Carbon, Water And Energy Over Non-Flat Terrain   总被引:9,自引:0,他引:9  
A field study of surface-air exchange of carbon, water, and energy was conducted at a mid-latitude, mixed forest on non-flat terrain to investigate how to best interpret biological signals from the eddy flux data that may be subject to advective influences. It is shown that during periods of Southwest winds (sector with mild topography), the eddy fluxes are well-behaved in terms of energy balance closure, the existence of a constant flux layer, consistency with chamber observations and the expected abiotic controls on the fluxes. Advective influences are evident during periods with wind from a steep (15%) slope to the Northeast of the tower. These influences appear more severe on CO2 flux, particularly in stable air, than on the energy fluxes. Large positive flux of CO2 (> 23 mol m-2 s-1) occurs frequently at night. The annual sum of the carbon flux is positive, but the issue about whether the forest is a source of atmospheric carbon remains inconclusive.Attempts are made to assess vertical advectionusing the data collected on a single tower. Over the Southwestsector, vertical advection makes a statistically significant but small contribution to the 30-min energy imbalance and CO2 flux variations. Contributions by horizontal advection may be larger but cannot be verified directly by the current experimental method.  相似文献   

14.
Eddy-covariance observations above the densely built-up Centre of Nanjing were made from December 2011 to August 2012. Separate eddy-covariance systems installed at two levels on a 36-m tower located on a rooftop were operated simultaneously, and observations grouped into two sectors (A, B) according to the prevalent wind directions. For sector A, where the nearby buildings are all below the lower measurement level, the sensible heat and momentum fluxes are generally greater at the upper level. For sector B, where several high-rise buildings are located upwind, the sensible heat and momentum fluxes at the upper level are close to those at the lower level. The analysis shows that the turbulent eddy characteristics differ between the two wind sectors, leading to a different behaviour of turbulent exchange between the two levels. A hypothesis is proposed that addresses the vertical variation of turbulent fluxes in the urban roughness sublayer (RSL). For sector A, the buildings block the flow, change the trajectory of scalars, and distort the footprint of scalar fluxes; this ‘blocking effect’ is believed to lead to a smaller sensible heat flux above the canopy layer. Such an effect should decrease with height in the RSL, explaining the increase of the observed turbulent heat flux with height. In addition, the presence of non-uniform building heights adversely affects turbulence organization around the canopy top, and likely elevates the inflection point of the mean flow to a higher elevation close to the upper measurement level, where larger shear results in a larger momentum flux. For sector B, wake effects from the nearby high-rise buildings strongly reduce turbulence organization at higher elevations, leading to similar sensible heat and momentum fluxes at both measurement levels.  相似文献   

15.
Flux densities of carbon dioxide were measured over an arid, vegetation-free surface by eddy covariance techniques and by a heat budget-profile method, in which CO2 concentration gradients were specified in terms of mixing ratios. This method showed negligible fluxes of CO2, consistent with the bareness of the experimental site, whereas the eddy covariance measurements indicated large downward fluxes of CO2. These apparently conflicting observations are in quantitative agreement with the results of a recent theory which predicts that whenever there are vertical fluxes of sensible or latent heat, a mean vertical velocity is developed. This velocity causes a mean vertical convective mass flux (= cw for CO2, in standard notation). The eddy covariance technique neglects this mean convective flux and measures only the turbulent flux c w. Thus, when the net flux of CO2 is zero, the eddy covariance method indicates an apparent flux which is equal and opposite to the mean convective flux, i.e., c w = – c w. Corrections for the mean convective flux are particularly significant for CO2 because cw and c w are often of similar magnitude. The correct measurement of the net CO2 flux by eddy covariance techniques requires that the fluxes of sensible and latent heat be measured as well.  相似文献   

16.
Sonic anemometers are capable of measuring the wind speed in all three dimensions at high frequencies (10–50 Hz), and are relied upon to estimate eddy-covariance-based fluxes of mass and energy over a wide variety of surfaces and ecosystems. In this study, wind-velocity measurement errors from a three-dimensional sonic anemometer with a non-orthogonal transducer orientation were estimated for over 100 combinations of angle-of-attack and wind direction using a novel technique to measure the true angle-of-attack and wind speed within the turbulent atmospheric surface layer. Corrections to the vertical wind speed varied from −5 to 37% for all angles-of-attack and wind directions examined. When applied to eddy-covariance data from three NOAA flux sites, the wind-velocity corrections increased the magnitude of CO2 fluxes, sensible heat fluxes, and latent heat fluxes by ≈11%, with the actual magnitude of flux corrections dependent upon sonic anemometer, surface type, and scalar. A sonic anemometer that uses vertically aligned transducers to measure the vertical wind speed was also tested at four angles-of-attack, and corrections to the vertical wind speed measured using this anemometer were within ±1% of zero. Sensible heat fluxes over a forest canopy measured using this anemometer were 15% greater than sensible heat fluxes measured using a sonic anemometer with a non-orthogonal transducer orientation. These results indicate that sensors with a non-orthogonal transducer orientation, which includes the majority of the research-grade three-dimensional sonic anemometers currently in use, should be redesigned to minimize sine errors by measuring the vertical wind speed using one pair of vertically aligned transducers.  相似文献   

17.
Different flux estimation techniques are compared here in order to evaluate air–sea exchange measurement methods used on moving platforms. Techniques using power spectra and cospectra to estimate fluxes are presented and applied to measurements of wind speed and sensible heat, latent heat and CO2 fluxes. Momentum and scalar fluxes are calculated from the dissipation technique utilizing the inertial subrange of the power spectra and from estimation of the cospectral amplitude, and both flux estimates are compared to covariance derived fluxes. It is shown how even data having a poor signal-to-noise ratio can be used for flux estimations.  相似文献   

18.
An integrated canopy micrometeorological model is described for calculating CO2, water vapor and sensible heat exchange rates and scalar concentration profiles over and within a crop canopy. The integrated model employs a Lagrangian random walk algorithm to calculate turbulent diffusion. The integrated model extends previous Lagrangian modelling efforts by employing biochemical, physiological and micrometeorological principles to evaluate vegetative sources and sinks. Model simulations of water vapor, CO2 and sensible heat flux densities are tested against measurements made over a soybean canopy, while calculations of scalar profiles are tested against measurements made above and within the canopy. The model simulates energy and mass fluxes and scalar profiles above the canopy successfully. On the other hand, model calculations of scalar profiles inside the canopy do not match measurements.The tested Lagrangian model is also used to evaluate simpler modelling schemes, as needed for regional and global applications. Simple, half-order closure modelling schemes (which assume a constant scalar profile in the canopy) do not yield large errors in the computation of latent heat (LE) and CO2 (F c ) flux densities. Small errors occur because the source-sink formulation of LE andF c are relatively insensitive to changes in scalar concentrations and the scalar gradients are small. On the other hand, complicated modelling frames may be needed to calculate sensible heat flux densities; the source-sink formulation of sensible heat is closely coupled to the within-canopy air temperature profile.  相似文献   

19.
Vertical turbulent fluxes of water vapour, carbon dioxide, and sensible heat were measured from 16 August to the 28 September 2006 near the city centre of Münster in north-west Germany. In comparison to results of measurements above homogeneous ecosystem sites, the CO2 fluxes above the urban investigation area showed more peaks and higher variances during the course of a day, probably caused by traffic and other varying, anthropogenic sources. The main goal of this study is the introduction and establishment of a new gap filling procedure using radial basis function (RBF) neural networks, which is also applicable under complex environmental conditions. We applied adapted RBF neural networks within a combined modular expert system of neural networks as an innovative approach to fill data gaps in micrometeorological flux time series. We found that RBF networks are superior to multi-layer perceptron (MLP) neural networks in the reproduction of the highly variable turbulent fluxes. In addition, we enhanced the methodology in the field of quality assessment for eddy covariance data. An RBF neural network mapping system was used to identify conditions of a turbulence regime that allows reliable quantification of turbulent fluxes through finding an acceptable minimum of the friction velocity. For the data analysed in this study, the minimum acceptable friction velocity was found to be 0.15 m s−1. The obtained CO2 fluxes, measured on a tower at 65 m a.g.l., reached average values of 12 μmol m−2 s−1 and fell to nighttime minimum values of 3 μmol m −2 s−1. Mean daily CO2 emissions of 21 g CO2 m−2d −1 were obtained during our 6-week experiment. Hence, the city centre of Münster appeared to be a significant source of CO2. The half-hourly average values of water vapour fluxes ranged between 0.062 and 0.989 mmol m−2 s−1and showed lower variances than the simultaneously measured fluxes of CO2.  相似文献   

20.
For measurements of eddy fluxes in the atmospheric boundary layer of gases (such as CO2) whose average concentration is very large compared to the fluctuations, corrections for air density fluctuations are required. With the boundary condition of no flux of dry air at the surface, the evaporation correction to eddy fluxes is 2.6 times larger than has been estimated with the boundary condition of no mass flux at all at the surface. The heat flux correction is also increased by a few per cent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号