首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A distinctive terrain named cryptic region which is characterized by regions of low albedo and low temperature has been identified on the Martian south polar cap. In this zone, many fan- and spider-shaped features of km-scale appeared following the sublimation of the CO2 frost layer. These peculiar features were apparently caused by a wind-blown system of dust-laden jets. During the warming period starting at Ls∼180°, the seasonal ice cap regresses and fans and spiders appear in sequence. These surface features are repeatable events that tend to occupy the same areas from year to year. In this study, we use the Mars Orbiter camera (MOC) narrow-angle images to produce a statistical study of the time distributions of the fans and spiders as functions of Ls and as functions of the topography. The time variations and spatial distributions of these features are further correlated with the CO2 ice coverage measured by the Mars Orbiter laser altimeter (MOLA) instrument. We have documented that most of the fans are found in the early spring with Ls<230° and the fans and spiders coexist at Ls=250°±20°. It is also found that there is a strong dependence on latitude and altitude with fans and spiders most often observed at high latitude (>83°S) and high altitude (>2500 m). Our statistical result also indicates that the occurrence of fans is highly correlated with the thickness of the CO2 frost thus providing support for the venting model.  相似文献   

2.
The Mars Express spacecraft has a highly inclined orbit around Mars and so has been able to observe the south pole of Mars in illuminated conditions at the end of the southern summer (Ls=330). Spectra from the planetary Fourier spectrometer (PFS) short wavelength (SW) channel were recorded over the permanent ice cap to study its composition in terms of CO2 ice and H2O ice. Models are fitted to the observed data, which include a spatial mixture of soil (not covered by ice) and CO2 frost (with a specific grain size and a small amount of included dust and H2O ice). Two different kinds of spectra were observed: those over the permanent polar cap with almost pure CO2 ice, negligible water ice, no soil fraction required, and bright; and those over mixed terrain (at the edge of the cap or near troughs) containing a significant soil spatial fraction, more water ice and smaller CO2 grain size. The amount of water ice given by fits to scaled albedo models is less than 10 ppm by weight. When using multi-stream reflectance models with the appropriate lighting geometry, the water amount must be 2-5 times greater than the albedo fit (less than 50 ppm). At the periphery of the residual polar cap, we found a region almost completely covered by water frost, modeled as a mixture of micron-sized and sub-mm sized grains. Our result using a granular mixture of micron-sized grains of water ice and dust with the CO2 grains is different from the modeling of OMEGA polar cap observations using molecular mixtures.  相似文献   

3.
The Martian seasonal CO2 ice caps advance and retreat each year. In the spring, as the CO2 cap gradually retreats, it leaves behind an extensive defrosting zone from the solid CO2 cap to the location where all CO2 frost has sublimated. We have been studying this phenomenon in the north polar region using data from the THermal EMission Imaging System (THEMIS), a visible and infra-red (IR) camera on the Mars Odyssey spacecraft, and the Thermal Emission Spectrometer (TES) on Mars Global Surveyor. Recently, we discovered that some THEMIS images of the CO2 defrosting zone contain evidence for a distinct defrosting phenomenon: some areas just south of the CO2 cap edge are too bright in visible wavelengths to be defrosted terrain, but too warm in the IR to be CO2 ice. We hypothesize that we are seeing evidence for a seasonal annulus of water ice (frost) that recedes with the seasonal CO2 cap, as predicted by previous workers. In this paper, we describe our observations with THEMIS and compare them to simultaneous observations by TES and OMEGA. All three instruments find that this phenomenon is distinct from the CO2 cap and most likely composed of water ice. We also find strong evidence that the annulus widens as it recedes. Finally, we show that this annulus can be detected in the raw THEMIS data as it is collected, enabling future long-term onboard monitoring.  相似文献   

4.
Previous observations have noted the change in albedo in a number of North Pole bright outliers and in the distribution of bright ice deposits between Mariner 9, Viking, and Mars Global Surveyor (MGS) data sets. Changes over the summer season as well as between regions at the same season (Ls) in different years have been observed. We used the bolometric albedo and brightness temperature channels of the Thermal Emission Spectrometer (TES) on the MGS spacecraft to monitor north polar residual ice cap variations between Mars years and within the summer season for three northern Martian summers between July 1999 and April 2003. Large-scale brightness variations are observed in four general areas: (1) the patchy outlying frost deposits from 90 to 270°E, 75 to 80°N; (2) the large “tail” below the Chasma Boreale and its associated plateau from 315 to 45°E, 80 to 85°N, that we call the “Boreale Tongue” and in Hyperboreae Undae; (3) the troughed terrain in the region from 0 to 120°E longitude (the lower right on a polar stereographic projection) we have called “Shackleton's Grooves” and (4) the unit mapped as residual ice in Olympia Planitia. We also note two areas which seem to persist as cool and bright throughout the summer and between Mars years. One is at the “source” of Chasma Boreale (∼15°E, 85°N) dubbed “McMurdo”, and the “Cool and Bright Anomaly (CABA)” noted by Kieffer and Titus 2001. TES Mapping of Mars’ north seasonal cap. Icarus 154, 162-180] at ∼330°E, 87°N called here “Vostok”. Overall defrosting occurs early in the summer as the temperatures rise and then after the peak temperatures are reached (Ls∼110) higher elevations and outlier bright deposits cold trap and re-accumulate new frost. Persistent bright areas are associated with either higher elevations or higher background albedos suggesting complex feedback mechanisms including cold-trapping of frost due to albedo and elevation effects, as well as influence of mesoscale atmospheric dynamics.  相似文献   

5.
We used MGS-MOC and MRO-MARCI daily mapping images of the North Polar Region of Mars from 16 August 2005 (Ls = 270°) to 21 May 2009 (Ls = 270°), covering portions of three consecutive martian years (MY 27-MY 29), to observe the seasonal behavior of the polar ice cap and atmospheric phenomena. The rate of cap regression was similar in MY 28 and MY 29, but was advanced by 3.5° of Ls (∼7-8 sols) in MY 29. The spatial and temporal behaviors of dust and condensate clouds were similar in the two years and generally in accord with prior years. Dust storms (>100 km2) were observed in all seasons, with peak activity occurring at Ls = 10-20° from 50°N to 70°N and at Ls = 135-140° from 70°N to 90°N. The most active quadrant was 0-90°W in MY 28, shifting to 180-270°W in MY 29. The majority of regional storms in both years developed in longitudes from 10°W to 60°W. During late summer the larger storms obscure the North Polar Region in a cloud of dust that transitions to north polar hood condensate clouds around autumnal equinox.Changes in the distribution of perennial ice deposits, especially in Olympia Planum, were observed between the 2 years, with the MY 29 ice distribution being the most extensive observed to date. Modeling suggests that the small, bright ice patches on the residual cap are not the result of slope or elevation effects. Rather we suggest that they are the result of local meteorological effects on ice deposition. The annual darkening and brightening of peripheral areas of the residual cap around summer solstice can be explained by the sublimation of a brighter frost layer revealing an underlying darker, ice rich layer that itself either sublimes to reveal brighter material below or acts as a cold trap, attracting condensation of water vapor that brightens the surface. An alternative explanation invokes transport and deposition of dust on the surface from the cap interior, and later removal of that dust. The decrease in cap albedo and accompanying increase in near surface atmospheric stability may be related to the annual minimum of polar storm activity near northern summer solstice.  相似文献   

6.
It is uncertain whether the residual (perennial) south polar cap on Mars is a transitory or a permanent feature in the current Martian climate. While there is no firm evidence for complete disappearance of the cap in the past, clearly observable changes have been documented. Observations suggest that the perennial cap lost more CO2 material in the spring/summer season prior to the Mariner 9 mission than in those same seasons monitored by Viking and Mars Global Surveyor. In this paper we examine one process that may contribute to these changes—the radiative effects of a planet encircling dust storm that starts during late Martian southern spring on the stability of the perennial south polar cap. To approach this, we model the radiative transfer through a dusty planetary atmosphere bounded by a sublimating CO2 surface.A critical parameter for this modeling is the surface albedo spectrum from the near-UV to the thermal-IR, which was determined from both space-craft and Earth-based observations covering multiple wavelength regimes. Such a multi-wavelength approach is highly desirable since one spectral band by itself cannot tightly constrain the three-parameter space for polar surface albedo models, namely photon “scattering length” in the CO2 ice and the amounts of intermixed water and dust.Our results suggest that a planet-encircling dust storm with onset near solstice can affect the perennial cap's stability, leading to advanced sublimation in a “dusty” year. Since the total amount of solid CO2 removed by a single storm may be less than the total CO2 thickness, a series of dust storms would be required to remove the entire residual CO2 ice layer from the south perennial cap.  相似文献   

7.
The condensing CO2 south polar cap of Mars and the mechanisms of the CO2 ice accumulation have been studied through the analysis of spectra acquired by the Planetary Fourier Spectrometer (PFS) during the first two years of ESA's Mars Express (MEX) mission. This dataset spans more than half a martian year, from Ls∼330° to Ls∼194°, and includes the southern fall season which is found to be extremely important for the study of the residual south polar cap asymmetry. The cap expands symmetrically and with constant speed during the fall season. The maximum extension occurs sometime in the 80°-90° Ls range, when the cap edges are as low as −40° latitude. Inside Hellas and Argyre basins, frost can be stable at lower latitudes due to the higher pressure values, causing the seasonal cap to be asymmetric. Within the seasonal range considered in this paper, the cap edge recession rate is approximately half the rate at which the cap edge expanded. The longitudinal asymmetries reduce during the cap retreat, and disappear around Ls∼145°. Two different mechanisms are responsible for CO2 ice accumulation during the fall season, especially in the 50°-70° Ls range. Here, CO2 condensation in the atmosphere, and thus precipitation, is allowed exclusively in the western hemisphere, and particularly in the longitudinal corridor of the perennial cap. In the eastern hemisphere, the cap consists mainly of CO2 frost deposits, as a consequence of direct vapor deposition. The differences in the nature of the surface ice deposits are the main cause for the residual south polar cap asymmetry. Results from selected PFS orbits have also been compared with the results provided by the martian general circulation model (GCM) of the Laboratoire de Météorologie dynamique (LMD) in Paris, with the aim of putting the observations in the context of the global circulation. This first attempt of cross-validation between PFS measurements and the LMD GCM on the one hand confirms the interpretation of the observations, and on the other hand shows that the climate modeling during the southern polar night on Mars is extremely sensitive to the dynamical forcing.  相似文献   

8.
Geoffrey A. Briggs 《Icarus》1974,23(2):167-191
A model of the behavior of the Martian polar caps is described which incorporates the heating effects of the atmosphere, as well as insolation and conduction. This model is used to try to match the observed regression curves of the polar caps, and it predicts that all the seasonally condensed CO2 will be lost by around the summer solstice. The implication is that the residual caps are composed of water ice which, it is found by further modeling, should be stable during the Martian summers. However, it is also argued that this model may be too simplistic, and that the effects of wind in redistributing the seasonal condensate may lead to sufficient thickness of CO2 in the central polar region to allow the year-long existence of CO2 without significantly changing the retreat characteristics of the cap, and it is, therefore, concluded that at the present, the nature of the residual caps cannot be reliably determined.  相似文献   

9.
《Planetary and Space Science》2007,55(10):1319-1327
The advance and retreat of the polar caps were one of the first observations that indicated Mars had seasons. Because a large portion of the atmosphere is cycled in and out of the seasonal caps during the year, the frost deposits play a significant role in regional and global atmospheric circulation. Understanding the nature of the seasonal polar caps is imperative if we are to understand the current Martian climate. In this study, we track the seasonal cap edges as a function of season and longitude for the fall and winter seasons (MY27), using data from the Planetary Fourier Spectrometer (PFS) onboard the Mars Express (MEX) ESA mission. Making use of the rapid rise (decrease) in surface temperature that occurs when CO2 ice is removed (deposited), in a first approach, we defined the advancing cap edge to be where the surface temperature drops below 150 K, and the retreating cap edge where the surface temperature rises above 160 K. In this case, starting from Ls∼50°, the edge progression speed start to be longitude dependent. In the hemisphere that extends form the eastern limit of the Hellas basin to the western limit of the Argyrae basin (and containing the two) the edges progression speed is about a half than that of the other hemisphere; the cap is thus asymmetric and, unexpectedly, no CO2 ice seems to be present inside the basins. This is because the above mentioned surface temperatures used in this approach to detect the cap edges are not adequate (too low) for the high-pressure regions inside the basins where, following the Clausius–Clapeyron's law, the CO2 condensation temperature can be several degrees higher than that of the adjacent lower-pressure regions. In the second, final approach, special attention has been given to this aspect and the advancing and retreating cap edges are defined where, respectively, the surface temperatures drop below and rise above the CO2 condensation temperature for the actual surface pressure values. Now, the results show an opposite situation than the previous one, with the progression speed being higher and the cap more extended (up to −30° latitude) in the hemisphere containing the two major Martian basins. During the fall season, up to Ls∼50° the South Martian polar cap consists of CO2 frost deposits that advance towards lower latitudes at a constant speed of 10° of latitude per 15 degrees of Ls. The maximum extension (−40° latitude) of the South polar cap occurs somewhere in the 80°–90° Ls range. At the winter solstice, when the edges of the polar night start moving poleward, the cap recession has already started, in response to seasonal changes in insolation. The CO2 ice South polar cap will recede with a constant speed of ∼5° of latitude every 25° degrees of Ls during the whole winter. The longitudinal asymmetries reduce during the cap retreat and completely disappear around Ls=145°.  相似文献   

10.
The Mars Orbiter Camera onboard the Mars Global Surveyor has obtained several images of polygonal features in the southern polar region. In images taken during the end of the southern spring, when the surrounding surface is free of the seasonal frost, CO2 ice still appears to be present within the polygonal troughs. In Earth's polar regions, polygons such as these are indicative of water ice in the ground below. We analyzed the seasonal evolution of the thermal state and the CO2 content of these features. Our 2-D model includes condensation and sublimation of the CO2 ice, a self consistent treatment of the variations of the thermal properties of the regolith, and the seasonal variations of the local atmospheric pressure which we take from the results of a general circulation model. We find that the residence time of seasonal CO2 ice in troughs depends not only on atmospheric opacity and albedo of the CO2 ice, but also and most significantly on the distribution of water ice in the regolith. Optical properties of the atmosphere and surface CO2 ice can be independently obtained from observations. To date this is not true about the distribution of water ice below the surface. Our analysis quantifies the dependence of the seasonal cycle of the CO2 ice within the troughs on the assumed distribution of the water ice below the surface. We show that presence of water ice in the ground at a depth smaller than the depth of the troughs reduces winter condensation rate of CO2 ice. This is due to higher heat flux conducted from the water ice rich regolith toward the facets of the troughs.  相似文献   

11.
《Planetary and Space Science》2007,55(10):1328-1345
The planetary fourier spectrometer (PFS) for the Mars express mission (MEX) is an infrared spectrometer operating in the wavelength range from 1.2 to 45 μm by means of two spectral channels, called SWC (short wavelength channel) and LWC (long wavelength channel), covering, respectively, 1.2–5.5 and 5.5–45 μm.The middle-spring Martian north polar cap (Ls∼40°) has been observed by PFS/MEX in illuminated conditions during orbit 452. The SWC spectra are here used to study the cap composition in terms of CO2 ice, H2O ice and dust content. Significant spectral variation is noted in the cap interior, and regions of varying CO2 ice grain sizes, water frost abundance, CO2 ice cover and dust contamination can be distinguished. In addition, we correlate the infrared spectra with an image acquired during the same orbit by the OMEGA imaging spectrometer and with the altimetry from MOLA data. Many of the spectra variations correlate with heterogeneities noted in the image, although significant spectral variations are not discernible in the visible. The data have been divided into five regions with different latitude ranges and strong similarities in the spectra, and then averaged. Bi-directional reflectance models have been run with the appropriate lighting geometry and used to fit the observed data, allowing for CO2 ice and H2O ice grain sizes, dust and H2O ice contaminations in the form of intimate granular mixtures and spatial mixtures.A wide annulus of dusty water ice surrounds the recessing CO2 seasonal cap. The inner cap exhibits a layered structure with a thin CO2 layer with varying concentrations of dark dust, on top of an H2O ice underneath ground. In the best-fits, the ices beneath the top layer have been considered as spatial mixtures. The results are still very good everywhere in the spectral range, except where the CO2 ice absorption coefficients are such that even a thin layer is enough to totally absorb the incoming radiation (i.e. the band is saturated). This only happens around 3800 cm−1, inside the strong 2.7-μm CO2 ice absorption band. The effect of finite snow depth has been investigated through a layered albedo model. The thickness of the CO2 ice deposits increases with latitude, ranging from 0.5–1 g cm−2 within region II to 60–80 g cm−2 within the highest-latitude (up to 84°N) region V.Region I is at the cap edge and extends from 65°N to 72°N latitude. No CO2 ice is present in this region, which consists of relatively large grains of water ice (20 μm), highly contaminated by dust (0.15 wt%). The adjacent region II is a narrow region [76–79°N] right at the edge of the north residual polar cap. This region is very distinct in the OMEGA image, where it appears to surround the whole residual cap. The CO2 ice features are barely visible in these spectra, except for the strong saturated 2.7 μm band. It basically consists of a thin layer of 5-mm CO2 ice on top of an H2O ice layer with the same composition as region I. A third interesting region III is found all along the shoulder of the residual cap [79–81°N]. It extends over 1.5 km in altitude and over only 2° of latitude and consists of CO2 ice with a large dust content. It is an admixture of CO2 ice (3–4 mm), with several tens of ppm by mass of water ice and more than 2 ppt by mass of dust. The surface temperatures have been retrieved from the LWC spectra for each observation. We found an increase in the surface temperature in this region, indicating a spatial mixture of cold CO2 ice and warmer dust/H2O ice. Region IV is close to the top of the residual cap [81–84°N]; it is much brighter than region III, with a dust content 10 times lower than the latter. The CO2 grain size is 3 mm and strong CO2 ice features are present in the data, indicating a thicker CO2 ice layer than in region II (1–2 g cm−2). The final region V is right at the top of the residual cap (⩾84°N). It is “pure” CO2 ice (no dust) of 5 mm grain sizes, with 30 ppm by weight of water ice. The CO2 ice features are very pronounced and the 2.7 μm band is saturated. The optical thickness is close to the semi-infinite limit (30–40 g cm−2). Assuming a snowpack density of 0.5 g cm−3, we get a minimum thickness of 1–2 cm for the top-layer of regions II and III, 4–10 cm for region IV, and ⩾60–80 cm thickness for region V. These values are in close agreement with several recent results for the south seasonal polar cap.These results should provide new, useful constraints in models of the Martian climate system and volatile cycles.  相似文献   

12.
An isothermal reservoir of carbon dioxide in gaseous contact with the Martian atmosphere would reduce the amplitude and advance the phase of global atmospheric pressure fluctuations caused by seasonal growth and decline of polar CO2 frost caps. Adsorbed carbon dioxide in the upper ~10 m of Martian regolith is sufficient to buffer the present atmosphere on a seasonal basis. Available observations and related polar cap models do not confirm or refute the operation of such a mechanism. Implications for the amplitude and phase of seasonal pressure fluctuations are subject to direct test by the upcoming Viking mission to Mars.  相似文献   

13.
In order to study the stability of martian climate, we constructed a two-dimensional (horizontal-vertical) energy balance model. The long-term CO2 mass exchange process between the atmosphere and CO2 ice caps is investigated with particular attention to the effect of planetary ice distribution on the climate stability. Our model calculation suggests that high atmospheric pressure presumed for past Mars would be unstabilized if H2O ice widely prevailed. As a result, a cold climate state might have been achieved by the condensation of atmospheric CO2 onto ice caps. On the other hand, the low atmospheric pressure, which is buffered by the CO2 ice cap and likely close to the present pressure, would be unstabilized if the CO2 ice albedo decreased. This may have led the climate into a warm state with high atmospheric pressure owing to complete evaporation of CO2 ice cap. Through the albedo feedback mechanisms of H2O and CO2 ices in the atmosphere-ice cap system, Mars may have experienced warm and cold climates episodically in its history.  相似文献   

14.
We propose a conceptual model to interpret AM/PM high albedo events (HAEs) in crater interiors at the Martian seasonal polar caps. This model consists of two components: (1) a relatively permanent high-albedo water–ice body exposed in a crater interior and (2) a variable crater albedo in response to aerosol optical depth, dust contamination, and H2O/CO2 frost deposits or sublimes in four phases, based on temperature and solar longitude changes. Two craters (Korolev crater of fully exposed water–ice layer and ‘Louth’ crater of partially exposed water–ice layer) are used to demonstrate the model. This model explains the HAEs and their seasonal changes and suggests that many crater-like features formed in the last episodic advance of the polar ice cap in the last high obliquity period should have water–ice exposed or covered. For the AM-only HAEs craters, there seems no need of a water–ice layer to be fully exposed, but a subsurface water–ice layer (or ice-rich regolith) is a necessary condition.  相似文献   

15.
Steven W. Squyres 《Icarus》1979,40(2):244-261
The origin and evolution of two major eolian deposits of the Martian north polar region, the layered deposits and the debris mantle, are examined. Both apparently result from deposition of dust along with the seasonal CO2 frost cap. Dust deposited onto the perennial ice is incorporated into the layered deposits, while dust deposited directly onto the surface becomes part of the debris mantle. Climatically induced fluctuation of the perennial ice margin has influenced the evolution of both units. Periodic exposure to the atmosphere has allowed erosion of curvillinear troughs in the surface of the layered deposits. Intervening periods of deposition may have resulted in gradual poleward migration of the trough forms, leaving behind sets of low-amplitude surface undulations in former trough locations. Advance and retreat of the perennial ice margin has also probably resulted in a fine interfingering of the layered deposits-debris mantle contract. Limited post-depositional stripping of the debris mantle has been accomplished by intense winds blowing outward from the pole.  相似文献   

16.
We report on new retrievals of water vapor column abundances from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data. The new retrievals are from the TES nadir data taken above the ‘cold’ surface areas in the North polar region (Tsurf < 220 K, including seasonal frost and permanent ice cap) during spring and summer seasons, where retrievals were not performed initially. Retrievals are possible (with some modifications to the original algorithm) over cold surfaces overlaid by sufficiently warm atmosphere. The retrieved water vapor column abundances are compared to the column abundances observed by other spacecrafts in the Northern polar region during spring and summer and good agreement is found. We detect an annulus of water vapor growing above the edge of the retreating seasonal cap during spring. The formation of the vapor annulus is consistent with the previously proposed mechanism for water cycling in the polar region, according to which vapor released by frost sublimation during spring re-condenses on the retreating seasonal CO2 cap. The source of the vapor in the vapor annulus, according to this model, is the water frost on the surface of the CO2 at the retreating edge of the cap and the frost on the ground that is exposed by the retreating cap. Small contribution from regolith sources is possible too, but cannot be quantified based on the TES vapor data alone. Water vapor annulus exhibits interannual variability, which we attribute to variations in the atmospheric temperature. We propose that during spring and summer the water ice sublimation is retarded by high relative humidity of the local atmosphere, and that higher atmospheric temperatures lead to higher vapor column abundances by increasing the water holding capacity of the atmosphere. Since the atmospheric temperatures are strongly influenced by the atmospheric dust content, local dust storms may be controlling the release of vapor into the polar atmosphere. Water vapor abundances above the residual polar cap also exhibit noticeable interannual variability. In some years abundances above the cap are lower than the abundances outside of the cap, consistent with previous observations, while in the other years the abundances above the cap are higher or similar to abundances outside of the cap. We speculate that the differences may be due to weaker off-cap transport in the latter case, keeping more vapor closer to the source at the surface of the residual cap. Despite the large observed variability in water vapor column abundances in the Northern polar region during spring and summer, the latitudinal distribution of the vapor mass in the atmosphere is very similar during the summer season. If the variability in vapor abundances is caused by the variability of vapor sources across the residual cap then this would mean that they annually contribute relatively little vapor mass to significantly affect the vapor mass budget. Alternatively this may suggest that the vapor variability is caused by the variability of the polar atmospheric circulation. The new water vapor retrievals should be useful in tuning the Global Circulation Models of the martian water cycle.  相似文献   

17.
The residual south polar cap of Mars (RSPC) is distinct from the residual north polar cap both in composition and in morphology. CO2 frost in the RSPC is stabilized by its high albedo during southern spring and summer despite the relatively large insolation during that period. The morphology of the RSPC in summer displays a bewildering variety of depressions that are formed in relatively thin layers of CO2. The increase of the size of these depressions between each of the first three years of Mars Global Surveyor (MGS) observations may possibly signal some sort of climate change on the planet. For example, the erosion of the bright plateaus might reduce the RSPC albedo and affect the energy balance. The Mars Orbiter Cameras (MOC) on MGS observed Mars for four consecutive martian years before contact with the spacecraft was lost in late 2006. During this period coverage of the polar regions was particularly dense because MGS flew over them on every orbit. In this paper we report on the four-year behavior of the morphological features in the RSPC and on the large-scale variability in RSPC albedo over the period. The changes in the size of the surface features in the RSPC due to backwasting that were first observed between Mars years (MY) 24 and 25 and subsequently between MY25 and M26 was observed to continue at the same rate through MY 27. The results indicate that on average thicker layers in the RSPC retreat faster than thinner ones, roughly in proportion to their thickness. We argue that a simple difference in porosity between the A and B layers can explain this difference although other factors could be involved. The large-scale albedo of the RSPC decreases as the depressions are uncovered by sublimation of seasonal CO2. However, any interannual differences in albedo due to the backwasting process are masked by interannual differences in the summer dust opacity in the RSPC region.  相似文献   

18.
Mesospheric clouds have been previously observed on Mars in a variety of datasets. However, because the clouds are optically thin and most missions have performed surface-focussed nadir sounding, geographic and seasonal coverage is sparse. We present new detections of mesospheric clouds using a limb spectra dataset with global coverage acquired by NASA’s Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter. Mesospheric aerosol layers, which can be CO2 ice, water ice or dust clouds, cause high radiances in limb spectra, either by thermal emission or scattering of sunlight. We employ an object recognition and classification algorithm to identify and map aerosol layers in limb spectra acquired between December 2006 and April 2011, covering more than two Mars years. We use data from MCS band A4, to show thermal signatures of day and nightside features, and A6, which is sensitive to short wave IR and visible daytime features only. This large dataset provides several thousand detections of mesospheric clouds, more than an order of magnitude more than in previous studies.Our results show that aerosol layers tend to occur in two distinct regimes. They form in equatorial regions (30°S–30°N) during the aphelion season/northern hemisphere summer (Ls < 150°), which is in agreement with previous published observations of mesospheric clouds. During perihelion/dust storm season (Ls > 150°) a greater number of features are observed and are distributed in two mid-latitude bands, with a southern hemisphere bias. We observe temporal and longitudinal clustering of cloud occurrence, which we suggest is consistent with a formation mechanism dictated by interaction of broad temperature regimes imposed by global circulation and the propagation to the mesosphere of small-scale dynamics such as gravity waves and thermal tides.Using calculated frost point temperatures and a parameterization based on synthetic spectra we find that aphelion clouds are present in generally cooler conditions and are spectrally more consistent with H2O or CO2 ice. A significant fraction has nearby temperature retrievals that are within a few degrees of the CO2 frost point, indicating a CO2 composition for those clouds. Perihelion season clouds are spectrally most similar to H2O ice and dust aerosols, consistent with temperature retrievals near to the clouds that are 30–80 K above the CO2 frost point.  相似文献   

19.
Michael D Smith 《Icarus》2004,167(1):148-165
We use infrared spectra returned by the Mars Global Surveyor Thermal Emission Spectrometer (TES) to retrieve atmospheric and surface temperature, dust and water ice aerosol optical depth, and water vapor column abundance. The data presented here span more than two martian years (Mars Year 24, Ls=104°, 1 March 1999 to Mars Year 26, Ls=180°, 4 May 2003). We present an overview of the seasonal (Ls), latitudinal, and longitudinal dependence of atmospheric quantities during this period, as well as an initial assessment of the interannual variability in the current martian climate. We find that the perihelion season (Ls=180°-360°) is relatively warm, dusty, free of water ice clouds, and shows a relatively high degree of interannual variability in dust optical depth and atmospheric temperature. On the other hand, the aphelion season (Ls=0°-180°) is relatively cool, cloudy, free of dust, and shows a low degree of interannual variability. Water vapor abundance shows a moderate amount of interannual variability at all seasons, but the most in the perihelion season. Much of the small amount of interannual variability that is observed in the aphelion season appears to be caused by perihelion-season planet-encircling dust storms. These dust storms increase albedo through deposition of bright dust on the surface causing cooler daytime surface and atmospheric temperatures well after dust optical depth returns to prestorm values.  相似文献   

20.
The surface temperature of the Martian polar caps is about 148 K (frost point temperature of CO2 at a surface pressure of about 6 hPa), with the “desert” (frost-free) areas adjacent to the polar caps having much greater surface temperatures. The existence of this steep meridional gradient of temperature between the polar caps and the adjacent “desert” areas may produce in the atmosphere a baroclinic instability which generates an atmospheric circulation system similar in some aspects to the terrestrial sea breeze. We have called this circulation system the Martian polar cap breeze. In this paper, the phenomenology of the Martian polar cap breeze is developed on the basis of the indirect observational evidence. Along with friction and the Coriolis force, other factors influence the polar cap breeze: the prevailing wind, topography, irregularity of the polar cap-edge, and stability of the atmosphere. These factors are studied in a qualitative form, as well as the seasonal variations. In addition, the large-scale polar cap wind is presented as a different Martian atmospheric circulation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号